
Algorithms and Complexity. Exercise session 5

Flows. Reductions

Altered �ow

a) Describe an e�cient algorithm that �nds a new maximum �ow if the capacity of a
particular edge increases by one unit.

Algorithm time complexity will be linear, ie O(|V |+ |E|).
b) Describe an e�cient algorithm that �nds a new maximum �ow if the capacity of a

particular edge decreases by one unit.

Algorithm time complexity will be linear, ie O(|V |+ |E|).

Solution to Altered �ow

a) Suppose that the edge from u to v increases its capacity by one. From the previous maximum
�ow Φ, just make a new iteration of Ford-Fulkerson algorithm with the modi�ed graph: The
residual �ow graph increases the capacity of edge (u, v) with one. Make a graph search (in
time O(|V |+ |E|)) to see if there is any path in the residual �ow graph along which the �ow
can increase. If there is one, there must be a �ow of size one (because all �ows are integers).
If there is no �ow in the residual �ow graph Φ is still the maximum �ow.

b) Suppose that the edge from u to v decreases its capacity by one. If the previous maximum
�ow Φ didn't use the full capacity of (u, v) such change doesn't count at all. Otherwise we
update the �ow as follows:

Since the �ow entering u is one unit more than the �ow leaving it and the �ow entering v is
one unit less than the �ow leaving it, there is no way we must transfer a unit �ow from u to
v. Thus, search in the residual �ow graph for a path from u to v along which the �ow can
increase by one. This is done by a graph visit in time O(|V | + |E|). If there is such a path
we update Φ with the �ow.

If there is no such a path, we must reduce the �ow from s to u and from v to t with one unit.
We do this by �nding a path from u to s in the residual �ow graph along which the �ow can
increase by one and a path from t to v along which �ow can increase by one. (There must
be such paths, because we had a �ow from s to t via (u, v).) Then, update Φ with these two
�ows.

2

Quick bin packing Bin packing is the following problem. You are given n objects, each weighting
between 0 and 1 kg. Moreover, you are also given a number of boxes to place such objects
in. The goal is to �nd the minimum number of boxes needed to store n objects with no box
containing more than 1kg.

This is a well-known problem and it is di�cult to solve exactly (it's a so called NP-complete

problem). Therefore, we may be happy to �nd a solution which is not optimal, by using the
following simple algorithm:

Assume that both objects and boxes are numbered from 1 to n. Pick one object at a time
(sequentially) and put it in the �rst box which can handle it (ie the box with a remaining
weight which can handle the object).

1

Your task is to describe how this algorithm can be implemented so that it runs in time
O(n log n) (in the worst case with unit cost). To achieve this, you will have to build a heap-
like data structure in which you can quickly look up the �rst box that holds the current
object.

Solution to Quick bin packing

Since n objects should be placed in the boxes in time O(n log n) we need a way to put each object
in a box in time O(log n). As the number of boxes can be up to n the algorithm must reject half
of the boxes at each step. If so, we have rejected all boxes except one in log n steps, and we know
which box to put the object.

There are only two criteria for rejecting boxes:
1. If the box can not accommodate the object
2. If the box has a higher number than the �rst box that accommodates the object.
In order to reject half of the boxes with one search, we have to keep track of the weight of the

heaviest object, which can be placed in the �rst half of the boxes and in the second half of the
boxes. We must keep track of recursively for each half.

The data structure thus becomes a complete binary tree of log n levels, where the tree leaves
are the boxes. In each leaf we store the amount that the corresponding box holds (initially 1). In
each internal tree node, we store the largest of the son's values. The data structure now looks like
a heap with the largest value at the top. Here is an example of eight boxes that are �lled with 0.6,
0.8, 0.9, 0.8, 0.7, 1, 0 and 0 kg:

The algorithm puts an object with weight x; the �rst box that accommodates it becomes now:

void FindBin(double x, int i)

{ if (i >= n) /* Is this a leaf (ie. a box)? */

H[i] = H[i] - x;

else {

if (H[2*i] >= x) /* Can left son accommodate x? */

FindBin(x, 2*i); /* Yes, go to the left subtree. */

else

FindBin(x, 2*i+1); /* No, go to the right subtree. */

H[i] = max(H[2*i],H[2*i+1]); /* Update the current node. */

}

}

The procedure starts with FindBin(x,1). 2

Negative reduction In the last exercise we described an algorithm that �nds an approximate
solution to the bin packing problem. The algorithm works by placing each object in the �rst
box that can handle it. The goal was to implement the algorithm in time O(n log n). Show
that Ω(n log n) is a lower bound for the algorithm time complexity.

2

Solution to Negative reduction

As usual for the lower bounds that are Ω(n log n), we construct a reduction of the problem of
sorting n numbers to our problem. We know it is impossible to sort n numbers by means of
comparisons faster than Ω(n log n). This applies even if the n numbers are permuted integers from
1 to n, and even if we allow to make an initial linear re-scaling of the numbers. Let us show now
how we can use the quick bin packing algorithm to sort these numbers.

Idea: We rescale the numbers to be sorted by a factor of 1/(2n) so that they lie between 1/(2n)
and 1/2. Then we construct an input instance, containing objects that will �ll the boxes, such
that we can �t exactly the numbers from 1/(2n) to 1/2 (in order from box 1 to box n). If we can
place the objects and rescale them according to the algorithm, the numbers will be sorted.

Assume that v[1..n] are the objects to be sorted and the key �eld is key. Furthermore, suppose
that the algorithm returns, for each box, a list of indexes of the objects that it contains.

Sort(v[1..n]) =
p← 1/(2n)
for i← 1 to n do x[i]← 1− i · p
for i← n+ 1 to 2n do x[i]← v[i− n] · p
L[1..n]←FirstFit(x[1..2n])
for i← 1 to n do res[i]← L[i][2] // take the second object out of each box
return res[1..n]

Function Sort reduces the sorting problem to FirstFit. Reduction (not counting the call to FirstFit)
takes timeO(n), so if you could implement FirstFit in time less than Ω(n log n), it would be possible
to sort n numbers faster than Ω(n log n), which is impossible. 2

Positive reduction A useful way to solve problems is to �nd a reduction to a problem which
you already know how to solve. You should use this method to solve the following problem.

Input: A connected undirected graphG = (V,E) and a positive integerK between
1 and|V |.
Problem: Is it possible to remove K edges from the graph G to make it discon-
nected (ie. divided into connected components)?

Solution to Positive reduction

First, we should try to understand the problem. Suppose X is the minimal number of edges whose
removal makes G disconnected. (This means that no strict subset of X makes G disconnected.)
Then G consists of two components, and all edges of X go between these two components. (Other-
wise, X can not be minimal.) Thus, X corresponds to a cut in the graph (a division of the vertices
in two parts). The number of edges in X is the cut size. This means that the minimum number of
edges that we must remove so that G becomes disconnected � call this λ(G) � is equal to the
size of a minimum cut (V1, V2) in G.

Minimal cut is the same as the maximum �ow. We shall therefore try to reduce our problem
problem to a maximum �ow between two vertices s and t in a graph. If we extend G to a �ow graph
G′, by giving each bidirectional edge capacity 1 and �nd λ(G) by calculating the maximum �ow
from s to t for di�erent s and t. However, we don't need to vary both. If we choose an arbitrary s,
it must belong to one of the sets V1 and V2 above. Varying t over all verteces in addition to s, we
are guaranteed to meet a vertex in the second set. Therefore, the answer is an arbitrary vertex s.

λ(G) = min
t∈V−{s}

{MaxFlow(G′, s, t)}.

3

Now it remains to determine if K ≥ λ(G). We answer no if K < MaxFlow(G′, s, t) for all
t ∈ V − {s} and yes otherwise.

The �ow algorithm is called |V | − 1 times. Each run takes time O(|V |3) (which you do not
need to know by heart). So then, the complexity of our algorithm is O(|V |4). 2

Reduction between decision-, optimization- and construction problems Assume that the
algorithm GraphColouring(G,k) at time T (n) (where n is the number of vertices in G) is
1 i� the vertices of G can be colored with k colors and no edge has both ends of the same
color.

a) Construct an algorithm that given a graph G with n vertices determines the minimum
number of colors needed to color G. The time complexity will be O(log n · T (n)).

b) Construct an algorithm that given a graph G with n vertices colors each vertex with
the minimum number of colors in time O(P (n)T (n)), where P (n) is a polynomial.

Solution to Reduction between decision-, optimization- and design problems

a) We know that the colors are between 1 and n. Do binary search in this interval by us-
ing the algorithm GraphColouring to �nd a k so that GraphColouring(G, k) = 1 and
GraphColouring(G, k − 1) = 0. This procedure requires minimal coloring have k colors. We
need at most log n iterations to get down to 1. The time complexity is thereforeO(log n·T (n)).

b) Find the minimum number of colors k with the method above. We want to color the vertices
of G with colors from 1 to k. The following algorithm does it:

CreateColouring(G = (V,E), k)=
u← �rst vertex of V
C ← {u};u.colour ← k
foreach v ∈ V − {u} do

if (u, v) 6∈ E then

if GraphColouring((V,E ∪ {(u, v)}), k) = 1 then E ← E ∪ {(u, v)}
else C ← C ∪ {v}; v.colour ← k

if k > 0 then CreateColouring((V − C,E), k − 1)

GraphColouring is called at most once for each pair of vertices in the graph. The time
complexity of the algorithm is therefore O(log n · T (n) + n2 · T (n)) = O(n2 · T (n)).

2

4

