
 
Linear Programming 

Linear Programming are about what first might seem as a very special type of 
problem. These problem can be solved with the Simplex algorithm. A concept called 
duality will be of great importance. A reason for studying these problems is that a lot 
of other problems can be reduced to linear programming problems. A first example will 
be flow problems. 

Ex: 

Try to maximize x1+x2 
 
when 
x1 = x3 
x4+x5 = x2 
x6+x7 = x3+x4 
x8=x5+x7 

and 
0 < xi 
xi < ci 
 
for all i 

This is a special form of linear programming problems. 
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The Flow Problem as LP problem

We let xe be the flow on edge e. We have the constraints 0 ≤ xe ≤ c(e) for all
e. For each node x except s and t we have

∑

e∈In(x)

xe =
∑

e∈Out(x)

xe

We set
v =

∑

e∈Out(s)

xe

The flow problem can be written as
Maximize v
when 





v =
∑

e∈Out(s) xe∑
e∈In(x) xe =

∑
e∈Out(x) xe for all x except s,t

0 ≤ xe ≤ c(e) for all edges

A transport problemA transport problemA transport problem

The company Carla produces milk in 4 different plants. The milk is delive-
red to 5 customers. Carla has to consider three things:

1. The capacities of the plants.
2. The demands of the customers.
3. The costs of the transports between plants and customers.

Let us call the plants F1, F2, F3, F4.

Capacity:

F1 F2 F3 F4
30 40 30 40

(The numbers represent 1000 liters.)

Let us call the customers K1, K2, K3, K4, K5.

Demand:

K1 K2 K3 K4 K5
20 30 15 25 20

(The numbers represent 1000 liters.)
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Transport costs:

K1 K2 K3 K4 K4
F1 2, 80 2, 55 3, 25 4, 30 4, 35
F2 4, 30 3, 15 2, 55 3, 30 3, 50
F3 3, 00 3, 30 2, 90 4, 30 3, 40
F4 5, 20 4, 45 3, 50 3, 75 2, 45

Goal:

Decide how the ”flow” to the customers should be so that

1. The customers are satisfied.
2. The cost are minimal.

Mathematical model:

Use variables xij for the flow from plant i to customer j.

What demands do we have?

1. Capacities

Ex: For plant 1 we should have
x11+x12+x13+x14+x15 ≤ 30000

2. Demand

Ex: For customer 1 we should have
x11+x21+ x31+x41 = 20000

Cost:

z = 2,80 x11 + 2,55 x12 + ... + 2,45 x45

We use the following definitions:

Let cij be the cost for transport from plant i to customer j.

Let si be the capacity for plant i.

Let dj be the demand of customer j.
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The problem can now be written as

Minimize
∑4

i=1

∑5
j=1cijxij

when

∑5
j=1 xij ! si i = 1, 2, 3, 4∑4

i=1 xij = dj j = 1, 2, 3, 4, 5
xij " 0

Linear Programming

A linear programming problem on generic form is

Minimize
∑n

j=1 cjxj

when∑n
j=1 aijxj ! bi i = 1, 2, ...,m

xj!0

If we have a problem that is not on general form we can rewrite it on general
form. We show how it can be done by looking at some examples
Example:
Minimize

x1 + 2x2 − x3

when {
x1 + x3 = 1

x2 − x3 ≥ 3

We can change minimization to maximization by changing sign on the function.
Inequalities "in the wrong direction"can be turned right by a sign change.
Equalities can be turned into inequalities by using two using two inequalities
for each equality.
In our problem we get
Maximize

−x1 − 2x2 + x3

when





x1 + x3 ≤ 1

−x1 − x3 ≤ −1

x3 − x2 ≤ −3
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Example: A company called Fajo

The company Fajo makes bandy sticks and hockey sticks.
There are two steps in the production: Sawing and glueing.

There are times needed for the two steps

Sawing Gluing
Hockey 7 16
Bandy 10 12

(minutes)

The firm has capacity for 3600 minutes of sawing and 5400 minutes of glu-
ing per week.

The sticks can be sold for
Hockey: 125 kr but has a production cost of 105 kr.
Bandy: 115 kr but has a production cost of 97 kr.

Let x1 be the number of produced hockey x2 the number of produced ban-
dy sticks.

We get the following problem

Maximize z = 20x1 + 18x2

when
x1 + 10x2 ≤ 3600
16x1 + 12x2 ≤ 5400
x1, x2 ≥ 0

Obs: We can transform the problem to general form if we say that we want
to minimize -20x1-18x2

There is a famous algorithm called the Simplex Algorithm that solves these
problems. We will describe this algorithm without going to much into details.

Page 5



The Simplex MethodThe Simplex MethodThe Simplex Method

Preparation: We transform the problem to so called standard form

Standard form: We have equalities instead of inequalities.

Ex:

Minimize z = 3x1 + 5x2 - x3

when

x1 − x2 + 2x3 = 5
x1 + 2x2 + 4x3 = 12
x1, x2, x3 " 0

We get equalities by introducing Slack Variables.

Ex: Let us assume that we have the inequality x1 + 3x2 ! 10

We set x3 = 10- (x1 + 3x2 )

x3 is a new slack variable.

We get the equality x1 + 3x2 + x3 = 10

Standard firm can be described with matrices:

Minimize z =
∑n

j=1cjxj

when∑n
j=1 aijxj = bi i = 1,... ,m

xj " 0 j = 1, ... ,n

We can use matrix notation

Minimize c̄T x̄

when
Ax̄ = b̄
x̄ " 0̄
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The Fajo problem put on standard form will be:

7x1 + 10x2 ! 3600 reduces to 7x1 + 10x2 + x3 = 3600

16x1 + 12x2 ! 5400 reduces to 16x1 + 12x2 + x4 = 5400

We get

Maximize z = 20x1 + 18x2

when
7x1 + 10x2 + x3 = 3600
16x1 + 12x2 + x4 = 5400
x1, x2, x3, x4 " 0

In Matrix form it looks like:

A =
(
7 10 1 0
16 2 0 1

)

and

x̄ =





x1

x2

x3

x4



, c̄ =





−20
−18
0
0



, b̄ =

(
3600
5400

)

Minimize (-20, -18, 0, 0 )





x1

x2

x3

x4





when
(
7 10 1 0
16 2 0 0

)




x1

x2

x3

x4



 !
(
3600
5400

)




x1

x2

x3

x4



 "





0
0
0
0
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How to find a solution

Maximize z = 20x1+ 18x2.
When

7x1+ 10x2+ x3 = 3600
16x1 + 12x2 + x4= 5400

How do we find the best solution?

One possibility is x3= x4= 0

7x1+ 10x2 = 3600
16x1 + 12x2 = 5400

If we solve the system we get x1≈ 142 x2 ≈ 260

It gives us z ≈ 7520

But instead, we can put x2 = x4= 0

We get the equations

7x1+ x3 = 3600
16x1 = 5400

They give us x1 ≈ 337 x3≈ 1237

Then z ≈ 2362.

Are there more solutions?

Basic solution:Basic solution:Basic solution:

Let us assume that we have n variables and m equations. We also assume that
all equations are linearly independent. We us say that we have set n-m of the
variables to 0.
Then the other m variables have unique values. This gives us a basic solution .

Feasible basic solution:Feasible basic solution:Feasible basic solution:

If all variables are " 0 we have a feasible basic solution.

The solution to a LP-problem is always a feasible basic solution (FBS).

But which FBS?
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Method:Method:Method:

Variables which are 0 (at a certain stage) are called non-basic variables. The
other variables are called basic variables.

We test different FBS:s by changing the basic variables one at a time.

Ex: Minimize z = 2x1 + x2

when 3x1 + x2 = 10
x1, x2 " 0

Set x1 = 0.

Then x2 = 10 and z = 10.

We now change basic variables so that x2 = 0 .

Then x1 ≈ 3,33

we get z ≈ 6,67.

So we have found a better solution.

How do you know if you have found the best solution?

Ex: Fajo

x1 = 142 x2 = 260 z = 7520

Is that the best solution?

We can write

x3 = 3600 - 7x1 -10x2

x4 = 5400 - 16x1 - 12x2

x1 = 0,158x3 - 0,132x4 + 142,1
x2 = -0,2x3 + 0,092x4 + 260,5

That gives us z = 20x1 + 18x2 = 20(0,15x3 - 0,13x4 + 142,1) + 18( -0,21x3 +
0,09x4 + 260,5) =
7520 - 0,62x3 - 0,98x4

Now we see that we would gain nothing by increasing x3 or x4.
We see that any change from this solution must end in a worse solution.
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General description of the Simplex MethodGeneral description of the Simplex MethodGeneral description of the Simplex Method

Let’s say that we have a maximization problem and a FBS with basic varia-
bles y1, y2, ... , ym and non-basic variables v1, v2 , ... , vn−m.

This means that v1 = v2 = ... = vn−m = 0

We can then write y1, y2, ... , ym as functions of v1, v2 , ... , vn−m

y1 = f1 (v1, ..., vn−m) y2 = f2 (v1, ..., vn−m)
...
In the same way we can write z as

z = c1v1 + c2v2 + ... + cn−mvn−m + z0

If all ci are < 0 we must have an optimal solution.

If any ci > 0 , say c1 > 0, we can increase z by increasing v1. But then the
values of the y:s must change. How much do they change?

We can increase v1 until fk(v1, v2, ...) = 0 for some k. Then v1 will be a new
basic variable and yk will be a new non-basic variable.
We go on like this until all ci ≤ 0. Then we have found the optimal solution.

If we have a minimization problem we must try to increase variables with ci <
0. When all ci ≥ 0 we have a solution.

Ex:

Minimize z = 2x1 + 2x2 + x3

when
x1 + x2 + x3 = 5
x1 − x2 + 2x3 = 8
x1, x2, x3 " 0

One FBS is x2 = 0 (non-basic variable).

We get

x1 + x3 = 5− x2

x1 + 2x3 = 8 + x2

x1 = 2− 3x2

x3 = 3 + 2x2

z = 2(2− 3x2) + 2x2 + (3 + 2x2) = 7− 2x2

We can increase x2. But how much?
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x1 and x3 must be " 0.

x1 = 2− 3x2

This means x2 ! 2
3

x3 = 3 + 2x2

This gives us no bound on x2.

So x2 = 2
3 and x1 = 0.

x3 = 13
3

We now write x2, x3 as functions of x1.

x2 = 2
3 − x1

3

x3 = 3 + 2x2 = 3 + 2( 23 − x1

3 ) = 13
3 − 2x1

3

z = 7− 2x2 = 7− 2( 23 − x1

3 ) = 17
3 + 2x1

3

Since we gain nothing by increasing x1, we are done.

This is however far from the full story. There is a problem called degeneracy
that can occur. This happens when when we have no ci > 0 and some ci = 0
(if we assume that we have a minimization problem). In that case we will have
to chose some i with ci = 0. Then there is a chance that we could get into an
infinite cycle. In practice, there are several ways to avoid this. Another problem
is how to find a starting point for the algorithm. It turns out that we can use a
modified variant of the simplex algorithm to solve this problem.

Actually, in worst case, the Simplex Algorithm is not a polynomial time al-
gorithm. In practice, however, it is always considered efficient enough to be
used.
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Dual Problems

For each LP problem we can give a so called dual problem.

Ex: We have the problem

Maximize 5x1 + 2x2

when
x1 + x2 ! 10
2x1 + 3x2 ! 20
x1 , x2 " 0

The dual problem is

Minimize 10v1 + 20v2

when
v1 +2v2 " 5
v1 + 3v2 " 2
v1, v2 " 0

How do we define the dual problem?

We write the problem on the form

Maximize c̄T x̄

when
Ax̄ ! b̄
x̄ " 0̄

The dual problem is

Minimize b̄T v̄

when
AT v̄ " c̄
v̄ " 0̄
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The Duality TheoremThe Duality TheoremThe Duality Theorem

Let P1 and P2 be two dual problems. If one of the problems has a unique solution
with value M , then the other problem also has a unique solution with value M .
If we solve one of the problems we also get a solution to the other.
Ex: Fajo again

We want to

Maximize 20x1 + 18x2

when
7x1 + 10x2 !3600
16x1 + 12x2 !5400
x1, x2 " 0

The corresponding dual problem is

Minimize 3600v1 + 5400v2

when
7v1 + 16v2 " 20
10v1 + 12v2 " 18
v1, v2 " 0

Both problems have the same value as solution.

But what does the dual problem mean?

Let us assume that Fajo want to rent out its production facilities. What rent
would the marketbe willing to pay? We can suppose that the market will pay
v1 kr/minute for sawing and v2 kr/minute for gluing.
What prices v1 and v2 should the market set?

The market will want to minimize 3600v1 + 5400v2

The market must also consider the following requirements: Fajo must want
to rent out. This means that Fajo must make at least as much money as it
would if it run the production itself.
A hockey stick can be sold with a profit of 20 kr. It will take 7 minutes of sawing
and 10 minutes of gluing to make it. When Fajo rents out it would get 7v1 +
16v2 kr . This number must be at least 20.

7v1 + 16v2 " 20

In the same way we get
10v1 + 12v2 " 18.
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This gives us

Minimize 3600v1 + 5400v2

when
7v1 + 16v2 " 20
10v1 + 12v2 " 18
v1, v2 " 0

About solutions to LP problemsAbout solutions to LP problemsAbout solutions to LP problems

If we try to solve a LP problem three cases can occur.

1. The problem has a unique solution.

2. The inequalities defining the problem cannot be satisfied.

Ex: Minimize x1 + x2

when
x1 + 3x2 ! -2
x1 + 3x2 " 1
x1, x2 "0

Then, of course, there is no solution to the problem.

3. The value can be arbitrarily large/small.

Ex: Maximize x1 - x2

when
x1 + x2 " 10
x1, x2 " 0
The problem is that x1 − x2 can be arbitrarily large. There is no solution.

Part of what the Duality Theorem tells us is that if one of two dual problems
is of type 1, the other one must be of type 1 as well.
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Reduction of a problem to a LP problem

Example: Find the shortest path s → t in a weighted graph G.

Maximize dt

when
{
du ≤ dv + w(u, v) for all edges(u, v)
ds = 0

Examples of dual problems

The flow problem can be put on dual form:
The vector ȳ contains |V | + |E| numbers. They are gi for each node vi and γj
for each edge ej .
Minimize ∑

j

γjcj

when
{
gi − gj + γk ≥ 0 om ek = (vi, vj)

gn − g1 ≥ 1, γj ≥ 0 for all j

The solution to this problem generates a minimal cut (S, V −S) and an assign-
ment of values gi = 0 if vi ∈ S, gi = 0 otherwise. γj = 1 if ej goes from S to
V − S, γj = 0 otherwise.

A translation of the shortest path problem to dual form gives us:

Maximize ∑

e

xew(e)

when 




1 =
∑

e∈Ut(s) xe∑
e∈In(x) xe =

∑
e∈Ut(x) xe for all x except s,t

0 ≤ xe ≤ 1 for all edges
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