Approximation Algorithms

Many of the NP-Complete problems are most naturally expressed as optimization problems: TSP, Graph Coloring, Vertex Cover etc.

It is widely believed That $\mathbf{P} \neq \mathbf{N P}$ so that it is impossible to solve the problems in polymomial time.

An approximation algorithm for solving an optimization problem corresponding to a decision problem in NP is an algorithm which in polynomial time finds an approximative solution which is guaranteed to be close to the optimal solution.

Approximation of Vertex Cover

ApproxVertexCover $(G=(V, E))$
(1) $C \leftarrow \emptyset$
(2) while $E \neq \emptyset$
(3) Chose an arbitrary edge $(u, v) \in E$
(4) $C \leftarrow C \cup\{u\} \cup\{v\}$
(5) Remove all edges in E which contains u or v
(6) return C

The algorithm always returns a vertex cover. When an edge is removed both of its vertices are added to C.

Now consider the edge (u, v). At least one of the vertices u and v must be in an optimal vertex cover.
\Rightarrow The vertex cover returned by the algorithm cannot be more than twice the size of an optimal vertex cover.

Time-complexity: $O(|E|)$

To measure approximability

The Approximation Quotient for an algorithm is
$\max \frac{a p p r o x}{o p t}$ for minimization problems $\max \frac{o p t}{\text { approx }}$ for maximization problems

This means that the quotient is always ≥ 1 with equality if the algorithm always returns the optimal solution.

In all other cases the quotient is a measure of how far from the optimal solution we can get in the worst case.

The algorithm for finding minimal vertex covers has approximation quotient 2 since it returns a vertex cover at most twice as large as the minimal one.

Degrees of approximability

There is a difference between the NP-Complete problems regarding how hard they are to approximate:

- For some problems you can, for every $\epsilon>0$, find a polynomial algorithm with approximation quotient $1+\epsilon$.
Ex.: The Knapsack Problem
- Other problems can be approximated within a constant > 1 but not arbitrarily close to $1 \mathbf{P} \neq \mathbf{N P}$.
Ex.: Vertex Cover
- Then the are problems that cannot be approximated within any constant if $\mathbf{P} \neq$ NP.
Ex.: Maximal Clique

Approximation of TSP

We show that TSP $\notin A P X$, i.e. TSP cannot be approximated. Assume, to reach a contradiction, that TSP can be approximated within a factor B.

Reduction from Hamiltonian Cycle:
Hamiltoncykel(G)
(1) $n \leftarrow|V|$
(2) foreach $\left(v_{i}, v_{j}\right) \in E$
(3) $\quad w\left(p_{i}, p_{j}\right) \leftarrow 1$
(4) foreach $\left(v_{i}, v_{j}\right) \notin E$
(5) $\quad w\left(p_{i}, p_{j}\right) \leftarrow|V| B$
(6) if TSAPPROX $\left(p_{i}, \mathrm{t}\right) \leq|V| B$
(7) return TRUE
(8) return FALSE

If TSAPPROX can approximate TSP within factor B, then the algorithm decides in poIynomial time if there is a Hamiltonian Cycle in G or not. That is impossible!

Approximation of TSP with the triangle inequality

This is a special case of TSP which can be approximated.

The triangle inequality: $w(i, j) \leq w(i, k)+$ $w(k, j)$ for all nodes i, j, k.

The triangle inequality shows that if $i, j, k_{1}, k_{2}, \ldots, k_{s}$ form a cycle in the graph, we have $w(i, j) \leq$ $w\left(i, k_{s}\right)+w\left(k_{s}, k_{s-1}\right)+\ldots w\left(k_{1}, j\right)$.

TSP with the triangle inequality is called Δ TSP.

Theorem: \triangle TSP is NP- Complete.

Assume that we have a minimal spanning tree T in the graph. If we go back and forth along the edges in T we get a walk of length $2 w(T)$ where $w(T)$ is the weight sum of the edges in T. This walk of course is no solution to the TSP-problem since it is not a cycle. Now, let C be an optimal cycle.
$w(C)=O P T$. Since C is a spanning tree + an edge, we get $w(T) \leq w(C)$.

$$
2 \cdot w(T) \leq 2 \cdot w(C) \leq 2 \cdot O P T
$$

We can rearrange the walk along the tree T to a cycle C_{1} by visiting the nodes in the order that is given by the inorder ordering of the nodes in the tree.

Claim: $w\left(C_{1}\right) \leq 2 \cdot w(T)$

This can be shown by repeated use of the triangle inequality.

We now get:

$$
w(C) \leq w\left(C_{1}\right) \leq 2 \cdot w(T) \leq 2 \cdot w(C)
$$

we set $A P P=w\left(C_{1}\right)$. We the get:

$$
O P T \leq A P P \leq 2 \cdot O P T
$$

We can compute $A P P$ in polynomial time. The approximation quotient is $B=2$.

There are more advanced algorithms for approximation of \triangle TSP One is Christofides algoritm. It uses the same ideas as our algorithm but has an approximation quotient $\frac{3}{2}$.

