
 Since SAT and INDEPENDENT SET can be reduced to each other we might think
that there would be some similarities between the two problems. In fact, there is one
such similarity.

In SAT we want to know if something exists. We are looking for aset of values for to
coordinate such that the formula is true. It is hard to find such a set of values but if we
have found it, it is easy to check if it makes the formula true.

In INDEPENDENT SET we are looking for a set of nodes of size K such that the set
forms an independent set. I is hard to find the set but if we have found it, it is easy to
check if it really is an independent set.

Both the problems have a so called yes-certificate, something that tells us that the
answer to the problem is yes. For SAT, the certificate is the values for the
variables. For INDEPENDENT SET, the certificate is the K-set.

Informally, the class NP is the set of decision problems such that if the
answer to the problem with input x is yes, then is a certificate y, at most
polynomial in the size of x such that it can be checked in polynomial time
(in the size of x) that y is a yes- certifice.

We will give a more formal definition of this. The definition identify problems with
something we will call languages. Then we will describe the property of being an NP-
problems as a property for languages.

Formal definition of P

A formal language L is a set of strings.

Example:

{“abc”, “qwerty”, “xyzzy”}
{binary strings of odd lenght}
{binary strings that represents prime numbers }
{syntactically correct C-programs}

A language can be describe in different ways:

• An enumeration of the strings in the lan-
guage.

• A set of rules defining the language.

• An algorithm which recognize the strings
in the language.

To every decision problem there is a corre-
sponding language:
The language of all yes-instances.

We say that the algorithm A decides L if

A(x) = Yes if x ∈ L,

A(x) = No if x "∈ L.

A runs in polynomial time if A(x) runs in time
O(|x|k) for all x and some integer k.

P = {L : ∃A that decides L i polynomial time}

A formal definition of NP

A verifies the instance x of the problem L if
there is a certificate y such that |y| ∈ O(|x|s)
and

A(x, y) = Yes ⇔ x ∈ L

This means that A decides the language
L = {x ∈ {0,1}∗ : ∃y ∈ {0,1}∗ : A(x, y) = Ja}

NP = {L : ∃A that verifies L in polynomial time}

P ⊆ since all problem that can be decided in
polynomial time also can be verified in poly-
nomial time.

THE BIG QUESTION

Since 1971 this is the most famous open problem in computer science.

Most people believe that the answer is no. Then there must be
problems in NP - P. SAT would be a plausible candidate.

Are there any NP-Complete problems? Well, there are:

Cook's Theorem: SAT is NP-Complete

It seems as if hard NP-Problems can be reduced to each other. This
observation leads us to the following definition.

NP-Completeness: A problem Q is NP-Complete if

1. Q is in NP.
2. For each A in NP, there is a reduction from A to Q, i.e. all NP
problems can be reduced to Q.

It follows from the definition that P NP.

Is P = NP?

Other NP-Complete problems

We know that SAT INDEPENDENT SET. We also know that for each A in NP we
have A SAT. But this means that for all A in NP we have A INDEPENDENT
SET

So INDEPENDENT SET is an NP-Complete problem.

We realize that the NP-Complete problems must be the hardest
problems in NP. If any NP-Complete problem can be solved efficiently
then all can!
So we wouldn't expect to be able to find efficient solutions to NP-Complete
problems.

The best way to "show" that a problem is impossible to solve
efficiently is to show that it is NP-Complete.

This is the core of applied Complexity Theory.

But how do we show that a problem is NP-Complete?

It is ease to see that reductions are transitive, i.e.

A B and B C A C

A second definition of NP:

A non-deterministic algorithm is an algorithm
that makes random choices. The output is
stochastic. We say that A decides a language
L if:

x ∈ L ⇒ A(x) = Yes with probabilty > 0

x /∈ L ⇒ A(x) = No with probability 1

NP = {L : ∃polynomial time non-deterministic
algorithm that decides L}

Proving NP-Completeness

In order to show that A is NP-Complete it is
enough to show that A ∈ NP and SAT ≤P A.
Why: If X ∈ we know that X ≤ SAT . If we
also have SAT ≤ A we know that X ≤ A!
This shows that A is NP-Complete.

Another approach: We can form i directed
graph such that A → B means A ≤ B.
SAT → A → B → C → ... tells us that A,B,C, ...

are NP-Complete.

To show that A is NP-Complete we can try to
find a known NP-Complete problem B such
that B ≤ A.

HAMILTONIAN CYCLE ≤ TSP

TSP

Input: A weighted complete graph G and a
number K.
Goal: Is there a Hamiltonian cycle of length
at most ≤ K in G?

HAMILTONIAN CYCLE

Input: A graph G.
Goal : Is there a Hamiltonian cycle in G?

Let x = G be input to HC. We construct a
complete graph G′ with w(e) = 0 if e ∈ G and
w(e) = 1 if e /∈ G. Then set K = 0. This will
be the input to the TSP.

Other NP-Complete problems

Exact Cover
Given a set of subsets of a set M , is it possible
to find a selection of the subsets such that
each element in M is in exactly one of the
subsets?

Subset Sum
Given a set P of positive integers and an
integer K, is there a subset of the numbers
in P with sum K?

Integer Programming
Given an m× n-matrix A, an m-vektor b, an
n-vektor c and a number K, is there an n-
vektor x with integer coefficients such that
Ax ≤ b and c · x ≥ K?

If we relax the condition that the coefficients
x should be integers we get a special case of
Linear Programming.

Subgraph isomorphism is NP-Complete

Given two graphs G1 and G2, Is G1 a
subgraph of G2?

The problem obviously belongs to NP.

We reduce from Hamilton Cycle.

A graph G = (V,E) contains a Hamiltonian
cycle if and only if it contains a subgraph that
is a cycle C with |V | nodes. So we can set
G1 = C and G2 = G. som G.

Partition is NP-Complete

Given a set S of positive integers.
Can we split S into two disjoint parts S1

and S2 such that
∑

x∈S1
x =

∑
x∈S2

x?

The problem is obviously in NP.

We reduce from Subset Sum:
Given an instance p1, p2, . . . , pn and K of Sub-
set Sum we create the following instance of
Partitioning: Set P =

∑
pi

p1, p2, . . . pn, P − 2K

if K ≤ P/2 and

p1, p2, . . . pn,2K − P

otherwise.

There is a partitioning precisely when there
is a subset sum K.

0/1-programming is NP-Complete

Given an m× n-matris A and an m-vektor b.
Is there an n-vektor x with coefficients
∈ {0, 1} such that Ax ≤ b?

The problem is in NP since, given x, we can
check in time O(n2) if Ax ≤ b.

We reduce from 3-CNF-SAT:
Let Φ be an instance of 3-CNF-SAT With
n variables. To each xi in Φ we define a
corresponding variable yi ∈ {0,1} and let 1
Mean True and 0 mean False.

FOr each clause cj = l1 ∨ l2 ∨ l3 we define an
inequality

T (l1) + T (l2) + T (l3) ≥ 1

where T (xi) = yi and T (¬xi) = (1− yi).

And that’s it!

