
 
NP-Problems 

Let's start looking at two graph problems: 

Euler walks: An Euler walk is a walk trough a graph which 
contains each edge exactly once. 

Euler presented a simple solution: There is an Euler walk if and only if every 
node has even degree. This problem can be solved in polynomial time. 

Hamiltonian cycle: A hamiltonian cycle is a cycle containing 
ever node exactly once. 

This problem has no known efficient solution. 

EULER WALKS 
 
Input: A connected, undirected graph G. 
Goal: Is there an Euler walk in G or not? 

HAMILTONIAN CYCLE 
 
Input: A connected, undirected graph G. 
Goal: Is there a hamiltonian cycle in G or not?
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 Another difficult graph problem is Independent Set. 

INDEPENDENT SET 
 
Input: A graph G. An integer K. 
Goal: Is there an independent set A of size K in G? 

It might seem reasonable to ask for the largest independent 
set in G. This, however, is not quite the same problem. There 
are, in fact, three groups of problems to consider. 

Independent set: If G is a graph and A     V  then A is independent if and only 
if there are no edges going between nodes in A.
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Three types of problems 

Problems can be classified according to what type of goal/output we want. 

Decision problems 

In a decision problem we just want an answer yes/no. 

Optimization problems 

In these problems the answer is an integer that measures the size of an 
optimal solution. 

Ex:  Is there an independent set of size K in G?  ( Yes/No) 

Ex: What is the size of a maximal independent set in G? ( A number) 

Construction problems 

In these problems we want to actually construct a solution. 

Ex: Give a maximal idependent set in G. 

For technical reasons we will be most interested in decision problems. 
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Some different types of problems:

If you solve a decision problem you can some-
times can use the solution to solve a corre-
sponding optimization problem and construc-
tion problem.

Ex:

INDEPENDENT SET (IS)

input: A graph G and an integer K.
Goal: Is there an IS of size K in G?
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Corresponding optimization problem:

MAX-IS

Input: A graph G.
Goal: What is the size of a maximal IS in G?

Corresponding construction problem:

CONSTRUCT-MAX-IS

Input: A graph G.
Goal: Find a largest IS in G.
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Assume that there is a solution algorithm
A(G, k) such that A(G, k) = Yes if and on-
ly if G has an IS of size k.

MAX-IS has a solution algorithm B(G):

(1) for k ← to n

(2) if A(G, k) = Yes
(3) m ← k

(4) return m

CONSTRUCT-MAX-IS has a solution algo-
rithm C(G):

(1) m ← B(G)

(2) S ← V

(3) foreach v ∈ V

(4) if B(G(S − {v})) = m

(5) S ← S − {v}
(6) return S
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 Some other hard problems  
 
(No known polynomial time algorithms solving the problem.) 

GRAPH COLORING 
 
Input: A graph G. An integer K. 
Goal: Is there a coloring of G with K colors? 

A graph coloring is a coloring of the nodes so that no 
adjacent nodes have equal colors. 

SET COVERING 
 
Input: A family F of subsets of a set V. An integer K. 
Goal: Is there a set of K subsets taken from F such that their union is V? 

SUBSET SUM 
 
Input: A set A of integers. An integer M. 
Goal: Is there a subset of A with sum M? 
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Traveling Salesman Problem:

A traveling salesman want to visit all cities in
a country and then return to his home town.
In order to save costs he wants to do this as
economically as possible.

Traveling Salesman Problem (TSP):
Given a graph G = (V,E) with edge weights,
is there a walk of length at most L that
visits all nodes exactly once and then re-
turns to the start node?

It can be seen that this problem is related to
HAMILTONIAN CYCLE
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The Knapsack Problem:

A tourist want to pack her knapsack but she
doesn’t want to carry more than W kg. The-
re are lot of things she want to bring along
and they all have a known weights and utili-
ties:

Thing Weight Utility
Tent 10 100
Sleeping bag 7 80
Pillow 0.5 10
Extra sweater 1 25
Toothbrush 0.01 5
Book 0.1 2
etc

Is it possible to chose a set of things with
combined weight at most W kg and com-
bined utility at least U?
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( Obs: There are exponential time algorithms for solving the problems. ) 

Given that it to exist hard problems, what should we do about it? 
 
Two different approaches: 
 
1. We could try to solve them.  ( Efficiently.) 
 
2. We could try to understand why they are hard. 

The first approach has been unsuccessful.  The second approach has had 
some success even if the success is of an unexpected kind. 

1. The recognition of the problem SAT as an especially important hard problem. 
 
2. The extreme usefulness of the concept of reductions between problems. 

The second approach has led to the theory of NP-Complete problems. We 
will describe this theory in this and the next lecture. The theory starts with 
two insights: 
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Satisfiability (SAT):

Let’s say that we describe a system with a
Propositional Logic formula. We want to find
certain situations that correspond to this for-
mula being true. We want to know of there
are values for the variables making the for-
mula true, i.e. the formula is satisfied.

Ex.

(x ∨ y ∨ ¬w) ∧ (¬x ∨ z)∧
(¬y ∨ w) ∧ (x ∨ ¬w ∨ ¬z)

Are there values for the variables making
the formula true?

The formula is satisfied if x and z are true
and y and w are false.
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Reductions 

Let us assume that we have another problem B and that there is an 
algorithm F that solves the problem. This means that if y is an 
instance of B then the computation F(y) halts with yes or no as 
output and 
 
The true answer is yes  =>   F(y) = yes 
The true answer is no  =>   F(y) = no 

Let us assume that we have a problem A. We want to find an algorithm 
which solves the problems for all instances. 

Then a reduction of A to B is an algorithm R which takes inputs x to 
A and transforms them to inputs y = R(x) to B such that 
 
The true answer to x in problem A is yes  =>  F(R(x)) = yes 
The true answer to x in problem A is no  =>    F(R(x)) = no 

New algorithm. Solves the A-problem

x RIx) YES/No

Page 12



 Karp - Reductions 

If a reduction should be useful it cannot be too complicated. We will usually 
demand that they are polynomial in the size of the input x.  These 
polynomial time algorithms are called Karp - Reductions. 

If A can be reduced to B by a Karp - Reduction we 
express this fact by writing 
 
A         B 

The subscript P stands for polynomial. Often, we will drop the  P and 
assume that it is understood that the reduction is polynomial. 

Two important consequences of the definition is: 
 
1. If A      B and B     P then   A     P. 
 
2. If A      B and A    P then   B     P. 

This means that, potentially, reductions could be used to prove that a 
problem B cannot be solver efficiently, given that we know that another 
problem cannot. 

≤

≤

≤

∈ ∈

∉ ∉
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 If we can solve SAT efficiently, then there are many other problems 
that also can be solved efficiently.  
 
But probably we cannot solve SAT efficiently? 

The brilliant idea: Turn the reductions in the other direction! 

If we have a problem A such that    SAT      A, we have good reason to believe that 
A cannot be solved efficiently. 

We will look at some "simplifications of SAT and see that they, in a sence, 
are as hard to solve as SAT. 

CNF-SAT 

CNF-SAT is the problem to decide if a CNF-formula is satisfiable or not. 
 
It can be shown that  SAT      CNF-SAT. 

A formula on Conjunctive Normal Form is a formula that can be written 
as a disjunction of clauses which, in turn, are conjunctions of negated 
and un-negated variables. 
 
Ex:   (x   y   z   w)   (y   z)     (x   y    w) 

≤

≤
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The reduction CNF-SAT ≤ 3-CNF-SAT

We want to reduce SAT to 3-SAT:
Given a SAT-formula Φ = c1 ∧ · · · ∧ ck we
construct an equivalent 3-SAT-formel Φ3 be
replacing each clause in Φ with one or more
3-SAT- clauses.

Assume that ci contains j literals l1, . . . lj. We
bouild new clauses in Φ3:

j = 3 l1 ∨ l2 ∨ l3

j = 2 (l1 ∨ l2 ∨ yi) ∧ (l1 ∨ l2 ∨ ¬yi)
j = 1 (l1 ∨ yi ∨ zi) ∧ (l1 ∨ yi ∨ ¬zi)∧

(l1 ∨ ¬yi ∨ zi) ∧ (l1 ∨ ¬yi ∨ ¬zi)
j > 3 (l1 ∨ l2 ∨ y1i ) ∧ (¬y1i ∨ l3 ∨ y2i )∧

(¬y2i ∨ l4 ∨ y3i ) ∧ · · · ∧ (¬yj−3
i ∨ lj−1 ∨ lj)

Φ3 is satisfiable exactly when Φ is.

 

Page 15



 
3-CNF-SAT       IS 

We show the technique by looking at an example 

We construct a graph 

K = 2 

First: Let us assume that the graph contains an IS of size 2. I must contain exactly 
one node from each triangle. For instance, we could choose the two x  :s. This 
correspond to setting x   to TRUE. 
Second: Let us assume that it is possible to satisfy      . Then there is at least one true 
literal in each triangle. Chose corresponding nodes. The will form an IS of size 2. 

≤

2
2
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 Since  SAT and INDEPENDENT SET can be reduced to each other we might think 
that there would be some similarities between the two problems. In fact, there is one 
such similarity. 

In SAT we want to know if something exists. We are looking for aset of values for to 
coordinate such that the formula is true. It is hard to find such a set of values but if we 
have found it, it is easy to check if it makes the formula true. 
 
In INDEPENDENT SET we are looking for a set of nodes of size K such that the set 
forms an independent set. I is hard to find the set but if we have found it, it is easy to 
check if it really is an independent set. 

Both the problems have a so called yes-certificate, something that tells us that the 
answer to the problem is yes. For SAT, the certificate is the values for the 
variables. For INDEPENDENT SET, the certificate is the K-set. 

Informally, the class  NP is the set of decision problems such that if the 
answer to the problem with input x is yes, then is a certificate y, at most 
polynomial in the size of x such that it can be checked in polynomial time 
( in the size of x) that y is a yes- certifice. 

We will give a more formal definition of this. The definition identify problems with 
something we will call languages. Then we will describe the property of being an NP-
problems as a property for languages. 
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Formal definition of P

A formal language L is a set of strings.

Example:

{“abc”, “qwerty”, “xyzzy”}
{binary strings of odd lenght}
{binary strings that represents prime numbers }
{syntactically correct C-programs}

A language can be describe in different ways:

• An enumeration of the strings in the lan-
guage.

• A set of rules defining the language.

• An algorithm which recognize the strings
in the language.
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To every decision problem there is a corre-
sponding language:
The language of all yes-instances.

We say that the algorithm A decides L if

A(x) = Yes if x ∈ L,

A(x) = No if x "∈ L.

A runs in polynomial time if A(x) runs in time
O(|x|k) for all x and some integer k.

P = {L : ∃A that decides L i polynomial time}
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A formal definition of NP

A verifies the instance x of the problem L if
there is a certificate y such that |y| ∈ O(|x|s)
and

A(x, y) = Yes ⇔ x ∈ L

This means that A decides the language
L = {x ∈ {0,1}∗ : ∃y ∈ {0,1}∗ : A(x, y) = Ja}

NP = {L : ∃A that verifies L in polynomial time}

P ⊆ since all problem that can be decided in
polynomial time also can be verified in poly-
nomial time.
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THE BIG QUESTION 

It follows from the definition that   P    NP. 

IS  N    NP? 

Since 1971 this is the most famous open problem in computer science. 

Most people believe that the answer is no.  Then there must be 
problems in NP - P.  SAT would be a plausible candidate. 

Are there any NP-Complete problems? Well, there are: 
 
Cook's Theorem:  SAT is NP-Complete 

It seems as if hard NP-Problems can be reduced to each other.  This 
observation leads us to the following definition. 
 
NP-Completeness: A problem Q is NP-Complete if 
 
1.  Q is in NP. 
2. For each A in NP, there is a reduction from A to Q, i.e. all NP 
problems can be reduced to Q. 
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Other NP-Complete problems 

We know that  SAT       INDEPENDENT SET.  We also know that for each A in NP we 
have  A      SAT.  But this means that for all  A in NP we have  A     INDEPENDENT 
SET 

So INDEPENDENT SET is an NP-Complete problem. 

We realize that the NP-Complete problems must be the hardest 
problems in NP. If any NP-Complete problem can be solved efficiently 
then all can! 

So we wouldn't expect to be able to find efficient solutions to NP-Complete 
problems. 

The best way to "show" that a problem is impossible to solve 
efficiently is to show that it is NP-Complete. 

This is the core of applied Complexity Theory. 

But how do we show that a problem is NP-Complete? 

It is ease to see that reductions are transitive, i.e. 
 
A      B   and    B       C            A      C 

≤ ≤
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