Models of computation

Let's say that we have two programs A and B. [f they behave in the same way on
allinput it is natural to say that they are equivalent.

A model of computation i¢ an abstract and usually simplified way of deseribing
algorithms. The idea is that, given any algorithm A in any programming language or
any other way of presenting algorithms, there should be an algorithm A'in the
computational model such that A and A’ are equivalent.

Even if two algorithms are equivalent they can have different running

times.

A model of computation will be useful when we:

*Want to define exactly what the complexity for an algorithm is.
*Want to find the limits for what algorithms can do.
**Prove Cook's theorem.

One of the oldest but still most ugeful models of computation is the
Turing Machine.



The Turing Machine

We will use a very simplified model of com-
putation. It's the Turing Machine.

We will consider data as a semi-finite tape
with O and 1 written: Head

Reading and writing can be done one digit at
a time. The "Head” can be moved just one
step to the right or left at a time.

The logic tells us how the head should be mo-
ved and what should be written on the tape.
The logic consists of a finite set of states and
a finite set of transition rules.



Turing Machines
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Figure B-2 An imaginary, physical Turing machine.
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Example of a Turing Machine

The following TM reads the number «x on
binary form from the tape and changes it to

max(x — 1,0).

O/’O,R
1/1,R 0/1.L 1/0,R

M) //\ LILA ()

&J\
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Notation:
- Circles correspond to states
- Dubble circles correspond to accepting states
- Arrows indicates transition rules:
- a/b, L means "if the head reads a, do
the transition, write b and move the head one :

to the left”
(in a/b,R R means move to the right)

The arrow with no starting node indicates
the state the machine starts in.
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Rules for the Turing Machine

The machine starts in the starting state.

At start the head reads the first symbol
to the left in the input string. The input is
marked off by empty positions (indicated

by #).

There must not be several different tran-
sitions from the same state reading the
same symbol (determinism).

If the machine gets into an accepting sta-
te the computation ends and the machine
returns '"Yes'.

If the machine gets into a state and re-
ads a symbol with no matching transition
the computation ends and the machine
returns "No".



The previous rules describe computations when the answer ig yes/no.

Turing Machines can do other computations as well. The first example shows
thic. ( The algorithm that computes max(x-1,0).) This is an algorithm of the form
Aln) = m, where n and m are integers. As we have seen, Turing Machines can
handle them in a rather natural way.

A more advanced Turing Machine

TM for {a*bkck |k > 1} o

X,R - Q= 1{q¢,---,q6}
' = {a,b,c,x,y,z,00}

2 ={a,b,c}
start state =

b,L F= {q()} e ]

Consider the input:
...[Jaabbcc



Formal description

A Turing Machine is defined by

e The alphabet X (must be finite)

e The set Q of states (must be finite)

e The start state gqp € @

e The set FFC () of accepting states

e [ he transition relation
ACQRXxXIZxQxXx{L,R,S}



Church’s thesis

Any algorithmic problem that can be solved
by any program written in any language and
run on any computer can be solved by a Tu-
ring Machine.

e [ he Halting Problem is undecidable even
for Turing Machines.

e The Turing Machine can be used as a
computational model for reasoning about
uncomputability.

e [ he Halting Problem is undecidable in any
computational model powerful enough to
simulate a Turing Machine.



The computational model RAM is Turing Equi-
valent as are all modern programming langu-
ages.

Equally powerful variants of the Turing
Machine

e A different (finite) alphabet.

e Separate tap for output.

e Several different tapes.

e Several different heads.

e Half-infinite tape (infinite in just one direc-
tion).

All these variants are equivalent yo to normal
Turing Machine in the sense that the running
time differ by at most a polynomial factor.



Non-deterministic Turing Machines

e In the non-deterministic case there can
be several possible transitions from a sta-
te and a given symbol. In that case, the
machine makes a non-deterministic cho-
ice.

e If there is a sequence of choices leading to
an accepting state we say that the machi-
ne accepts.

e If there is no sequence of choices leading
to an accepting state we say that the machi-
ne rejects.



Non-determinism cont.

Non-deterministic Turing Machines can be
used to define NP:

This class contains exactly the problems (or
rather their languages) to which there is an
non-deterministic TM that accepts in poly-
nomial time.

NP = Non-deterministic Polynomial time

One believes that non-deterministic machi-
nes are more powerful than deterministic ones
in the sense that:

P % NP.



Cook’s Theorem

Cook’s Theorem says that the problem SAT
is NP-Complete.

Input to SAT is a propositional logic formula
$ and the problem is to decide if the formula
is satisfiable or not.

Proof of Cook’s Theorem ( Sketch):

SAT € NP since, given an variable assign-
ment, we can check in polynomial time if the
formula is satisfied or not.

We must show that SAT Is NP-Hard, i.e. if
om Q' € NP then Q' <p SAT.

Since Q' € NP there is a non-deterministic
Turing Machine M that accepts the language
Q' in at most kn° steps where n is the number
of variables.



Proof idea:
Construct a formula such that it is satisfied
if and only if M accepts the input string.

We assume that M has an input tape that
is infinite to the right and uses the alphabet

{0, 1, #}.

We enumerate M:s time steps from 1 to kncC.
At each time step t the computation is descri-
bed by

- the position of the head

- the state g¢q
- the content of the tape in positions 1 — knf€

In our formula we use the following variables:
Tt q€Q, 1<t<kn

Yijt 26{0717#}71S]Skncalgtgknc
zitp 1< j<kn1<t<kn®

Interpretation:
xqt = 1 Iff M is in state ¢q at time ¢
yi;t = 1 iff the symbol 7 is in position j at time ¢
Zjt = 1 iff the head stands in position 5 at time t



If there is an accepting computation for
M(a1,...,an) running kn¢ steps, then this cor-
responds to:

1. The computation starts with aq,...,an

2. x,y,z describes a correct computation

3. The computation ends in an accepting sta-
te.

All these constraints can be expressed by a
single SAT-Formula of size polynomial in n.

T his gives us an reduction Q <p SAT for eve-
ry NP-Problem @ and this shows that SAT
is NP-Complete.



The universal Turing Machine

To every Turing Machine T we can agsociate the code k(T) of the
machine. [f we have input x we say that T(x) ig the result of the
computation whatever form i might have. [t is possible to construct a
Turing Machine U that take two strings ag input such that

U(k(T), x) = T(x) for all Turing Machines T.
This meang that U can simulate every Turing Machine.

[t little informal, we ean write U( T, x ) = T( x).



