
The Knapsack Problem

The input is n objects where object i is
described by the pair (wi, ui). wi is the weight
of the object and ui is the utility; both are
positive integers.

The decision problem is to decide if it is pos-
sible to make a choice of objects with total
weight at most W and such that the utility
sum is at least U .

This problem is NP-Complete.

The corresponding optimization problem can
be stated

max
∑

i

xiui

such that
∑

i

xiwi ≤ W

and xi ∈ {0,1} ∀i

Page 1

A Dynamic Programming solution to
the knapsack problem

Let Vi,j be the smallest total weight that gi-
ves the utility i when we just use the j first
objects. We have 1 ≤ j ≤ n and 0 ≤ i ≤
nmaxui since the maximal utility is at most
nmaxui.

We get

V0,j = 0, j = 1, . . . , n

Vu1,1 = w1

Vi,1 = ∞, i #= u1

Vi,j = min
{
Vi,j−1, Vi−uj,j−1 + wj

}

The time it takes to compute the array is
O(n2maxui).

The optimal value is the largest i such that
Vi,n ≤ W .

Page 2

Pseudo-polynomial algorithms

An algorithm A is pseudo-polynomial if the
time complexity is polynomial in n and M ,
the greatest number in the input.

An algorithm that is pseudo-polynomial can
be exponential in n. I input is an n-digit
binary number we have M ∼ 2n.

If we assume that P %= NP we say that a
strongly NP-Complete problem is an NP-Complete
problem which cannot be solved by a pseudo-
polynomial algorithm.

Page 3

An approximation algorithm for
Knapsack

The exact Dyn P - algorithm works well if
the coefficients ui are small. Therefore, we
”scale” them with a factor δ and then run
the exact algorithm:

ApproxKnapsack(U,W)
(1) δ ← 2n

εumax

(2) for i = 1 to n

(3) u′i ← (δui)
(4) return ExactKnapsack(U ′,W)

(We let umax = maxui and wmax = maxwi.)

Questions:

• What is the approximation quotient?

• What is the time complexity?

Page 4

Analysis of the algorithm

We assume that

1. wmax ≤ W ; wi > W can be removed.

2. W ≤ nwmax; otherwise we could choose
all objects.

Let opt be the value of the optimal solution to
the (U,W)-instance and approx be the value
returned by our algorithm.

Let I ⊆ [n] be the indices of the objects that
form the solution to the (U,W)-instance and
I ′ be the solution to the (U ′,W)-instansen.
Then

approx =
∑

i∈I ′
ui ≥

1

δ

∑

i∈I ′
(δui) ≥

1

δ

∑

i∈I
(δui)

≥
1

δ

(
δ
∑

i∈I
ui − n

)
=

1

δ
(δopt− n) =

= opt−
n

δ
≥ opt(1− ε/2)

Page 5

Analys, cont.

The approximation quotient is

opt

approx
≤

1

1− ε/2
≤ 1+ ε

The running time is O(n3/ε).

It means that we can get an approximation
quotient arbitrarily close to 1 and still run in
polynomial time.

This is an example of an Polynomial Time
Approximation Scheme, PTAS).

There are several other PTAS:s for other NP-
Complete problems based on similar types of
scalings.

Page 6

Terminology

NPO
The class of all optimization problems
corresponding to decision problems in NP.

APX
The problems that can be approximated
within some constant.

PTAS
The problems that can be approximated
within any constant 1+ ε.

There are problems, like Vertex Cover, that
belongs to APX but not to PTAS (Assu-
ming P %= NP).

Page 7

Probabilistic approximation of MAX
3-CNF SAT

We have a 3-CNF-formula Φ = c1 ∧ · · · ∧
cm where each clause ci contains exactly 3
distinct literals. We want to choice values for
the boolean variables x1, . . . , xn such that the
number of satisfied clauses is maximal.

RandomMax3CNFSAT(n, {ci}mi=1)
(1) for i = 1 to n

(2) xi ← Random(0,1)

(3) return {xi}ni=1

Look at the clause ci:

[ci is not satisfied] =
1

8
Let Y be the number of satisfied clauses.
Then

[Y] =
∑

i

[ci is satisfied] =
7m

8
≥

7

8
opt

The algorithm has an approximation quotient
8
7 in the mean.

Page 8

Bin Packing

Given numbers S = {s1, s2, ..., sn} 0 < si ≤ 1
we want to pack the numbers in bins that
contains exactly the sum 1. We want to use
as few bins as possible.

Decision problem: Given S and K, is it pos-
sible to pack the numbers into K bins?

The problem is NP-Complete.

Proof: We show that PARTITION ≤ BIN
PACKING.

Given a list P of numbers we compute W =
∑

i pi. We can assume that pi ≤ W
2 for all i

(otherwise, the answer to the problem would
be no trivially.) Now rescale:

si =
2pi
W

Let K = 2. This gives us an instance of BIN
PACKING.

Page 9

Approximation of Bin Packing

We use a method called First Fit Decreasing
(FFD).

Sort S such that s1 ≥ s2 ≥ ... ≥ sn. We can
assume that we have a set of empty bins
ready. We place s1 in the first bin. Then we
place each number in the first possible bin.

Ex: S = {0,8 , 0,5 , 0,4 , 0,4 , 0,3 , 0,2 , 0,2 , 0,2}.

FFD will place the numbers as:

L1 0,8 , 0,2
L2 0,5 , 0,4
L3 0,4 , 0,3 , 0,2
L4 0,2

This placing is not optimal since it is possible
to place the numbers in 3 bins. (How?)

Page 10

The complexity is O(n2). We now try to find
an approximation quotient.

Claim: Let OPT be the minimal number of
bins needed in the optimal solution. All num-
bers that are placed in ”superfluous” bins by
our algorithm are ≤ 1

2.

Why?: Numbers > 1
2 must be placed in diffe-

rent bins. There is no choice for these num-
bers. The only numbers that can be placed
in a wrong bin are the ones ≤ 1

2.

Claim: Less than OPT − 1 numbers are pla-
ced in ’superfluous’ bins.

Why: We know that all numbers can be pla-
ced in OPT bins. This means that

∑
i si ≤

OPT .

Page 11

Assume OPT numbers t1, t2, ..., tOPT are pla-
ced in superfluous bins. Let bi be the sum of
the numbers in bin i for 1 ≤ i ≤ OPT after
we have run our algorithm. Then ti + bi > 1.

∑
i si ≥

∑OPT
i=1 bi +

∑OPT
i=1 ti =

∑OPT
i=1 (bi + ti) >

OPT . That gives us a contradiction.

If OPT = m we now know that at most m−1

numbers of size 1
2 ate placed in superfluous

bins.

APP ≤ m+ $m−1
2 %

B ≤ 1+
$m−1

2 %
m ≤ 1+

m
2
m = 3

2.

This means that the algorithm approximates
within factor 3

2.

Page 12

