Divide an nquer algorithms

Another general method for congtrueting algorithms ig given by the Divide and Conquer
strategy. We agsume that we have a problem with input that can be split into partsin a

natural way.
N
S \
/s /%
Y 1_/
N

Let T(n) be the time-complexity for solving a problem of size n (using our
algorithm). Then we have T(n)=T(n/2)+ T(n/2) + f(n)

where f(n) ig the time for “making the split" and "putting the parts together.
Thig will be ugeful only if f(n) is sufficiently small.

Mergesort

A famous example is Mergesort. Here we split a list of numbers into two parts,
sort them separately, and merge the two lists.

/2 /4

How do we merge?

The question is how we merge two already gorted ligte and what the complexity f(n)
is?
We can uge the following algorithm:

Merge(all, .., p], bll,-...q]]
lfa=02
Returnb
Endif
lfb=0
Return a
Endif
£ all] S bl]
Return a[l] . Merge[a[2,...,p],b[l,.-.,q]]
Endif
Return b[l] . Merge[all,...,p],b[2,-.,q]]

The complexity ie O(n).

The main Mergesort algorithm is:

MergeSort

MergeSort(v[i..j])

(1) ifi<j o

(2) m <— V_FTJJ

(3) MergeSort(v[i..m])

(4) MergeSort(v[m 4+ 1..5])

(5) v[i..5] = Merge(v[i..m],v[m + 1..5])

Let T (V) be the time it takes to sort N num-
bers. then

O(1) N=1
r([¥)) +7([5]) +o) ese

since Merge ©(N) when input is arrays of
length N.

T(N) = {

But how do we decide the complexity? We are given a recursion
equation. The following theorem often gives the solution:

Master T heorem

Theorem Ifa > 1, b > 1 and d > 0 the
equation

T(1)=d

T(n) = aT(n/b) + f(n)

has the solution

e T(n) = ©O(n'9%2) jf f(n) = O(n'°%a—e)
for some € > 0

e T(n) = O(n'%%elogn) if f(n) = O(n'°%2)

o T(n) = O(f(n)) if f(n) = Q(n'°%ate) for
some e >0 and af(n/b) < cf(n) for some
c <1 for n large enough.

When applied on Mergesort this theorem gi-
ves ©(N log N).

A special case of MT

If we agsume that fln) = O(nJ) for some integer d, we get a simpler formula. Let
us first set k = log, a.

L
8(n) k >d

Tln) = Bln* log n) k=d

[O(n?) k<d

[t can be interesting to look at the special case a=b (k=1)

O(n) [7d
Tln)="§ Blnlogn 1=4d
6(nd) [<d

And we can also look at a=1, b=2 (k=0)

6(log n) O=d

T(n) =
B(n4) 0<d

Let's look at some more advanced examples.

Multiplication of large numbers

We want to compute z -y for binary numbers
x och y

2
T=Tp—1"" Tp/2Tp/2-1" " T1LQ = 2"/24 4 p

a b

\ .

2
Y=Yn-1"""Yn/2Ynj2—-1"""Y1Y%0 = 2"2c 4+ d

¢ d

For n = 2% we can split the product:

Mult(x,y)

(1) if length(z) =1
(2) return z -y
(3) else

(4) la,b] < x

(5) le,d] <y

(6) prod < 2"Mult(a,c) + Mult(b, d)
+27/2(Mult(a,d) + Mult(b, c))

(7) return prod

Time-complexity: T'(n) = 4T(n/2) + ©(n),
T(1) = ©(1) which gives us T'(n) = ©(n?).

Here is a way of doing it that really uses D and C:

Karatsuba’s algorithm

We use (a+b)(c+d) = ac+ bd + (ad 4+ be).
We can remove one of the four products:

Mult(x, y)

(1) if length(z) =1

(2) return x -y

(3) else

(4) [a,b] < x

(5) e, d] «y

(6) ac < Mult(a,c)

(7) bd < Mult(b,d)

(8) abed <+ Mult(a + b, c + d)
(9) return 2" . ac + bd+

21/2(gbed — ac — bd)

We get T(n) = 3T(n/2) + ©(n), T(1) =
©(1) with the solution T(n) = ©(nl°923) ¢
O(n1'59). _

Here ig an algorithm that fails to use D and C in a creative way.

Matrix multiplication

When we multiply n X n-matrices we can use
matrix blocks:

<A11 A12> (311 BlQ) _ (Cll C12)
Ap1 App) \Bp1 Bpp Co1 Coo
by using the formulas

C11 = A11B11 + A12B21

C1o = A11B12 + A12B2>

Co1 = Ap1B11 + A22B>;

Coo = Ap1B12 + A22Bpo

we get 8 products and

o) n=1
Tn) = {8T(n/2) +6(m?) n>1

which gives us T'(n) = ©(n3).

But thigis D and C:

Strassen’s algorithm

If we instead use the more complicated for-
mulas

M = (A12 — A2)(B21 + B22)
My = (A11 + A22)(B11 + B22)
M3z = (A11 — A21)(B11 + B12)
My = (A11 + A12)Boo
Ms = A11(B12 — B22)
Me = Ap2(B21 — B11)
M7 = (A21 + A2)Bi11

Ci11 = M1+ My — M4+ Mg
C12 = Mg + M5
Co1 = Mg + My
Coo = Mp — M3+ Ms — My

we reduce the number of products to 7 which
gives us T'(n) = ©(nl°927) = O(n2-81).

An advanced application of D and C is the Fast Fourier Transform (FFT). We
gtart by describing what the Diserete Fourier Transform (DFT)is:

Discrete Fourier Transform

We transform a polynomial A(z) = "2t a.a7.

j=0%j
Essentially we do it by computing it’s values
for the complex unity roots w9 wt, ... wn—1

where w, = e2mi/n.

DFTn({ag, - --,an-1)) = (Y0, - - - Yn—1)

where

The n coefficients gives us n ‘frequencies’.
Compare with the continuous transform

F =] r@e*ds

This simplest way of computing this transform has complexity O(n?).
The FFT i a more efficient way of doing it.

FFT: An efficient way of computing

DFT
n_l PR
We have y, = A(wF) = > aje%”k/”. We
7=0

separate odd and even degrees in A:

For k < n/2 We have

n/2—1
AL} 2k

|
)
N
Q.
Q)
AN
|
S
=
~
S

— DFTn/2(<a’O7 an, ... 7an—2>)k3

where DFT,({ag,...,an_1))r iS the k:th ele-
ment of the transform.

In the same way, for k£ < n/2,

A7) = DFT, 5((a1, a3, .., an—1))k

For k > n/2 we can easily see that

AN W) = DFT, 5((ag, a2, - an—2)) /2

A[l] (wgk) — DFTn/2(<CL1, as, ..., an—1>)k5—n/2

k—n/2
wf,li = —wn n/

In order to decide DFT,({ag,...,ap,_1)) We

use DFTn/2(<CLo, an, ..., an_2>) and DFTn/2(<a1, as, . .
and combine values.

FFT is a Divide Conquer algorithm — the
base case is DFTq({ag)) = {(ag)-

Algorithm for computing FFT

We assume that n is a power of 2.
DFTy({ag,a1,...ap—-1))

(1) ifn=1

(2) return (ag)
(3) wp « e2m/n
(4) w<+1

(5) yl%« DFT, 5({ag, a2, ... ,an_2))
(6) yM« DFT,x((a1,03,...,a,_1))
(7) fork=0ton/2—1

8) wh ey oy
(9) Yk4n/2 < y;[go] — WYy
(10) w<+ w-wp

(11) return <y07 Y1, .- - 7yn—1>

The time-complexity T'(n) is given by

T(n) = O(1) n=1
1 2T7(n/2) +©() n>1

with solution T'(n) = ©(nlogn).

Inverse to DFT

The relation y = DFT,(a) can be written in
matrix form

w\ (R W8 R\ [

Y1 W, Wn, OJZ ai
— —-1)(n—-1 .

Yn—1 wd Wt wT(Ln)(n=1) an-—1

To get the inverse transformation a = DFT; 1 (y)
we invert the matrix It can be shown that

DFTTL_1(<yO7y17 ¢ 7y'n,—1>) — <ao7a’17 ¢ '7a’n—1>
1TL—1

_ —1k
a; — — E : ykwn]
" =0

so the FFT-algorithm can also be used to
compute DFT—1.

Polynomial multiplication using FFT
We want to compute C(z) = 292.262 c;rt =
A(x)B(x) when A(x) and B(x) are polynomi-
als of degree n — 1. Since C(z) has 2n — 1
coefficients we will look at A(x) and B(x) as
polynomials of degree 2n — 1 as well.

Algorithm:

(Yo, ---Yon—1) +— DFT5,({ag,...,ap—1,0,...,0))
(20, 220-1) < DFTo({bo, .. ,bp_1,0,...,0))

—1
(co,---con—1) DFT5 ~({Y020,- - - Y2n—1%2n-1))
(We assume that n is a power of two.)

We have to do compute three DFT vectors
of size 2n and compute 2n products in the
transform plane. That gives us the complex-
ity ©(nlogn).

