Greedy algorithms

How to design algorithms:

[nput % Z _?

We can:
. Trytodevelop a completely new algorithm.
2. Modify some existing algorithm.

[f we try the second possibility we can:

[. Modify a specific algorithm.

2. Try an algorithm from a general class of
algorithms.

Examples of algorithms to uge in cage [ could be:

Graph algorithms
Flow algorithms
Linear programming (Simplex method)



We will describe three classes of algorithms that
can be usedin case 2:

Greedy algorithmg
Divide & Conquer algorithms

Dynamic Programming algorithme

But first, an example of how we can modify an
existing algorithm. Remember DFS:

DFS(u):
SetR =0
ForallveV Set vig(u) =
Set viglv) =0 AddutoR
End for For each v such that vig adjacent tou
DFS(s) If vis(v)=0O
DFS(v)
Endif
End for

The algorithm ¢an be used both for directed and
undirected graphs.



DIRECTED CYCLE
[nput: A directed graph G
Goal: Does G contain a directed cycle?

Modified DFS:

ForallveV
Set vislv)=0

End for

While there is v such that vis(v) = O
DFS_Mod(v)

Return "No "

<Q

DFS Modl(u):

Set viglu)=0,5
For eachv such that vis adjacent tou
If vis(v)= 0,5
Return "Yes!
Elgeif vie(v)=0
DFS(v)
Endif
End for
Set vig(u) =1

We can proof that this algorithm stops and returns

Yes or No correetly.



_Greedy algorithms

[n thig lecture we will describe a general template for finding algorithms. [t works in a
surprigingly large number of cases. [t's the method of greedy algorithms.

We will study a special type of problems. We want to make choices. Let's say that
we make choices e[l], e[2], e[3], ... At each step in the algorithm we have a set of
posgible choices. When the algorithm ends we want to have a selection ¢[l], ¢[2],
e[3], ...e[k] that in some sense is correct. We agsume that there, to each selection,
is aggociated a cost A. Let's agsume that our goalis to find a correct selection with
as small cost ag possible.

Furthermore, we agsume that when the choice ¢[l]is made the remaining situation is
a problem of the same type. (Thig notion geems hard define in a precise way.) Then
there i a chance that a ¢o called greedy algorithm will work.

A greedy algorithm ig a an algorithm which make the choices following a very simple
(greedy) strategy. What this meang depends on the situation. Usually there are two
sorts of greedy strategies:

. We can make the choice ¢[l] so that the cost (locally) increases ag little ag
possible.

2. We can make the choice ¢[l] so that the remaining problem is as “good"” as
possible.

(The first case is what we in the strictest sense means by a greedy algorithm. But
lote of interesting problems are covered by the second, more vague case.)



The greedy algorithm rung like this: Agssume that we have made choices e[l], e[2],
e[3], ..., e[m]. If this selection is correct we stop. Otherwise, make the next choice
following your greedy strategy.

The general idea with a greedy algorithm is that you don't have to spend
long time on making your choices. You don't have to look ahead and
congider the consequences. Greedy algorithm usually have low time-
complexity.

The philosophy behind greedy algorithms: You don't have to look ahead when
making choices.

Ex:

We have the numbers [0, 5 and . We are given the integer N. We want to write N ag a
sum of of the numbers 10, 5, 1. (We can uge a number more than one time.) That i,
we want to find numbers ab,c such that N =a O + b 5 + ¢. Furthermore, we want to
uge ag few termg ag possible. That is, a + b + ¢ should be ag small ag possible.

The solution ig obvious: As long as N is greater than 9 we subtract 10 to get a new
number N and repeat. When N ig gmaller than [O we subtract 5 if possible. Then
we subtract [ until we reach O. So, for instance, N =37 givesa=3,b=1,¢c=2.
Obviously, we can not do better than this. This is a greedy algorithm.



When greedy algorithms fail

A greedy algorithm can fail for two reasons:

[ lt can fail to give us an optimal golution 2.t can fail to give ue a correct
solution.

Ex: We take the same problem ag Ex: The same problem but with the
before, but instead of [0, 5, | we numberg 6,5, 2. [f we take N =7, the
use the numbers 6, 5, 1. If we have greedy algorithm subtracts 6 from 7 and
N =10, the greedy algorithm gives leaves ug with [. Then the algorithm fails
us I0O=6+[+1+[+[. But the to reach the.sum 7. The correct solution
best solutionis [0 =5 + 5. is7=5+2.

But when do greedy algorithme work? We study some examples.

Ex:

We want to drive along a road. We represent the road as a coordinate
axis. We gtart at x = O and want to go to a city x[n]. Along the road
there are other cities x[l], x[2], ...x[n-]. A full gas tank containg gas for
A kilometers. We can fill the tank in the cities but nowhere else. We want
to reach x[n] and tank as few times as possible. How do we do that?



We might think that we should use some complicated strategy but
that is not so. [n fact, a greedy algorithm works:

If we are at x[i] and have enough gas left to
reach x[i+[] we do not fill gas. Otherwise, we
get a full tank at x[i]. f it ic at all possible to get
to x[n], this algorithm will take us there and fill

gag ag few times ag possible. Qitl=0
Seti=0
QetT=A

The time-complexity is Oln). While TRUE do

While x[i+1]- x[i] < T andi<n do
Set T =T - x[i+!] + xi]

Seti=i+|
End while
[fi=nthen

Halt

If x[i+!] - x[i]<A then
Return “Impossible”
SetT=A
Putiat theend of L
End while

We will look at some more examples:



Activity planning

Let us assume that we have n activities
ai,an,...,an With corresponding time intervals
[s;, fi). No intervals are allowed to overlap
each other. (The intervals are half-open. Ob-
serve that [2,4) och [4,5) do not overlap.)
How do we choose a maximal number of ac-
tivities that do not overlap each other?

Greedy algorithm for activity planning

It turns out that we shall choose activities
after end times. This algorithm chooses a set
A of activities. Sort the activities such that

fl < f2 <..8 fn-
(1) A« {ay}
(2) i+ 1
(3) for j« 2ton
(4) if s; > fi
(5) A+ AU{aj}
(6) 1 4= ]
(7) return A

The time-complexity is Oln).



Jobs with deadlines

Let us assume that we have n jobs which
must be done by one person. It takes time t;
to do job i. We also know that job 7 must be
finished latest at time d;. We want to plan

times for doing the jobs such that:

o f(i) = s(i) +t; for all 4.

e No intervals [s(i), f(2)], [s(4), f(5)] over-
lap each other.

e f(i) < d; for all i.

A first problem is to decide if this is possible
and how the planning then looKks.

If the planning is impossible to make, this
must be because f(i) > d; for some i. We can
try to minimize the failure". There are several
ways of measuring the failure. A natural idea
is the following:

Set L = max f; — d;.
1

Then try to get L as small as possible.



The algorithm is really simple. Sort the job
SO that dy < dp < --- < d,. We assume that
d;, > 0 for all 7= and that the first job starts at

0.

(1)
(2)
(3)
(4)

s(1) « 0, f(1) <+t
for i+ 2 ton
s(i) « f(i—1), f(2) < s(i)+¢;

return s, f

The Minimal Spanning Tree Problem

If G is a connected graph,then a spanning tree is a tree that containg all

nodes in G.

Obs: fIVI=nand T&G s a tree then

Tig gpanning® E[=n-1

A graph with node wetghts




A minimal gpanning tree (MST)is a gpanning tree such that

W =Y. e v

is minimal.

The MST problem:

Input: W weighted connected graph G
Goal: AMST inG

MST




Krugkal's algorithm

Sort the edges such that wled < wlez) < ...
SetA=0Q
For each e; in the sorted order

If Au{e;} does not contain any cycle A furst form

Set A=Au{e;}
Endif
End for

How do we decide the complexity? How do you know if a set of
edges.containg a cycle or not? We have to describe the algorithm
more in details.

Data structures for identifying cycles:

MakeSet(v) creates the set {v}
Complexity: O( 1)

FindSet(v) finds the set containing v
Complexity : Ol log [VI)

Make Union(u,v) makes the union of the sets
containing u and v
Complexity: OllogIVI)



Kruskal(V, E, w)

(1)
(2)
(3)
(4)

(5)

(6)
(7)
(8)
(9)

A«0D
foreach veV
MakeSet(v)
Sort E in increasing weight or-
der
foreach (u,v) € E (in the sorted
order)
if FindSet(u) # FindSet(v)
A AU {(u,v)}
MakeUnion(u, v)
return A

Complexity: O(|E|log|E|) (due to the sor-
ting); FindSet and MakeUnion takes O(|E|||log|V])

tid.



Another similar algorithm ig Prim's algorithm

Prim(V, E,w,s)

(1) key[v] «+ oo for each v e V
(2) keyls] « 0

(3) Q < MakeHeap(V, key)

(4) [s] « Null

(5) while Q#10

(6) u + HeapEzxtractMin(Q)

(7) foreach neighbor v to u

(8) if ve@andw(u,v) < key[v]
(9) w[v] « u

(10) keylv] « w(u,v)

(11) Order the heap at v

[t can be showed that the complexityis O([Ellog V1)



