
Algorithms and Complexity
2014

Mästarprov1: Algorithms

Mästarprov 1 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Friday, February 28th
17.00, to Mladen (personally or his mailbox). Be sure to save a copy of your
solutions. Mästarprov 1 is a mandatory and rated part of the course. The test
consists of four tasks. The test is roughly graded as follows: Two task correctly
solved give an E. Three tasks correctly solved give a C and all tasks correctly
solved give an A. You can read more about the grading criteria and the final
grade on the course web page. The report should be written in English.

In all problems you should give an analysis of the time complexity of your
algorithm and you should be able to argue for its correctness.

1. At the service center

Let us assume that we have a service center where students can come with
there questions. Let us assume that n students arrive and that each student i
has a task which it takes ti minutes to handle. There is just one line so the
students have to wait for their turn. For each student we define the service time
as the sum of the time the student has to wait plus the time for the student’s
task. We define the total service time (TST) as

∑
i si. This is the sum of the

individual times the students spend in the service center.

For instance, if we have 3 students and serve them in order 3, 1, 2, we get s1 =
t3 + t1, s2 = t3 + t1 + t2, s3 = t3. Then we have TST = 2t1 + t2 + 3t3.

It can be shown that if the students are served in random order, the mean value
of TST is n+1

2

∑
i ti. But if we want to minimize TST we can do better than

this. Describe an algorithm in pseudo-code that find the optimal order to serve
the students in, given that we want to minimize TST. Show that your algorithm
is correct and analyze the complexity.

2. Readable subsets

We have a string s = s1, s2, ..., sn of normal letters. Some substrings of
consecutive letters of s might form readable words. We want to find a maximal
(maximum number of words) set of disjoint readable words in the string. The
words don’t have to form a readable sentence.

As an example, the string WHATZZHOWQRUHELP of contains WHAT HOW
HELP as an obviously maximal set.

How do we find such a set of maximal size? Here is an idea using dynamic
programming: If the string has length n we can define M [k] as the size of an
optimal set when we have the substring of the first k letters in the string. How
do we find M [k+1]? Maybe we can test if there is a readable word ending with
letter k + 1. If so, then... Or else ...

1



Use this idea and implement a dynamic programming algorithm (preferably in
pseudo-code) that solves to problem, that is, finds M [n] in polynomial time in
n. We assume that we can use a dictionary function read[w] which decides if w
is a readable word in time O(1). (Read returns TRUE or FALSE.) Analyze the
complexity and explain why your algorithm is correct.

3. A tale of two strings

We have two list (x1, x2, ..., xn) and y1, y2, ..., ym) of real numbers. The list
are sorted in ascending order. We can assume that no pair of numbers from
either lists are equal. So there are n+m numbers. We want to find the median,
that is the number a = xi or yj such that exactly dn+m

2 − 1e numbers from the
lists are smaller than a. We can solve this problem in time O(max(n,m)).(We
can merge the lists and then find the median.) But there is a better way of doing
it. Develop an algorithm that solves this problem in time O(log(max(n,m))).
Show that your algorithm is correct and carefully compute the complexity.

4. Bad railroad

In this problem we have a railroad which we can represent as a real line
with n+ 1 points x0, x1, x2, ..., xn corrsponding to stations s0 = start position,
s1, s2, ..., sn = end postion. We have a passenger train going from s0 to sn. There
are m passengers boarding the train at s0 and they want to go to different
stations along the line. Normally, the train would stop at all n stations, s0
excluded. But on a particular day, for some reasons the train can just stop at
k < n stations between s0 and sn. The staff on the train must decide at which
stations the stops should be, guided by the demands of the passengers. They
collect information on the form g1, g2, ..., gm where gi is the index of the station
passenger i wants to go to. The staff should find a set h0, h1, h2, ..., hk of indices
of the stations the train will stop at and 0 = h0 < h1 < h2 < ... < hk < n. We
can see that passengers with gj = n don’t cause any problems. The staff now
employs the policy that if for any passenger, say j, the train doesn’t stop at gj ,
the passenger is asked to get of the train at the largest hi such that hi < gj .
(This includes the possibility that the passenger ”get off” the train at h0, i.e.,
doesn’t border the train at all.)

Of course, this will make some passengers very angry. How angry? The mathe-
matically inclined driver of the train makes the following estimate. The anger
anger(j) of passenger j will be 0 if the train stops at station number gj .
Otherwise, if the passenger is forced to get of at hi we have the estimate
anger(j) = A+B

√
xgj − xhi

, where A and B are some positive constants.

The staff wants to find h0, h1, h2, ..., hk such that
∑

j anger(j) is minimal. Find
an algorithm that solves this problem. The algorithm must be polynomial in
n,m, k.

2


