
                        
Divide and Conquer algorithms               

Another general method for constructing algorithms is given by the Divide and Conquer 
strategy.  We assume that we have a problem with input that can be split into parts in a 
natural way.                

Let T(n) be the time-complexity for solving a problem of size n ( using our 
algorithm). Then we have  T(n) = T(n/2) + T(n/2) + f(n)  
where f(n) is the time for "making the split" and "putting the parts together.     
This will be useful only if f(n) is sufficiently small.         



             Mergesort         

A famous example is Mergesort. Here we split a list of numbers into two parts, 
sort them separately, and merge the two lists.         

How do we merge?         

The question is how we merge two already sorted lists and what the complexity f(n) 
is?         
We can use the following algorithm:         

The complexity is O(n).         

Merge[a[1, ..., p], b[1,...,q]] 
 If a = ∅ 
  Return b 
 End if 
 If b = ∅ 
  Return a 
 End if 
 If a[1]     b[1] 
  Return a[1] . Merge[a[2,...,p],b[1,...,q]] 
 End if 
 Return b[1] . Merge[a[1,...,p],b[2,...,q]]         



MergeSort

MergeSort(v[i..j])
(1) if i < j

(2) m ←
⌊
i+j
2

⌋

(3) MergeSort(v[i..m])
(4) MergeSort(v[m+1..j])
(5) v[i..j] = Merge(v[i..m], v[m+1..j])

Let T (N) be the time it takes to sort N num-
bers. then

T (N) =





O(1) N = 1

T
(⌊

N
2

⌋)
+ T

(⌈
N
2

⌉)
+Θ(N) else

since Merge Θ(N) when input is arrays of
length N .

             
The main Mergesort algorithm is:                   



Master Theorem

Theorem If a ≥ 1, b > 1 and d > 0 the
equation

T (1) = d

T (n) = aT (n/b) + f(n)

has the solution

• T (n) = Θ(nlogb a) if f(n) = O(nlogb a−ε)

for some ε > 0

• T (n) = Θ(nlogb a logn) if f(n) = Θ(nlogb a)

• T (n) = O(f(n)) if f(n) = Ω(nlogb a+ε) for
some ε > 0 and af(n/b) ≤ cf(n) for some
c < 1 for n large enough.

When applied on Mergesort this theorem gi-
ves Θ(N logN).

              
But how do we decide the complexity? We are given a recursion 
equation. The following theorem often gives the solution:                     



 

If we assume that f(n) = O(n    ) for some integer d, we get a simpler formula. Let 
us first set  k =  log   a. 

O(n   )                     k     d 
 
O(n    log  n)         k = d 
 
O(n    )                    k     d 

It can be interesting to look at the special case  a = b  ( k = 1) 

O(n )                      1     d 
 
O(n  log  n)          1 =  d 
 
O(n    )                  1      d 

And we can also look at  a = 1,  b = 2  ( k = 0) 

O(  log  n)              0 = d 
 
O(n    )                    0     d 

T(n) = 

T(n) = 

T(n) = 

A special case of MT 

 



Multiplication of large numbers

We want to compute x ·y for binary numbers
x och y

x = xn−1 · · ·xn/2︸ ︷︷ ︸
a

xn/2−1 · · ·x1x0︸ ︷︷ ︸
b

= 2n/2a+ b

y = yn−1 · · · yn/2︸ ︷︷ ︸
c

yn/2−1 · · · y1y0︸ ︷︷ ︸
d

= 2n/2c+ d

For n = 2k we can split the product:

Mult(x, y)
(1) if length(x) = 1

(2) return x · y
(3) else
(4) [a, b] ← x

(5) [c, d] ← y

(6) prod ← 2nMult(a, c) +Mult(b, d)

+2n/2(Mult(a, d) +Mult(b, c))

(7) return prod

Time-complexity: T (n) = 4T (n/2) + Θ(n),
T (1) = Θ(1) which gives us T (n) = Θ(n2).

          Let's look at some more advanced examples.                          



Karatsuba’s algorithm

We use (a+ b)(c+ d) = ac+ bd+ (ad+ bc).
We can remove one of the four products:

Mult(x, y)
(1) if length(x) = 1

(2) return x · y
(3) else
(4) [a, b] ← x

(5) [c, d] ← y

(6) ac ← Mult(a, c)

(7) bd ← Mult(b, d)

(8) abcd ← Mult(a+ b, c+ d)

(9) return 2n · ac+ bd+

2n/2(abcd− ac− bd)

We get T (n) = 3T (n/2) + Θ(n), T (1) =

Θ(1) with the solution T (n) = Θ(nlog2 3) ∈
O(n1.59). .

     Here is a way of doing it that really uses D and C:                    



Matrix multiplication

When we multiply n×n-matrices we can use
matrix blocks:

(
A11 A12
A21 A22

)(
B11 B12
B21 B22

)

=

(
C11 C12
C21 C22

)

by using the formulas

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

we get 8 products and

T (n) =





Θ(1) n = 1

8T (n/2) +Θ(n2) n > 1

which gives us T (n) = Θ(n3).

     Here is an algorithm that fails to use D and C in a creative way.               



Strassen’s algorithm

If we instead use the more complicated for-
mulas

M1 = (A12 −A22)(B21 +B22)
M2 = (A11 +A22)(B11 +B22)
M3 = (A11 −A21)(B11 +B12)
M4 = (A11 +A12)B22
M5 = A11(B12 −B22)
M6 = A22(B21 −B11)
M7 = (A21 +A22)B11

C11 = M1 +M2 −M4 +M6
C12 = M4 +M5
C21 = M6 +M7
C22 = M2 −M3 +M5 −M7

we reduce the number of products to 7 which
gives us T (n) = Θ(nlog2 7) = O(n2.81).

   But this is D and C: 



Discrete Fourier Transform

We transform a polynomial A(x) =
∑n−1

j=0 ajx
j.

Essentially we do it by computing it’s values
for the complex unity roots ω0

n,ω
1
n, . . . ,ω

n−1
n

where ωn = e2πi/n.

DFTn(〈a0, . . . , an−1〉) = 〈y0, . . . , yn−1〉

where

yk = A(ωk
n) =

n−1∑

j=0

aje
2πijk/n.

The n coefficients gives us n “frequencies”.
Compare with the continuous transform

f̂(t) =
∫ ∞

−∞
f(x)e−itxdx

     An advanced application of D and C is the Fast Fourier Transform   (FFT). We 
start by describing what the Discrete Fourier Transform  (DFT) is:                   

This simplest way of computing this transform has complexity O(n²). 
The FFT is a more efficient way of doing it.                  



FFT: An efficient way of computing
DFT

We have yk = A(ωk
n) =

n−1∑

j=0

aje
2πijk/n. We

separate odd and even degrees in A:

For k < n/2 We have

A[0](ω2k
n ) =

n/2−1∑

j=0

a2je
4πijk/n

=
n/2−1∑

j=0

a2jω
jk
n/2

= DFTn/2(〈a0, a2, . . . , an−2〉)k
where DFTn(〈a0, . . . , an−1〉)k is the k:th ele-
ment of the transform.

   



In the same way, for k < n/2,

A[1](ω2k
n ) = DFTn/2(〈a1, a3, . . . , an−1〉)k

For k ≥ n/2 we can easily see that

A[0](ω2k
n ) = DFTn/2(〈a0, a2, . . . , an−2〉)k−n/2

A[1](ω2k
n ) = DFTn/2(〈a1, a3, . . . , an−1〉)k−n/2

ωk
n = −ω

k−n/2
n

In order to decide DFTn(〈a0, . . . , an−1〉) we
use DFTn/2(〈a0, a2, . . . , an−2〉) and DFTn/2(〈a1, a3, . . . , an−1〉)
and combine values.

FFT is a Divide Conquer algorithm — the
base case is DFT1(〈a0〉) = 〈a0〉.

   



Algorithm for computing FFT

We assume that n is a power of 2.

DFTn(〈a0, a1, . . . an−1〉)
(1) if n = 1

(2) return 〈a0〉
(3) ωn ← e2πi/n

(4) ω ← 1

(5) y[0] ← DFTn/2(〈a0, a2, . . . , an−2〉)
(6) y[1] ← DFTn/2(〈a1, a3, . . . , an−1〉)
(7) for k = 0 to n/2− 1

(8) yk ← y
[0]
k + ωy

[1]
k

(9) yk+n/2 ← y
[0]
k − ωy

[1]
k

(10) ω ← ω · ωn

(11) return 〈y0, y1, . . . , yn−1〉

The time-complexity T (n) is given by

T (n) =





O(1) n = 1

2T (n/2) +Θ(n) n > 1

with solution T (n) = Θ(n logn).

   



Inverse to DFT

The relation y = DFTn(a) can be written in
matrix form





y0
y1
...

yn−1



 =





ω0
n ω0

n · · · ω0
n

ω0
n ω1

n · · · ωn−1
n... ... . . . ...

ω0
n ωn−1

n · · · ω(n−1)(n−1)
n









a0
a1
...

an−1





To get the inverse transformation a = DFT−1
n (y)

we invert the matrix It can be shown that

DFT−1
n (〈y0, y1, . . . , yn−1〉) = 〈a0, a1, . . . , an−1〉

aj =
1

n

n−1∑

k=0

ykω
−jk
n

so the FFT-algorithm can also be used to
compute DFT−1.

   



Polynomial multiplication using FFT

We want to compute C(x) =
∑2n−2

j=0 cix
i =

A(x)B(x) when A(x) and B(x) are polynomi-
als of degree n − 1. Since C(x) has 2n − 1

coefficients we will look at A(x) and B(x) as
polynomials of degree 2n− 1 as well.

Algorithm:

〈y0, . . . y2n−1〉 ← DFT2n(〈a0, . . . , an−1,0, . . . ,0〉)
〈z0, . . . z2n−1〉 ← DFT2n(〈b0, . . . , bn−1,0, . . . ,0〉)
〈c0, . . . c2n−1〉 ← DFT−1

2n (〈y0z0, . . . , y2n−1z2n−1〉)

(We assume that n is a power of two.)

We have to do compute three DFT vectors
of size 2n and compute 2n products in the
transform plane. That gives us the complex-
ity Θ(n logn).

   


