
 
Dynamic Programming cont. 

We repeat:  The Dynamic Programming Template has three parts. 

Subproblems 

Recursion 

Algorithm 
Must not compute 
subproblems more 
than once 

Sometimes this is enough if the algorithm and 
its complexity is obvious. 

Sometimes we just need the 
values of the solutions. 

Sometimes we also need the 
structure of the solution. 

Page 1: Intro



 

If we have a directed graph with no cycles ( A DAG = Directed Acyclic Graph ) 
things are simpler. In a DAG we can find a so called Topological Ordering. 

Let us return to the shortest path problem. Is Dijkstra's algorithm a DP-
algorithm? We have subproblems  
d[u] = length of shortest path from s to u. 
We have a type of recursion 
d[v] = d[u] + w[u,v] 
The problem is that we don't have a simple way of ordering the 
subproblems. In that sense, Dijkstra's algorithm isn't a true DP-algorithm. 

Let's assume that the start node is v[1].  Set w[i,j] = ∞ if there is 
no edge (v[i], v[j]).  Then 

d[1] = 0 
 
d[k] = min  ( d[i] + w[i,k] )  1 ≤ i ≤ k 

The algorithm runs in O( n   ) 

Topological Ordering: An ordering of the nodes such that  
(v[i], v[j]) is an edge       i < j 
A topological ordering can be found in time O( | E | ) ( See textbook). 

Page 2



 
A simpler Subset Sum problem 

One thing that makes the original Subset Sum problem hard is that we are 
allowed to use each number just once. If we can use the numbers multiple 
times we get a simpler DP-problem. 

Set v[m] = 1 if we can get m as a subset sum and 0 otherwise. 

Then we can compute the values by 
 
v[m] = 0 for all m < 0 
v[0] = 1 
v[m] = max ( v[m-a[k] )  1 ≤ k ≤ n 

k

Page 3



 

We will return to the Subset Sum problem once more. Remember that 
we defined 

v[i,m] = 1 if there is a subset of a[1], a[2], ... , a[i] with sum m and v[i,m] = 0 
otherwise. 

v[1, 0] = 1 
For all  i such that 2 ≤ i  ≤  n and all m such that  a[i]  ≤  m  
v[i,m] = max ( v[i-1,m],  v[i-1,m-a[i]] ) 

We got the recursion formula 

In lecture 5 we gave an algorithm that solved the problem.  It's possible to 
give a recursive algorithm as well. A first try could look like: 

We make the call vrek[n,M] to get the answer. 

But this solution is no good. The problem is that the 
algorithm uses repeated calls to subproblems that 
already have been solved. 

vrek[i,m] = 
 If m  < 0 
  Return 0 
 If m = 0 
  Return 1 
       If i = 1 and m = a[1] 
                Return 1 
 If vrek[i-1, m] = 1 
  Return 1 
 If vrek[i-1, m-a[i]] = 1 
  Return 1 
        Return 0 

Page 4: Memo 1



 To get a better algorithm will have to keep track of all computed 
values of subproblems. To do this, we use an array comp[i,m], 

Set all comp[i,j] to FALSE 
Set all v[i,j] to 0 
vrek[n,M] 

This technique of remembering already computed 
values is called Memoization. It can be seen as a 
kind of "top-down" method. Sometimes it can be 
useful, but in most cases the normal "bottom-up" 
method should be preferred. 

vrek[i,m] = 
 If comp[i,m] 
  Return v[i,m] 
 If m <  0 
  Return 0 
 If m = 0 
  Return 1 
 If vrek[i-1, m] = 1 
  comp[i,m] ← TRUE 
  v[i,m] ←1 
  Return 1 
 If vrek[i-1, m-a[i]] = 1 
  comp[i,m] ← TRUE 
  v[i,m] ←1 
  Return 1 
        comp[i,m] ←TRUE 
        v[i,m] ←0 

Page 5: Memo 2



 Matrix Chain Multiplication 

We want to compute the product of two matrices A and B. A isa p  q- matrix and  B 
is a q   r-matrix. The cost (number of products of elements) is pqr. 

Let us assume that we want to compute a chain of matrices. We want to find the best 
way to multiply them. If we have three matrices A, B, C then we know from the 
associative law of multiplication that (AB)C = A(BC). But the costs of computing the 
product will normally differ! 

If we have a chain of matrices M[1] M[2] ... M[n] what is the best way of 
computing the product? 

Recursion: 
 
We assume that the matrices have dimensions d[0]×d[1], d[1]×d[2], ... , d[n-1]×d[n]. 
 
c[i,i] = 0 for all  1≤ i ≤ n 
 
c[i,j] = min  ( c[i,k] + c[k+1,j] + d[i-1]d[k]d[j] ) where  i ≤ k < j  

Subproblems:  
Set c[i,j] = smallest possible cost of computing M[i] M[i+1] ... M[j]. 

k

Page 6: MCM 1



 Why? 

(M[i] M[i+1] ... M[k] ) (M[k+1] ... M[j]) 

c[i,k] operations 
d[i-1]   d[k] - matrix 

c[k+1, j] operations 
d[k]   d[j] - matrix 

d[i-1] d[k] d[j] operations 

All together:  c[i,k] + c[k+1] + d[i-1] d[k] d[j]   operations 

Now we have to  find an algorithm using the recursion. Essentially we 
have to find suitable loops.  We can try to first compute all c[i,j] with |
j-i| = 1, then with |j-i| = 2 and so on. If we do this we are able to use the 
recursion formula. 

Page 7: MCM 2



 

The value of c[1,n] gives the minimum number of operations.  The number break[i,j] 
indicates where the first break in the product of matrices i, ... , j should be.

For i ←1 to n 
 c[i,i] ←0 
For diff ←1 to n-1 
 For i ←1 to n - diff 
  j ←i + diff 
  min ←c[i+1,j] + d[i-1] d[i+1] d[j] 
  best_k ←i 
  For k ←i+1 to j - 1 
   If min > c[i,k] + c[k+1,j] + d[i-1] d[k] d[j] 
    min ←c[i,k] + c[k+1,j] + d[i-1] d[k] d[j] 
    best_k ←k 
  c[i,j] ←min 
  break[i,j] ←best_k 

 The complexity is O(n   ) 3

Page 8: MCM 3



 

Editing distance and sequence alignment 

We have two strings x[1], x[2], ... , x[m]  and y[1], y[2], ... , y[n]. We want to align 
them so the number of positions where the alligned sequences are different is 
minimal. We are allowed to put gaps into the sequences. 

Ex: The sequences EXPONENTIAL and  POLYNOMIAL can be aligned as 

_ _ POLYNOM_IAL 
EXPO _ _ NENTIAL 

Let  
D[p,q] = distance of best alignment of a[1], ..., a[p] and b[1], ..., a[q] 
We measure distance by adding a number α for each match between a character and 
a blank and adding  ß for a match between two different characters. 
 
Then we get the recursion formula 
 
D[p,0] = αp   D[0,q] =  αq for all p,q 
 
 
D[p,q] = min ( D[p,q-1]  + α ,  D [p-1,q] + α, D[p-1,q-1] + ß diff[a[p],b[q]] )  
                                                        
                                                                                                                  if p>1 and q > 1 

Page 9: ED



 
Pretty Print 

We now want to find the best way to arrange the words. It's simplest 
to first ignore LLE. 

Recursion: 
 
w[0] = 0 
w[k] = min ( w[i-1] + f( M - s[i,k] )   
                            where the min  is 
taken over all 1 ≤ i ≤ k such that 
s[i,k] ≤ M 

We have a set of n words. They have lengths l[i]  ( number of characters).  We want to 
print them on a page. Each line on the page contains space for M characters. There 
must be a space 1 between each pair of words. 

Set s[i,j] = ∑  l[k]   + j - i . 
 
 This will be the number if characters left on the line if the words i to j are put 
on the line.  Let E = M - s[i,j] be the excess of space on the line. We want to 
put the words (in correct order) on lines so that the excesses are as small as 
possible. We can use a penalty function f (  ) and try to make a split of the 
words such that f( E1) + f(E2) + .... i.e. the sum of the penalties from the lines 
is as small as possible. 

To get the solution with LLE we 
compute  
min w[j] such that s[j+1, n]   ≤  M 

Let w[k] = least penalty when using the first k words and not using 
LLE. 

It's natural to use the Last Line Excluded rule (LLE), i.e. we give no penalty for 
excess on the last line. 

Page 10: PP



3. Reliable connections in a network
You are working in a company which has a set of n computers connected in a
network. Not all computers are connected directly to each other, but for each
pair of computers we know that there is at least one path in the network that
connects them. For each connection between two computers, there is a proba-
bility p that the connection might be corrupted. If we have a path, then the
probability that the path is corrupted is 1− (1− p1)(1− p2) · ... · (1− pk) where
p1, p2, ..., pk are the probabilities for corruption of the connections on the path.
Your boss wants to know if, given a small number ε, for each pair of computers
there is a path between them with a chance of corruption smaller than ε.

Your boss wants you develop an algorithm that solves this problem. You start
to think about it and realizes that you perhaps can use a famous algorithm
you know already. But in order to do that you have to simplify the problem
a bit: You want to replace (1 − pi)(1 − pj) with 1 − pi − pj . That means that
we cancel all products pipj . This means that the probability of corruption of
the path will be approximated p1 + p2 + ... + pk. Your boss says it is OK to

use this simplification. Design an effective algorithm that solves the problem,
that is, finds if there for each pair of computers is at least one path with chance
of corruption smaller than ε. Estimate and prove the time complexity of your
algorithm. It should be as efficient as possible.

We assume that the information about the network is given by an array f [i, j]
such that

f [i, j] =

{
p if there is a connection with chance p of corruption
∞ otherwise

4. Winning a game
You and an friend play a game which has the following form: At each step the
game consists of two piles of chips. (One of them could be empty). On each chip
there is a positive number. You and your friend take turns and choose one pile
at each turn and take the top chip from the pile. So for instance, if the piles
look like:

2
4 1
1 7
3 2

and it is your turn you can choose between the top chips 2 or 1. If one of the
piles is empty you only have one choice. And if both piles are empty the game
ends. The winner is the player with the largest sum on the chips chosen by the
player. In this simple type of game it is possible to construct an optimal strategy
for each player. By a strategy we mean a rule for how you should chose your
pile in every possible situation. By an optimal strategy we mean a strategy that
works at least as well as any other strategy when your friend play as well as
possible. Design an algorithm that finds such an optimal strategy. We assume
that we know the contents of the piles at the start of the game. The algorithm
should precompute the strategy in time at most O(n2) where n is the number
of chips. Then in every move you should be able to consult your strategy and
find the best move in time O(1).

2

Page 11


