
 
Models of computation 

A model of computation is an abstract and usually simplified way of describing 
algorithms. The idea is that, given any algorithm A in any programming language or 
any other way of presenting algorithms, there should be an algorithm A' in the 
computational model such that A and A' are equivalent. 

Even if two algorithms are equivalent they can have different running 
times. 

A model of computation will be useful when we: 
 
* Want to define exactly what the complexity for an algorithm is. 
* Want to find the limits for what algorithms can do. 
* Prove Cook's theorem. 

One of the oldest but still most useful models of computation is the 
Turing Machine. 

Let's say that we have two programs A and B.  If  they behave in the same way on 
all input it is natural to say that they are equivalent. 
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The Turing Machine

We will use a very simplified model of com-
putation. It’s the Turing Machine.

We will consider data as a semi-finite tape
with 0 and 1 written:

Reading and writing can be done one digit at
a time. The ”Head” can be moved just one
step to the right or left at a time.

The logic tells us how the head should be mo-
ved and what should be written on the tape.
The logic consists of a finite set of states and
a finite set of transition rules.

 

Head
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Turing Machines
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Example of a Turing Machine

The following TM reads the number x on
binary form from the tape and changes it to
max(x− 1,0).

Notation:
- Circles correspond to states
- Dubble circles correspond to accepting states
- Arrows indicates transition rules:
- a/b, L means “if the head reads a, do

the transition, write b and move the head one step
to the left”
( in a/b,R R means move to the right)

The arrow with no starting node indicates
the state the machine starts in.
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Rules for the Turing Machine

• The machine starts in the starting state.

• At start the head reads the first symbol
to the left in the input string. The input is
marked off by empty positions (indicated
by #).

• There must not be several different tran-
sitions from the same state reading the
same symbol (determinism).

• If the machine gets into an accepting sta-
te the computation ends and the machine
returns ”Yes”.

• If the machine gets into a state and re-
ads a symbol with no matching transition
the computation ends and the machine
returns ”No”.
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 The previous rules describe computations when the answer  is yes/no.  
Turing Machines can do other computations as well. The first example shows 
this. ( The algorithm that computes max(x-1,0). )  This is an algorithm of the form  
A(n) = m, where n and m are integers. As we have seen, Turing Machines can 
handle them in a rather natural way. 

A more advanced Turing Machine

Page 8



Formal description

A Turing Machine is defined by

• The alphabet Σ (must be finite)

• The set Q of states (must be finite)

• The start state q0 ∈ Q

• The set F ⊆ Q of accepting states

• The transition relation
∆ ⊆ Q×Σ×Q×Σ× {L,R, S}
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Church’s thesis

Any algorithmic problem that can be solved
by any program written in any language and
run on any computer can be solved by a Tu-
ring Machine.

• The Halting Problem is undecidable even
for Turing Machines.

• The Turing Machine can be used as a
computational model for reasoning about
uncomputability.

• The Halting Problem is undecidable in any
computational model powerful enough to
simulate a Turing Machine.

 

Page 10



The computational model RAM is Turing Equi-
valent as are all modern programming langu-
ages.

Equally powerful variants of the Turing
Machine

• A different (finite) alphabet.

• Separate tap for output.

• Several different tapes.

• Several different heads.

• Half-infinite tape (infinite in just one direc-
tion).

All these variants are equivalent yo to normal
Turing Machine in the sense that the running
time differ by at most a polynomial factor.
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Non-deterministic Turing Machines

• In the non-deterministic case there can
be several possible transitions from a sta-
te and a given symbol. In that case, the
machine makes a non-deterministic cho-
ice.

• If there is a sequence of choices leading to
an accepting state we say that the machi-
ne accepts.

• If there is no sequence of choices leading
to an accepting state we say that the machi-
ne rejects.
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Non-determinism cont.

Non-deterministic Turing Machines can be
used to define NP:

This class contains exactly the problems (or
rather their languages) to which there is an
non-deterministic TM that accepts in poly-
nomial time.

NP = Non-deterministic Polynomial time

One believes that non-deterministic machi-
nes are more powerful than deterministic ones
in the sense that:

P != NP.
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Cook’s Theorem

Cook’s Theorem says that the problem SAT
is NP-Complete.

Input to SAT is a propositional logic formula
Φ and the problem is to decide if the formula
is satisfiable or not.

Proof of Cook’s Theorem ( Sketch):

SAT ∈ NP since, given an variable assign-
ment, we can check in polynomial time if the
formula is satisfied or not.

We must show that SAT Is NP-Hard, i.e. if
om Q′ ∈ NP then Q′ ≤P SAT.

Since Q′ ∈ NP there is a non-deterministic
Turing Machine M that accepts the language
Q′ in at most knc steps where n is the number
of variables.
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Proof idea:
Construct a formula such that it is satisfied
if and only if M accepts the input string.

We assume that M has an input tape that
is infinite to the right and uses the alphabet
{0,1,#}.

We enumerate M :s time steps from 1 to knc.
At each time step t the computation is descri-
bed by
- the position of the head
- the state q
- the content of the tape in positions 1 – knc

In our formula we use the following variables:
xqt q ∈ Q, 1 ≤ t ≤ knc

yijt i ∈ {0,1,#},1 ≤ j ≤ knc,1 ≤ t ≤ knc

zjt 1 ≤ j ≤ knc,1 ≤ t ≤ knc

Interpretation:
xqt = 1 iff M is in state q at time t
yijt = 1 iff the symbol i is in position j at time t
zjt = 1 iff the head stands in position j at time t
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If there is an accepting computation for
M(a1, . . . , an) running knc steps, then this cor-
responds to:

1. The computation starts with a1, . . . , an

2. x, y, z describes a correct computation

3. The computation ends in an accepting sta-
te.

All these constraints can be expressed by a
single SAT-Formula of size polynomial in n.

This gives us an reduction Q ≤P SAT for eve-
ry NP-Problem Q and this shows that SAT
is NP-Complete.
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The universal Turing Machine 

To every Turing Machine T we can associate the code k(T) of the 
machine. If we have input x we say that T(x) is the result of the 
computation whatever form i might have. It is possible to construct a 
Turing Machine U that take two strings as input such that  
 
U( k( T), x) = T(x)  for all Turing Machines T. 
 
This means that U can simulate every Turing Machine. 
 
It little informal, we can write U( T, x ) = T( x). 
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