
Algorithms and Complexity
2014

Extra Mästarprov 1: Algorithms

This test is given to students who failed on the ordinary Mästarprov 1. It consists
of four problems. If at least two problems are solved correctly the test gives grade
E. Your solutions should be handed in latest May 26th.

1. Fixpoints in sequences
Given a sorted array of distinct integers A[1, ..., n], we say that a fix point is an
index i such that A[i] = i. Of course, there doesn’t have to be any fix points in
a sequence. Design a divide-and-conquer algorithm that runs in time O(log n)
and decides if there are any fix points in the seqeunce. The algorithm doesn’t
have to find all fix points, just decide if there are any fix points. Prove that the
time complexity is correct.

2.Study planning

A student has a number of subjects to study. She has N days to do it. Let
us number the days 1, 2, ..., N . Every day she has K hours left for her studies.
For each subject i there is an number ti of hours needed to master the subject.
For each subject there is a deadline di such that 1 ≤ di ≤ N . To be precise,
the task should be completed at the end of the day. Is it possible for her to
plan her studies so that no deadline is exceeded? How should the studies be
planned? We are allowed to split the studies on several different days. Find a
greedy algorithm that tells her which subjects to study each day.

3. Reliable connections in a network

You are working in a company which has a set of n computers connected
in a network. Not all computers are connected directly to each other, but for
each pair of computers we know that there is at least one path in the network
that connects them. For each connection between two computers, there is a
probability p that the connection might be corrupted. If we have a path, then
the probability that the path is corrupted is 1−(1−p1)(1−p2)·...·(1−pk) where
p1, p2, ..., pk are the probabilities for corruption of the connections on the path.
Your boss wants to know if, given a small number ε, for each pair of computers
there is a path between them with a chance of corruption smaller than ε.

Your boss wants you develop an algorithm that solves this problem. You start
to think about it and realizes that you perhaps can use a famous algorithm
you know already. But in order to do that you have to simplify the problem
a bit: You want to replace (1 − pi)(1 − pj) with 1 − pi − pj . That means that
we cancel all products pipj . This means that the probability of corruption of
the path will be approximated p1 + p2 + ... + pk. Your boss says it is OK to

use this simplification. Design an effective algorithm that solves the problem,
that is, finds if there for each pair of computers is at least one path with chance

1



of corruption smaller than ε. Estimate and prove the time complexity of your
algorithm. It should be as efficient as possible.

We assume that the information about the network is given by an array f [i, j]
such that

f [i, j] =

{
p if there is a connection with chance p of corruption
∞ otherwise

4. Winning a game
You and an friend play a game which has the following form: At each step the
game consists of two piles of chips. (One of them could be empty). On each chip
there is a positive number. You and your friend take turns and choose one pile
at each turn and take the top chip from the pile. So for instance, if the piles
look like:

2
4 1
1 7
3 2

and it is your turn you can choose between the top chips 2 or 1. If one of the
piles is empty you only have one choice. And if both piles are empty the game
ends. The winner is the player with the largest sum on the chips chosen by the
player. In this simple type of game it is possible to construct an optimal strategy
for each player. By a strategy we mean a rule for how you should chose your
pile in every possible situation. By an optimal strategy we mean a strategy that
works at least as well as any other strategy when your friend play as well as
possible. Design an algorithm that finds such an optimal strategy. We assume
that we know the contents of the piles at the start of the game. The algorithm
should precompute the strategy in time at most O(n2) where n is the number
of chips. Then in every move you should be able to consult your strategy and
find the best move in time O(1).

2


