
Undecibability

Hilbert's 10th Problem: Give an algorithm that given a
polynomial decides if the polynomial has integer roots or not.

The problem was posed in 1900. In 1970 it was proved that
there can be no such algorithm.

Already in the 1930s several problems had been proved to
be unsolvable. One example is the Halting Problem.

We will talk about undecidable problems. It means that the
problem cannot be decided by an algorithm (more precise
definition later). But then, what is an algorithm?

We could replace algorithms with Computers or Programs.
But we will replace i with Turing Machines.

A Turing Machine is a very primitive type of computer. A
definition and description of Turing Machines will be given in
the next lecture.

Page 1

Why Turing Machines?

Then we use the famous Church-Turing's Thesis.

Church-Turing (one form): If there is a problem A that can be
decided by a computer then it can also be decided by a Turing
Machine.

A rough sketch:

Computer

Turing Machine

Solution
Problem Translation

Why do we want to use Turing Machines to solve problems?
The idea is that since they are so simple it is more easy to
decide what they can do or not than it would be for more
complex computers.

Page 2

We will now give a presentation of uncomputability and undecidability.
Usually these concepts are defined and analysed with the Turing Machines.
But we can replace Turing Machines with programs written in some
language. What language? Well, it doesn't matter. We will just need some
facts about programs.

1. Every program can be described by its code.
2. It is possible to enumerate the set of all program codes.
(Lexicographically for instance.)
3. This means that there are only countably many possible
programs.

Given a program P, the code c(P) of P is a string. Sometimes it is
convenient to use the code as a name for the program. (But just in this
context.) This means c(P) = P.

Page 3

Uncomputability

About functions:

Older view of functions:

A function is presented as a rule for compu-
ting.

Ex: f(x) = 2sin(x) + 3

Modern view of functions: A function is a set
of pairs {(x, y)} such that if (x, y1) and (x, y2)

are pairs in the function, then y1 = y2.

Functions can be uncomputable

What is computable?

Def: f is computable if and only if there is a
Turing Machine such that f(n) = m ⇔ T (n)

halts and returns m.

Page 4

First proof of uncomputability

The set of computable functions is enume-
rable. The set of all functions are not!

Let us see some more details:

Let f1, f2, f3, ... be a list of all computable
functions. Take the array





f1(1) f1(2) f1(3) ...
f2(1) f2(2) f2(3) ...
f3(1) f3(2) f3(3) ...
...





We define a function φ such that





φ(n) = fn(n) + 1 if fn(n) is defined
φ(n) = 1 if fn(n) is undefined

Then φ is uncomputable. (What happens if
φ = fk for some k?)

Page 5

A decision problem is decidable if there is so-
me algorithm that decides the problem (correct-
ly) in finite time for every instance.

The opposite is when there, for some reason,
is no such algorithm. Then we say that the
problem is undecidable.

It is usually the case that there is an algo-
rithm that decides the problem for some, but
not all, instances.

If output is not Yes/No we normally speak
about computable and uncomputable pro-
blems.

Page 6

Ex. 1: The Post Correspondence
Problem

Given a set of pairs of words {(xi, yi)}.

Is there a sequence of integers a1, a2, . . . , ak
such that xa1xa2 · · ·xak = ya1ya2 · · · yak?

Example:

{(abb, bbab)︸ ︷︷ ︸
1

, (a, aa)︸ ︷︷ ︸
2

, (bab, ab)︸ ︷︷ ︸
3

, (baba, aa)︸ ︷︷ ︸
4

, (aba, a)︸ ︷︷ ︸
5

}

has solution a = [2,1,1,4,1,5]:

a︸︷︷︸
x2

abb︸︷︷︸
x1

abb︸︷︷︸
x1

baba︸ ︷︷ ︸
x4

abb︸︷︷︸
x1

aba︸︷︷︸
x5

= aa︸︷︷︸
y2

bbab︸ ︷︷ ︸
y1

bbab︸ ︷︷ ︸
y1

aa︸︷︷︸
y4

bbab︸ ︷︷ ︸
y1

a︸︷︷︸
y5

but

{(bb, bab), (a, aa), (bab, ab), (baba, aa), (aba, a)}

has no solution.

Page 7

Ex. 2: The Halting Problem

Given a program P and input X

Does the program P halt when run with
input X?

It doesn’t matter what programming langu-
age we use. P could be a Turing Machine.

Page 8

Ex. 3: Some more applied problems:

Program Verification
Given a program P and a specification S

for what the program is supposed to do,
does the program in fact do it?

Behavior of programs
Can a given line in a program P be re-
ached for some input?

All these problems are undecidable due to
close relation to the Halting Problem.

But certain instances of these problems can,
of course, be decided.

Page 9

Proof of decidability/undecidability

Proof of undecidability:

Direct proof
Give a ”direct” logical proof why the pro-
blem is undecidable.

Reduction
We reduce from a known undecidable pro-
blem to our problem. If the reduction is
computable, then our problem must be
uncomputable.

Proofs of decidability:

• Give an algorithm that decides the pro-
blem and show that it works correctly and
runs in finite time.

Page 10

The Halting Problem is undecidable

Suppose there is an algorithm H(P,X) that
decides the Halting Problem. Now consider
the following program:

M(P)
(1) if H(P, P) = Y es

(2) get into an infinite loop
(3) else
(4) return

What happens when we run M(M)?

M(M) halts: Then H(M,M) must return
No in order for Return to be reached — im-
possible.

M(M) does not halt: Then H(M,M) re-
turns Yes and then the program will go into
the infinite loop and never halt — impossible.

We reach a contradiction. The conclusion is
that H(P,X) cannot decide the Halting Pro-
blem correctly.

Page 11

Example of reduction

Almost all variants of the Halting Problem
are undecidable
for instance:

Does the program P halt on all inputs?

We can show that there cannot exist an algo-
rithm HaltAll(P) that decides this problem.
Indeed, look at the following reduction:

H(P,X)
(1) Construct the program Q :

Q(Y)

if X = Y

P (X)

else
Halt

(2) return HaltAll(Q)

If HaltAll(·) worked correctly, then we could
decide the Halting Problem — impossible.

Page 12

