
Algorithms and Complexity
Hösten 2010

Mästarprov 2: Complexity

Mästarprov 2 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Friday, December 3rd
17.00, in my postbox or in the student reception in Osquars backe 2 plane 2.
Be sure to save a copy of your solutions. Mästarprov 2 is a mandatory and rated
part of the course. The test consists of four tasks. The test is roughly graded as
follows: Two task correctly solved give an E. Three tasks correctly solved give a
C and all tasks correctly solved give an A. You can read more about the grading
criteria and the final grade on the course web page.

1. A Variant of SUBSET SUM
If you take an NP-Complete problem and slightly modify it, it might happen
that the problem can be solved in polynomial time. For instance, if we take the
problem INDEPENDENT SET and specialize it by asking if there is an inde-
pendent set of size 3, the problem can be solved in polynomial time.
We know that the problem SUBSET SUM, i.e., given positive integers
a1, a2, ..., an,M , decide if there is a subset sum equal to M is NP-Complete.
Now let’s look at a variant of the problem:

Input: Positive integers a1, a2, ..., an. A positive integer M . An integer d such
that 1 ≤ d ≤M .
Goal: Is there a subset of a1, a2, ..., an with sum in the range [M − d, M ].

We now might ask if this problem, we can call it INTERVAL SUBSET SUM,
can be solved in polynomial time. But we can prove that it is NP-Complete by
reducing the ordinary SUBSET SUM problem to INTERVAL SUBSET SUM.
Your task is to show how such a reduction can be done. We give some hints:
Assume that we have an instance a1, a2, ..., an,M of SUBSET SUM. We make
a special instance a′

1, a
′
2, ..., a

′
n,M ′, d of INTERVAL SUBSET SUM.

How should a′
1, a

′
2, ..., a

′
n,M ′, d be chosen so that the instance of SUBSET SUM

has a solution ⇔ the instance of INTERVAL SUBSET SUM has a solution?

2. Another game We have a one person game that is played on an m × n
board. On each of its mn positions lies either a blue chip, a red chip or nothing
at all. You play by removing chips from the board. You win if you can remove
chips so that each column contains only chips of a single color and each row
contains at least one chip. Winning may or may not be possible, depending
upon the initial configuration. We can now state the following problem: Given
an initial configuration on an m × n board, decide if we can reach a winning
position or not. Decide if there is an efficient algorithm that solves the problem.

Either construct such an algorithm or show that the problem i NP-hard by
reducing some known NP-Complete problem (for instance one in the text book)
to the problem.

1

Page 1



3. Experimental Cooking
We want to try some experimental cooking. We have a list of n possible in-
gredients and we want to mix them. But they cannot be mixed in any crazy
way, some don’t go well with others. We write down an n× n matrix D called
the discord matrix. The element Dij is a real number between 0 and 1 where
1 means ”i and j don’t go together at all” and 0 means ”i and j go together
perfectly”. When we now try to experiment we want to choose as many ingre-
dients as possible, but at the same time have as little total discord as possible.
We define total discord as the sum all discords between the chosen ingredients.
We define the following problem:

EXPERIMENTAL COOKING
Input: An n× n matrix D with real numbers between 0 and 1. An integer k. A
real number t.
Goal: Is there a subset S of {1, , ..., n} of size k such that if dsum is the sum of
all Dij such that i < j, i ∈ S, j ∈ S then dsum ≤ t?

So for instance, if

D =





0.0 0.4 0.2 0.9 1.0
0.4 0.0 0.1 1.0 0.2
0.2 0.1 0.0 0.8 0.5
0.9 1.0 0.8 0.0 0.2
1.0 0.2 0.5 0.2 0.0





and S = {1, 3, 5} then dsum = 0.2 + 1.0 + 0.5 = 1.7. Show that this problem is

NP-Complete. (It is possible to use at least one of the NP-Complete problems
mentioned in the course.)

4. Finding Spanning Trees
You work at a company with a lot of computers arranged in a network. Some of
the computers are connected and some are not. That means that the computers
and their connections form a graph. Your boss wants you to mark certain edges
as particularly important. The edges should form a spanning tree T in the graph
and the set of leaves in T should be a given set L. (A leaf in a tree is a node of
degree one.) Your boss asks you to design an algorithm that, given a graph G
and a set L of nodes in G, finds a spanning tree in G with its set of leaves equal
to L.You tell him that this problem, actually is NP-Complete so you cannot
find an efficient algorithm doing it. Some days later your boss has bought an
algorithm TF (G, L) which solves the problem from the company TreeFinders
inc. The algorithm is rather slow. It seems to have time complexity T (n) where
n is the number of nodes in the graph. There is a problem with the algorithm:
It is a decision algorithm which output yes or no telling us if there is a spanning
tree or not. You want to find the actual spanning tree (if there is one). Your
assignment is to write an algorithm which finds a spanning tree with leaves in
L if there is one. It should call the algorithm TF (G, L) a polynomial number
of times. More exactly, your algorithm should have time complexity O(nkT (n))
for some integer k.

2

Page 2



Page 3



Page 4


