
About complexity

We define the class informally P in the following way:
P = The set of all problems that can be solved by a polynomial time algorithm,
i.e., an algorithm that runs in time O(nk) in the worst case, where k is some
integer and n is the size of the input.
We can contrast this class with

EXP=The set of all problems that can be solved by an exponential time algo-
rithm, i.e., an algorithm that runs in time O(cn

k

) in the worst case, where k is
some integer, c > 1 some real number and n is the size of the input.
It is universally agreed that an algorithm is efficient if and only if it is polyno-
mial.
This makes it critical to define the size of the input in a ”correct way”. For
instance, we must be careful if we have numbers as input.
The Miller -Rabin algorithm is an example of probabilistic algorithms. The
general with probabilistic algorithms are that they use a certain amount of
randomness, usually from a pseudo-random generator. We will look at a more
general definition of probabilistic algorithms.
The probabilistic algorithms are closely related to randomized algorithms. The
difference is that the randomized algorithms usually are deterministic but ne-
vertheless, use random steps in the computation. What is uncertain is the run-
ning time rather than the result. An example is the famous Quick sort algorithm
(or more exactly, the randomized version of it).

Number theoretical algorithms

Number theoretical algorithms are algorithms handling problems such as deci-
ding if a number is a prime, finding greatest common divisor and so on. Input
to the algorithms are integers. The natural measure of the size of the input is
the logarithm of the numbers.
Ex: Test if a number is a prime.

PRIME(n)
(1) for i ← 2 to

√
n

(2) if i|n
(3) return Not prime
(4) return Prime

This algorithm has complexity O(
√
n). It is to slow for large numbers. We would

like to have an algorithm that runs in time O((log n)k) for some k.

Page 1

Greatest Common Divisor

Greatest common divisor: gcd(a, b) = is the largest integer that divides both
a and b.

Euclides’ algorithm:
The gcd(a, b) can be computed by the following method:
r1 = a mod b
r2 = b mod r1
r3 = r1 mod r2
...
rn+1 = rn−1 mod rn = 0
Then gcd(a, b) = rn.

It is easy to verify that ri+2 < ri
2 for all i. This means that the algorithm stops

after O(log n) steg. So the algorithm is efficient.
The algorithm can be implemented recursively.

EUKLIDES(a, b)
(1) if b = 0
(2) return a
(3) return EUKLIDES(b, a mod b)

If gcd(a, b) = d there are integers x, y such that ax + by = d. (x, y can be
negative). In fact, d is the smallest integer > 0 on that form. The integers x, y
can be found by a modified version of Euclides’ algorithm:

MOD-EUKLIDES(a, b)
(1) if b = 0
(2) return (a, 1, 0)
(3) (d′, x′, y′) ← MOD-EUKLIDES(b, a mod b)
(4) (d, x, y) ← (d′, y′x′ − [ab]y

′)
(5) return (d, x, y)

Finding the inverse: If gcd(a, n) = 1 there are integers x, y such that ax+ny =
1. Then x = a−1 mod n. So we can find a−1 by using MOD-EUKLIDES(a, n).

Page 2

Modular exponentiation

In cryptography it is important to be able to compute ab mod n for very large
numbers in an efficient way. The following simple algorithm is not efficient:

POT(a, b, n)
(1) d ← 1
(2) for i ← 2 to b
(3) d ← d · a mod n
(4) return d

The following modified algorithm, though, is efficient:

MOD-EXP(a, b, n)
(1) d ← 1
(2) Let (bk, bk−1, ..., b0) be the binary representation off b
(3) for i ← k to 0
(4) d ← d · d mod n
(5) if bi = 1
(6) d ← d · a mod n
(7) return d

To decide if a number is a prime

Fermat’s Theorem: If p is a prime and a is an integer such that a ! n then
ap−1 ≡ 1 (mod p).

We can set a = 2. If n is such that 2n−1 %≡ 1 (mod n) then n cannot be a
prime. Therefore, we can use the following algorithm to test if n is a prime:

FERMAT(n)
(1) k ← MOD-EXP(2, n− 1, n)
(2) if k %≡ 1(mod n)
(3) return FALSE
(4) return TRUE

If FERMAT returns FALSE we know for sure that n is not a prime. But unfor-
tunately, FERMAT might return TRUE even if n is not a prime. For instance,
2340 ≡ 1 mod 341 but 341 is not a prime.

We can use a so probabilistic algorithm which randomly choses a number a in
[2, n− 1] and does a Fermat test with a.

PROB-FERMAT(n, s)
(1) for j ← 1 to s
(2) a ← RANDOM(2, n− 1)
(3) k ← MOD-EXP(a, n− 1, n)
(4) if k %≡ 1(mod n)
(5) return FALSE
(6) return TRUE

Page 3

The algorithm is probabilistic in the sense that it can give different answers
at different times even if it starts with the same input. The following must,
however, be true:

if n is a prime then the algorithm must return TRUE. This means that the
algorithm returns FALSE then we know that n is not a prime. So FALSE is the
only definite answer we can get.

P (n is not prime | The algorithm returns FALSE) = 1

What about the probability
P (n Is prime |The algorithm returns TRUE)?
It can be shown that for almost all non-prime n we get:

P (The algorithm returns FALSE) > 1
2 .

(For primes n we have P (The algorithm returns TRUE) = 1.)

Problem are caused by so called Carmichael numbers.

Carmichael numbers : A Carmichael number is a non-prime integer n such
that an−1 ≡ 1 (mod n) for all a ∈ [2, n− 1]. The smallest Carmichael number
is 341.
P (The algorithm returns TRUE |n is a Carmichael number) = 1.

In order to handle Carmichael numbers we can use the following algorithm:

WITNESS(a, n)
(1) Let n− 1 = 2tu, t ≥ 1, where u is odd
(2) x0 ← MOD-EXP(a, u, n)
(3) for i ← 1 to t
(4) xi ← x2

i−1 mod n
(5) if xi = 1 och xi−1 %= 1 och xi−1 %= n− 1
(6) return TRUE
(7) if xt %= 1
(8) return TRUE
(9) return FALSE

The following can be shown for WITNESS:
P (WITNESS returns TRUE |
n Is not prime) > 1

2 for all n. If you make repeated calls to WITNESS can get
arbitrarily high probability for a correct answer. This version of the algorithm
is called Miller - Rabin’s Test.

Page 4

MILLER-RABIN(n, s)
(1) for j ← 1 to s
(2) a ← RANDOM(1, n− 1)
(3) if WITNESS(a, n)
(4) return Not prime
(5) return Prime

Here

P (The algorithm returns Prime |
n is prime) = 1. P (The algorithm returns Not prime |

n is not prime) > 1− 1
2s .

It is, of course, also interesting to study the ”reversed” conditional probabilities:
P (n is not prime |
The algorithm returns Not prime) = 1.

The probability
P (n is prime | The algorithm returns Prime) is trickier. It can be computed as

P (n is prime and the algorithm returns Prime)
P (The algorithm returns Prime) = P (n is prime)

P (The algorithm returns Prime)

But then we need to know P (n is prime). If we know that the probability is α
we can use Bayes’ law to show that

P (n is prime | The algorithm returns Prime) > 2s

2s+(1
α−1)

.

Since August 2002 it is known that there is an algorithms that decides primality
(in the usual non-probabilistic sense) in polynomial time. This algorithm is much
more complicated and slower than Miller-Rabin’s algorithm.

Page 5

Quick sort

QuickSort(v[i..j])
(1) if i < j
(2) m ← Partition(v[i..j], i, j)
(3) QuickSort(v[i..m])
(4) QuickSort(v[m+ 1..j])

The complexity analysis is more complicated than it is for Merge sort. It can
nevertheless be shown that the complexity is O(n log n) in the mean.

Sorting in linear time

Sorting algorithms that only uses comparisons between elements can never be
faster than Θ(n log n). But there are algorithms which use extra information
about the elements. For instance, if we want to sort integers we might know
upper and lower bounds for the integers. Then it is possible to sort in linear
time.

Counting sort

Assume that we have n objects A[1..n] with keys which are integers in [1, k].
The following algorithm sorts in time O(n+ k):

CountingSort(A,B, k)
(1) for i = 1 to k
(2) C[i] ← 0
(3) for i = 1 to n
(4) C[A[i]] ← C[A[i]] + 1
(5) for i = 2 to k
(6) C[i] ← C[i− 1] + C[i]
(7) for j = 1 to n
(8) B[C[A[j]]] ← A[j]
(9) C[A[j]] ← C[A[j]]− 1

When the algorithm ends, the array B is A in sorted order.

Page 6

Finding the median

If we have an array v[1...n] the problem of finding the median is the problem of
finding an element v[i] such that exactly (n

2) elements are smaller than v[i]. We
can obviously find the median in time O(n log n). But if we use a probabilistic
algorithm we can find the median in time O(n) in the mean. We define a function
Select(v[i...j], k) which finds the kth element (in sorted order) in the subarray
v[i...j]. (We assume that k ≤ j − i + 1.) Then Select(v[1...n], (n

2)) will give us
the median.

Select(v[i...j], k)
(1) if i = j
(2) Return v[i]
(3) p ← Partition(v[i..j])
(4) q ← p− i+ 1
(5) if q = k
(6) Return v[p]
(7) if k < q
(8) Return Select(v[i...p− 1], k)
(9) Return Select(v[p+ 1...j], k − q)

It can be shown that if E(T (n)) is the mean value of the time complexity,
whe have E(T (n)) ≤ 2

n

∑n−1
k=#n

2 $ E(T (k)) + O(n). From this, we can prove that
T (n) ∈ O(n).

Probabilistic algorithms

Ex: Is the polynomial

f(x, y) = (x− 3y)(xy − 5x)2 − 10x3y + 25x3 + 3x2y3 + 30x2y2 − 75x2y
identically equal to 0?

Test: Chose some values xi, yi randomly and test if f(xi, yi) = 0.

Two possibilities:

1. f(xi, yi) %= 0. Then f %= 0.

2. f(xi, yi) = 0 for all chosen values xi, yi. What is then the probability for
f = 0?
Theorem: If f(x1, ..., xm) is not identically equal to 0 and each variable occurs
with degree at most d and M is an integer, then the number of zeros in the set
{0, 1, ...,M − 1}m is at most mdMm−1. This gives us:

P [A random integer in {0, 1, ...,M − 1}m is a zero]
= 1

mdMm−1 = δ.

This means that if we have done k tests indicating f = 0, then P [f = 0] ≥
(1− δ)k.

Page 7

Monte Carlo algorithms

Suppose that we have a decision problem, i.e. a problem with yes/no as an-
swer. We say that F is a Yes-based Monte Carlo algorithm for solving the
problem if F is polynomial and:

1. If the answer to the problem is yes, then F (x) = Y es with probability > 1
2 .

2. If the answer to the problem is no, then F (x) = No with probability 1.
No-based Monte Carlo algorithms are defined in the obvious, symmetrical way.

Definition: The class RP is the set of all problems that can be solved by a
Yes-based Monte Carlo algorithm.

It is easily seen that P ⊆ RP .

Page 8

