Divide and Conquer algorithms

Another general method for constructing algorithms is given by the Divide and Conquer strategy. We assume that we have a problem with input that can be split into parts in a natural way.

Let $T(n)$ be the time-complexity for solving a problem of size n (using our algorithm). Then we have $T(n)=T(n / 2)+T(n / 2)+f(n)$
where $f(n)$ is the time for "making the split" and "putting the parts together.
This will be useful only if $f(n)$ is sufficiently small.

Mergesort

A famous example is Mergesort. Here we split a list of numbers into two parts, sort them separately, and merge the two lists.

The question is how we merge two already sorted lists and what the complexity $f(n)$ is?
We can use the following algorithm:
$\operatorname{Merge}[a[l, \ldots, p], b[l, \ldots, q]]$
If $a=\varnothing$
Return b
End if
If $b=\varnothing$
Return a
End if
If $a[1] \leqslant b[1]$
Return $a[1]$. Merge[a[2,.., p],b[l,...,q]]
End if
Return $b[1]$. Merge $[a[1, \ldots, p], b[2, \ldots, q]]$

The complexity is $O(n)$.

The main Mergesort algorithm is:

MergeSort

MergeSort ($v[i . . j])$
(1) if $i<j$
(2) $\quad m \leftarrow\left\lfloor\frac{i+j}{2}\right\rfloor$
(3) MergeSort (v[i..m])
(4) MergeSort $(v[m+1 . . j])$
(5) $\quad v[i . . j]=\operatorname{Merge}(v[i . . m], v[m+1 . . j])$

Let $T(N)$ be the time it takes to sort N numbers. then

$$
T(N)= \begin{cases}O(1) & N=1 \\ T\left(\left\lfloor\frac{N}{2}\right\rfloor\right)+T\left(\left\lceil\frac{N}{2}\right\rceil\right)+\Theta(N) & \text { else }\end{cases}
$$

since Merge $\Theta(N)$ when input is arrays of length N.

But how do we decide the complexity? We are given a recursion equation. The following theorem often gives the solution:

Master Theorem

Theorem If $a \geq 1, b>1$ and $d>0$ the equation

$$
\begin{aligned}
& T(1)=d \\
& T(n)=a T(n / b)+f(n)
\end{aligned}
$$

has the solution

- $T(n)=\Theta\left(n^{\log _{b} a}\right)$ if $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some $\epsilon>0$
- $T(n)=\Theta\left(n^{\log _{b} a} \log n\right)$ if $f(n)=\Theta\left(n^{\log _{b} a}\right)$
- $T(n)=O(f(n))$ if $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some $\epsilon>0$ and $a f(n / b) \leq c f(n)$ for some $c<1$ for n large enough.

When applied on Mergesort this theorem gives $\Theta(N \log N)$.

A special case of MT

If we assume that $f(n)=O\left(n^{d}\right)$ for some integer d, we get a simpler formula. Let us first set $k=\log _{b} a$.

$$
T(n)= \begin{cases}\theta\left(n^{k}\right) & k>d \\ \theta\left(n^{k} \log n\right) & k=d \\ \theta\left(n^{d}\right) & k<d\end{cases}
$$

It can be interesting to look at the special case $a=b(k=1)$

$$
T(n)= \begin{cases}\theta(n) & 1>d \\ \theta(n \log n) & 1=d \\ \theta\left(n^{d}\right) & 1<d\end{cases}
$$

And we can also look at $a=1, b=2(k=0)$

$$
T(n)= \begin{cases}\theta(\log n) & 0=d \\ \theta\left(n^{d}\right) & 0<d\end{cases}
$$

Let's look at some more advanced examples.

Multiplication of large numbers

We want to compute $x \cdot y$ for binary numbers x och y

$$
\begin{aligned}
& x=\underbrace{x_{n-1} \cdots x_{n / 2}}_{a} \underbrace{x_{n / 2-1} \cdots x_{1} x_{0}}_{b}=2^{n / 2} a+b \\
& y=\underbrace{y_{n-1} \cdots y_{n / 2}}_{c} \underbrace{y_{n / 2-1} \cdots y_{1} y_{0}}_{d}=2^{n / 2} c+d
\end{aligned}
$$

For $n=2^{k}$ we can split the product:
Mult (x, y)
(1) if length $(x)=1$
(2) return $x \cdot y$
(3) else
(4) $\quad[a, b] \leftarrow x$
(5) $\quad[c, d] \leftarrow y$
(6) $\quad \operatorname{prod} \leftarrow 2^{n} \operatorname{Mult}(a, c)+\operatorname{Mult}(b, d)$ $+2^{n / 2}(\operatorname{Mult}(a, d)+\operatorname{Mult}(b, c))$
(7) return prod

Time-complexity: $T(n)=4 T(n / 2)+\Theta(n)$, $T(1)=\Theta(1)$ which gives us $T(n)=\Theta\left(n^{2}\right)$.

Here is a way of doing it that really uses D and C :

Karatsuba's algorithm

We use $(a+b)(c+d)=a c+b d+(a d+b c)$.
We can remove one of the four products:
Mult (x, y)
(1) if length $(x)=1$
(2) return $x \cdot y$
(3) else
(4) $\quad[a, b] \leftarrow x$
(5) $\quad[c, d] \leftarrow y$
(6) $\quad a c \leftarrow \operatorname{Mult}(a, c)$
(7) $\quad b d \leftarrow \operatorname{Mult}(b, d)$
(8) $\quad a b c d \leftarrow \operatorname{Mult}(a+b, c+d)$
(9) return $2^{n} \cdot a c+b d+$

$$
2^{n / 2}(a b c d-a c-b d)
$$

We get $T(n)=3 T(n / 2)+\Theta(n), T(1)=$
$\Theta(1)$ with the solution $T(n)=\Theta\left(n^{\log _{2} 3}\right) \in$ $O\left(n^{1.59}\right)$.

Here is an algorithm that fails to use D and C in a creative way.

Matrix multiplication

When we multiply $n \times n$-matrices we can use matrix blocks:

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

by using the formulas

$$
\begin{aligned}
& C_{11}=A_{11} B_{11}+A_{12} B_{21} \\
& C_{12}=A_{11} B_{12}+A_{12} B_{22} \\
& C_{21}=A_{21} B_{11}+A_{22} B_{21} \\
& C_{22}=A_{21} B_{12}+A_{22} B_{22}
\end{aligned}
$$

we get 8 products and

$$
T(n)= \begin{cases}\Theta(1) & n=1 \\ 8 T(n / 2)+\Theta\left(n^{2}\right) & n>1\end{cases}
$$

which gives us $T(n)=\Theta\left(n^{3}\right)$.

Strassen's algorithm

If we instead use the more complicated formulas

$$
\begin{aligned}
& M_{1}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
& M_{2}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{3}=\left(A_{11}-A_{21}\right)\left(B_{11}+B_{12}\right) \\
& M_{4}=\left(A_{11}+A_{12}\right) B_{22} \\
& M_{5}=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{6}=A_{22}\left(B_{21}-B_{11}\right) \\
& M_{7}=\left(A_{21}+A_{22}\right) B_{11} \\
& C_{11}=M_{1}+M_{2}-M_{4}+M_{6} \\
& C_{12}=M_{4}+M_{5} \\
& C_{21}=M_{6}+M_{7} \\
& C_{22}=M_{2}-M_{3}+M_{5}-M_{7}
\end{aligned}
$$

we reduce the number of products to 7 which gives us $T(n)=\Theta\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)$.

An advanced application of D and C is the Fast Fourier Transform (FFT). We start by describing what the Discrete Fourier Transform (DFT) is:

Discrete Fourier Transform

We transform a polynomial $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$. Essentially we do it by computing it's values for the complex unity roots $\omega_{n}^{0}, \omega_{n}^{1}, \ldots, \omega_{n}^{n-1}$ where $\omega_{n}=e^{2 \pi i / n}$.

$$
\operatorname{DFT}_{n}\left(\left\langle a_{0}, \ldots, a_{n-1}\right\rangle\right)=\left\langle y_{0}, \ldots, y_{n-1}\right\rangle
$$

where

$$
y_{k}=A\left(\omega_{n}^{k}\right)=\sum_{j=0}^{n-1} a_{j} e^{2 \pi i j k / n}
$$

The n coefficients gives us n "frequencies".
Compare with the continuous transform

$$
\widehat{f}(t)=\int_{-\infty}^{\infty} f(x) e^{-i t x} d x
$$

This simplest way of computing this transform has complexity $O\left(n^{2}\right)$. The FFT is a more efficient way of doing it.

FFT: An efficient way of computing DFT

We have $y_{k}=A\left(\omega_{n}^{k}\right)=\sum_{j=0}^{n-1} a_{j} e^{2 \pi i j k / n}$. We separate odd and even degrees in A:

For $k<n / 2$ We have

$$
\begin{aligned}
A^{[0]}\left(\omega_{n}^{2 k}\right) & =\sum_{j=0}^{n / 2-1} a_{2 j} e^{4 \pi i j k / n} \\
& =\sum_{j=0}^{n / 2-1} a_{2 j} \omega_{n / 2}^{j k} \\
& =D F T_{n / 2}\left(\left\langle a_{0}, a_{2}, \ldots, a_{n-2}\right\rangle\right)_{k}
\end{aligned}
$$

where $D F T_{n}\left(\left\langle a_{0}, \ldots, a_{n-1}\right\rangle\right)_{k}$ is the k :th element of the transform.

In the same way, for $k<n / 2$,

$$
A^{[1]}\left(\omega_{n}^{2 k}\right)=D F T_{n / 2}\left(\left\langle a_{1}, a_{3}, \ldots, a_{n-1}\right\rangle\right)_{k}
$$

For $k \geq n / 2$ we can easily see that

$$
\begin{gathered}
A^{[0]}\left(\omega_{n}^{2 k}\right)=D F T_{n / 2}\left(\left\langle a_{0}, a_{2}, \ldots, a_{n-2}\right\rangle\right)_{k-n / 2} \\
A^{[1]}\left(\omega_{n}^{2 k}\right)=D F T_{n / 2}\left(\left\langle a_{1}, a_{3}, \ldots, a_{n-1}\right\rangle\right)_{k-n / 2} \\
\omega_{n}^{k}=-\omega_{n}^{k-n / 2}
\end{gathered}
$$

In order to decide $\operatorname{DFT}_{n}\left(\left\langle a_{0}, \ldots, a_{n-1}\right\rangle\right)$ we use $D F T_{n / 2}\left(\left\langle a_{0}, a_{2}, \ldots, a_{n-2}\right\rangle\right)$ and $D F T_{n / 2}\left(\left\langle a_{1}, a_{3}, \ldots\right.\right.$ and combine values.

FFT is a Divide Conquer algorithm - the base case is $D F T_{1}\left(\left\langle a_{0}\right\rangle\right)=\left\langle a_{0}\right\rangle$.

Algorithm for computing FFT

We assume that n is a power of 2 .
$\operatorname{DFT}_{n}\left(\left\langle a_{0}, a_{1}, \ldots a_{n-1}\right\rangle\right)$
(1) if $n=1$
(2) return $\left\langle a_{0}\right\rangle$
(3) $\omega_{n} \leftarrow e^{2 \pi i / n}$
(4) $\omega \leftarrow 1$
(5) $\quad y^{[0]} \leftarrow D F T_{n / 2}\left(\left\langle a_{0}, a_{2}, \ldots, a_{n-2}\right\rangle\right)$
(6) $y^{[1]} \leftarrow D F T_{n / 2}\left(\left\langle a_{1}, a_{3}, \ldots, a_{n-1}\right\rangle\right)$
(7) for $k=0$ to $n / 2-1$
(8) $y_{k} \leftarrow y_{k}^{[0]}+\omega y_{k}^{[1]}$
(9) $y_{k+n / 2} \leftarrow y_{k}^{[0]}-\omega y_{k}^{[1]}$
(10) $\omega \leftarrow \omega \cdot \omega_{n}$
(11) return $\left\langle y_{0}, y_{1}, \ldots, y_{n-1}\right\rangle$

The time-complexity $T(n)$ is given by

$$
T(n)= \begin{cases}O(1) & n=1 \\ 2 T(n / 2)+\Theta(n) & n>1\end{cases}
$$

with solution $T(n)=\Theta(n \log n)$.

Inverse to DFT

The relation $y=D F T_{n}(a)$ can be written in matrix form

$$
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right)=\left(\begin{array}{cccc}
\omega_{n}^{0} & \omega_{n}^{0} & \cdots & \omega_{n}^{0} \\
\omega_{n}^{0} & \omega_{n}^{1} & \cdots & \omega_{n}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
\omega_{n}^{0} & \omega_{n}^{n-1} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right)
$$

To get the inverse transformation $a=D F T_{n}^{-1}(y)$ we invert the matrix It can be shown that

$$
D F T_{n}^{-1}\left(\left\langle y_{0}, y_{1}, \ldots, y_{n-1}\right\rangle\right)=\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle
$$

$$
a_{j}=\frac{1}{n} \sum_{k=0}^{n-1} y_{k} \omega_{n}^{-j k}
$$

so the FFT-algorithm can also be used to compute $D F T^{-1}$.

Polynomial multiplication using FFT

We want to compute $C(x)=\sum_{j=0}^{2 n-2} c_{i} x^{i}=$ $A(x) B(x)$ when $A(x)$ and $B(x)$ are polynomials of degree $n-1$. Since $C(x)$ has $2 n-1$ coefficients we will look at $A(x)$ and $B(x)$ as polynomials of degree $2 n-1$ as well.

Algorithm:

$$
\begin{aligned}
& \left\langle y_{0}, \ldots y_{2 n-1}\right\rangle \leftarrow D F T_{2 n}\left(\left\langle a_{0}, \ldots, a_{n-1}, 0, \ldots, 0\right\rangle\right) \\
& \left\langle z_{0}, \ldots z_{2 n-1}\right\rangle \leftarrow D F T_{2 n}\left(\left\langle b_{0}, \ldots, b_{n-1}, 0, \ldots, 0\right\rangle\right) \\
& \left\langle c_{0}, \ldots c_{2 n-1}\right\rangle \leftarrow D F T_{2 n}^{-1}\left(\left\langle y_{0} z_{0}, \ldots, y_{2 n-1}, z_{2 n-1}\right\rangle\right)
\end{aligned}
$$

(We assume that n is a power of two.)

We have to do compute three DFT vectors of size $2 n$ and compute $2 n$ products in the transform plane. That gives us the complexity $\Theta(n \log n)$.

