Algorithms and Complexity
2014
Maistarprov2: Complexity

Maéstarprov 2 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Tuesday, May 6th 17.00,
to Johan (personally or in mailbox). Be sure to save a copy of your solutions.
Maéstarprov 2 is a mandatory and rated part of the course. The test consists
of four tasks. The test is roughly graded as follows: Two task correctly solved
give an E. Three tasks correctly solved give a C and all tasks correctly solved
give an A. You can read more about the grading criteria and the final grade on
the course web page. The report should be written in English. After you have
submitted your work you should sign up for an oral exam.

When you solve the problems you can use the fact that some problems are
known to be NP-Complete. These are the NP-Complete problems mentioned in
the textbook and in the lecture notes. You can also use the assumption P # NP
(which, of course, could turn out to be false).

1. A variant of subset sum

The normal subset sum problem can be stated in this form: Given a set
ai,as, ..., a, of positive integers and an integer M, is it possible to find a set
e1, €2, ..., e, where ¢; € {0,1} such that " | e;a; = M?

Now we change the problem so that instead of e; € {0,1} we demand that
e; € {0,2}. We can call this problem DOUBLE SUBSET SUM.

Show how we can reduce SUBSET SUM to DOUBLE SUBSET SUM.
Then show how to reduce DOUBLE SUBSET SUM to SUBSET SUM.
Which one of the reductions show that DOUBLE SUBSET SUM is NP-Hard?

2. Partitioning of a network

Let us assume that we have a network consisting of persons and that we
have a relation friend where friend(Jonas,Anna) = 1 tells us that Jonas and
Anna are friends and friend(Anna,Linda) = 0 tells us that Anna and Linda
are not friends. The relation is assumed to be symmetric and reflexive but not
necessarily transitive. If P is the set of all persons in the network and A C P,
we then say that the set A has friendship density FD(A) = k if the probability
that two different persons chosen randomly from A are friends is k.

Another way of stating it is that #[pairs Oé‘fji‘ends indl _
2

Let us then assume that we are interested in finding sets A with a high value for
FD. We can call them high density sets. More precisely, we can take a number
L and try to find large sets with FD greater than L. We can define this as an
optimization problem:

Input: A network in the form of a graph G with V(G) = P and with edges
E(G) representing friendships and a real number L such that 0 < L < 1.

Goal: Find the largest size of an A C P such that FD(A) > L.

Formulate the corresponding decision problem. Show that this problem is in
NP and then show that this problem is NP-Complete by reducing the problem
CLIQUE to our problem.

3. Finding service providers

Let us say that we run a company that, in some general sense, processes
information. Some of these processes are too difficult for us to handle and we
want to find some other resources that can handle them for us. Let us say that
the processes are named Pry, Pro,..., Pr,. When we run the processes there
are amounts of information that need to be handled for each process and we
assume that these different amounts are known. Let us call them Ly, Lo, ..., L.
(We don’t have to care about what units we use.) These numbers can be seen
as weights of the processes.

Now we have W service providers which we call SPy, SPs, ..., SPy. They can
all handle the processes but they have different ways of setting the prices for
the services they provide. The prices are set in the following way:

Let us look at SP; and let us assume that we want the provider to handle
the processes Pr;,, Pri,, ..., Pr;;. The price of this will consist of two parts, the
first being a fiz price fi, ; + fi,; + ... + fi,; (SEK). The second part is based
on the weights. Set S; = Zj:il Ly. The provider has lists Ry j, Rz j, ..., R, 5,
91,55 92,55 5 M; 5 where 0 < lej < joj < ... < RMJ.J and 0 < g1, < 92,5 <

< gum, - U Ry1y; < S5 < Ry, the load dependent price is gp,. At the
endpoints of the range we have 0 < S; < R, ; giving price g1, S; = 0 giving
price 0 and Ry, ; < S; giving infinite price (impossible to perform).

Soif R,—1; < S; < Ry ; we get the total price f;, j + fi,j + -+ fi, j + 9p,j-
We call this cost ;. We now try to decide from which providers we should
order which services. Each service should be ordered from exactly one service
provider. This means that the set of the n processes should be split on the W
providers. The total cost is then C' = ZJVL C;. We want to minimize this C.
We formulate this as a decision problem:

Input:An integer n. A list Ly, Lo, ..., L, of real numbers. An integer W. A
list My, Ma, ..., My of integers. Sets of lists of real numbers f; ; where i =
L,2,...,n j = 1,2,..,W. Sets of list of real numbers ¢ j, 92 j,..., 90, ; and
Ry j, Raj,..., Rur; j where j =1,2,...,W. A real number T

Goal: Is it possible to assign each process i to a unique service provider j such
that the total cost C' computed as described earlier is < T'7

Show that this problem is NP-complete.

(Hint: Even if the problem seems complicated with all indices, it is possible to
find a reduction that simplifies everything.)

4. Paths in a network

In this problem we have a set M of web-pages with links between the pages.
We can represent the set and the links with a directed graph G where the
directed edges indicate (directed) links. By a path in G we mean a sequence
Py, Py, ..., P, of nodes such that (P, P2) € E(G),(Ps, P3) € E(G),... and P; #
P; if i # j. (Which of course is the normal definition of a path).

For some reason, we are interested in finding long paths in G. We can not
expect this problem to be efficiently solvable. Let us nevertheless assume that
we have an algorithm F(G, K) that tells us if G contains a path of length K
(F = TRUE) or not (F = FALSE). The length is defined as the number of
nodes in the path, so we require that K shall be a positive integer. We assume
that the running time of F is T'(|V(G)|, |E(G)|). This algorithm doesn’t give us
the actual paths.

Construct an algorithm F;(G), such that it gives us a path of longest possible
length in G. The algorithm must use F' and it must have a worst case time-
complexity O(P(|V(G)|+|E(G))T(|V(G)|,|E(G)])) where P(z) is a polynomial

in z.

