
Johan Karlander, KTH, CSC

Teoritenta i Algoritmer (datastrukturer) och komplexitet
för KTH DD1352–2352 2014-06-05, klockan 9.00–12.00

No aids are allowed. 12 points are required for grade E, 15 points for grade D and 18 points
for grade C.

If you have done the labs you can get up to 4 bonus points. If you have got bonus points,
please indicate it in your solutions.

In all solutions you can assume that P 6= NP .

1. (8 p)

Are these statements true or false? For each sub-task a correct answer gives 1 point and
an answer with convincing justification gives 2 points.

a. The problem of deciding if a graph is connected is an NP-Complete problem.

FALSE. The problem of deciding if a graph is connected is in P and we assume
that P 6= NP .

b. If a Divide and Conquer-algorithm has a time complexity T (n) given by the recur-
sion formula

T (n) = 2T (
n

4
) + cn

then T (n) ∈ O(n).

TRUE. We can use the Master Theorem. We have logb a = 1
2 and the third case

gives us T (n) ∈ Θ(f(n)) = Θ(n), and this also means T (n) ∈ O(n).

c. If a problem A can be reduced to a problem B in polynomial time and we know
that B is NP-hard, then we know that A is NP-Complete.

FALSE. For instance, we can take any problem A in P (so A is not NP-Complete)
and reduce to SAT (which is NP-hard).

d. The problem of deciding if a Turing machineM halts on all inputs is an undecidable
problem.

TRUE. It is possible to reduce this problem to the Halting Problem which is known
to be undecidable.

1

2. (3 p)

As you know, Dijkstra’s algorithm is an algorithm for finding shortest paths in weighted
directed graphs. It works for graphs with positive weights, but not always for graphs
with negative weights. Explain how Dijkstra’s algorithm works and then explain why it
can not handle negative weights.

Solution: See lecture notes or the course book for a description of Dijkstra’s algorithm.
A simple example that shows that the algorithm can fail for negative weights is this:
Take V (G) = {1, 2, 3} and E(G) = {(1, 2), (1, 3), (2, 3)}, w(1, 2) = −100, w(1, 3) =
2, w(2, 3) = 101 and s = 1.

3. (3 p)

From the lectures you know that the max Max Flow Algorithm can be used to solve the
matching problem. Now we look at a similar problem:

Let G be a directed graph, and A ⊆ V (G), B ⊆ V (G) two sets of nodes such that
A ∩ B = ∅. We want to find a maximum size set M of edge-disjoint paths from A to
B. This means that all paths in M starts in a node in A and ends in a node in B. No
paths in M have any common edges (but might have common nodes). Explain why this
problem can be seen as a generalization of the matching problem. Show how we can use
the Max Flow Algorithm to find such a set M .

Solution: If we demand that A ∪ B = V (G) we get the matching problem. So our
problem is a generalization. To solve the problem we add to nodes s, t. We add directed
edges from s to all nodes in A and edges from all nodes in B to t. These new edges are
given capacity ∞, all old edges are given capacity 1. We find a max flow in the graph.
The old edges with flow 1 gives us the paths in M .

4. (3 p)

We will here look at a suggested reduction from SUBSET SUM to PARTITIONING. Let
a1, a2, ..., an be positive integers and K a positive integer. We want to know if there is a
subset sum equal to K. We construct an instance of PARTITIONING as a1, a2, ..., an, X.
Decide what X should be. Prove that the reduction is correct.

Solution: Let us assume that a1, a2, ..., an, X can be partitioned. Then a1, a2, ..., an can
be partitioned into two sums S1, S2 such that S1 + S2 =

∑
i ai = A and S1 = S2 + X.

A simple calculation shows that S1 = A+X
2 and S2 = A−X

2 . Now if K ≤ A
2 we set

X = A− 2K, otherwise we set X = 2K −A. In the first case, we find that

There is a subset sum S2 = K ⇔ There is a partitioning S1 = S2 + A− 2K

while in the second case we get

There is a subset sum S1 = K ⇔ There is a partitioning S1 = S2 + 2K −A

2

5. (3 p)

This problem is about TSP (Traveling Salesperson Problem). we have a complete, un-
directed graph G with edge weights dij where dij is the weight (length) of the edge (i, j).
We want to find a shortest Hamiltonian cycle in the graph.

We can actually solve this problem recursively. Let S ⊆ {1, , ..., n} = V (G) such that
1 ∈ S, let i ∈ S and let W (S, i) be the length of the shortest possible path visiting each
node in S exactly once (and no nodes outside S), starting at 1 and ending in i.

We set W ({1}, 1) = 0 and W (S, 1) =∞ for all |S| > 1. Show that for all j 6= 1 we have

W (S, j) = min
i∈S,i6=j

W (S − {j}, i) + dij .

Show how we can use this recursion formula to find an algorithm that solves TSP. What
is the time complexity of your algorithm if n is the input size. (Don’t expect to find an
efficient algorithm.)

Solution: Let us consider an optimal path giving length W (S, j). There must be a
i ∈ S which is the last node before j in the path. The path 1→ i must be inside S−{j}
and it must be optimal, i.e., of length W (S − {j}, i). The total length of the path is
W (S − {j}, i) + dij and i must be chosen so that this expression is minimal. So we get
W (S, j) = min

i∈S,i6=j
W (S − {j}, i) + dij .

We will sketch a solution algorithm. Suppose we have computed W (S, i) for all S and
i. There are O(n2n) such values. The recursion formula shows that this can be done in
time O(n22n).

To find the length of the shortest Hamiltonian cycle we compute min
j

(W (V, j) + dj1).

The total time complexity is O(n22n).

3

