
Algorithms and Complexity

Exercise session 1

Algorithm analysis

Order Compare the asymptotic order of growth of the following pairs of functions. In each case
tell if f(n) ∈ Θ(g(n)), f(n) ∈ O(g(n)) or f(n) ∈ Ω(g(n)).

f(n) g(n)

a) 100n + log n n + (log n)2

b) log n log n2

c) n2

logn n(log n)2

d) (log n)logn n
logn

e)
√
n (log n)5

f) n2n 3n

g) 2
√

logn √
n

Solution to Order

a) Compute the limit for the ratio of functions.

lim
n→∞

f(n)

g(n)
= lim

n→∞

100n + log n

n + (log n)2
= lim

n→∞

100 + (log n)/n

1 + (log n)2/n
= 100.

Since the result is a constant we conclude that f(n) ∈ Θ(g(n)).

b) It is enough to note that log n2 = 2 log n, hence log n ∈ Θ(log n2).

c)

g(n)

f(n)
=

n(log n)2

n2/ log n
=

(log n)3

n
→ 0 for n→∞.

Therefore, g(n) ∈ O(f(n)) and f(n) ∈ Ω(g(n)).

d) Substitute m = log n and compare f2(m) = mm with g2(m) = 2m/m:

g2(m)

f2(m)
=

2m

m ·mm
=

1

m

(
2

m

)m

→ 0

for n→∞. Therefore f(n) ∈ Ω(g(n)) for g(n) ∈ O(f(n)).

e) Polynomial functions grow faster than poly-logarithmic functions. Therefore f(n) ∈ Ω(g(n))
and g(n) ∈ O(f(n)).

1

Formally, we can prove the following lemma which says that for all constants c > 0, a > 1
and for all monotonically increasing functions h(n) it holds (h(n))c ∈ O(ah(n)). If we set

h(n) = log n, c = 5 and a =
√

2 we have (log n)5 ∈ O(
√

2
logn

) = O(
√
n) as

(
21/2

)logn
=(

2logn
)1/2

= n1/2.

f) f(n)
g(n) = n2n

3n = n
(
2
3

)n
. Exponential functions, as (2/3)n, grow faster than polynomial func-

tions (as n). This can be proved by using Hôpital's rule. First we rewrite the expression as:
n
(
2
3

)n
= n/

(
3
2

)n
. Let the numerator and the denominator be, respectively, r(n) = n and

s(n) =
(
3
2

)n
. Then, compute the �rst derivative

r′(n) = 1, s′(n) =

(
3

2

)n

ln

(
3

2

)
=

ln(3/2)(
2
3

)n
We can use Hôpital's rule because r(n)→∞, s(n)→∞ and s′(n) 6= 0.

lim
n→∞

f(n)

g(n)
= lim

n→∞

r(n)

s(n)
= lim

n→∞

r′(n)

s′(n)
=

(
2
3

)n
ln
(
3
2

) → 0

so we conclude that f(n) ∈ O(g(n)).

g)
√
n ∈ Ω(2

√
logn). It it worth noting that

√
n = 2

1
2 logn and limn→∞ 2

√
logn− 1

2 logn = 0.

2

Division Analyze the schoolbook algorithm for division (stair division). Assume that each bit
operation takes unit cost.

Solution to Division

This is the textbook method when 721 is divided by 64:

The algorithm starts by checking how many times 64 goes in 7, which is the most signi�cant digit
of the 721. Since 64 > 7 it goes 0 times. We have 0 × 64 = 0, so we subtract 0 from 7. Now we
multiply 7 by 10 (the base), move down the next digit of 721, namely 2, and divide 72 by 64 to
get the next number in the quotient. We continue in this way, subtract the number of times 64
goes into each two-digit number, move down the next digit, and �nish when all of the integer ratio
is calculated. The number 17 at the bottom of the division is the reminder.

We can formulate this procedure in the following algorithm which computes q = b/a where a, b
are n-bit numbers (a = an−1an−2 · · · a0, b = bn−1bn−2 · · · b0) in base B. Let x� y be x shifted y
steps left.

2

In order to make it easier to prove the algorithm correctness we make use of pre conditions,
post conditions and invariants.

Div(a, b, n) =
PRE= a > 0, b ≥ 0, a and b represented by n bits each.
POST= qa + r = b, 0 ≤ r < a
r ← 0
for i← n− 1 to 0 do

INV= (qn−1...qi+1) · a + r = (bn−1...bi+1), 0 ≤ r < a
r ← (r � 1) + bi /∗ Move next digit down ∗/
q′ ← 0
a′ ← 0
while a′ + a ≤ r do /∗ Find max q′ s.t. q′a ≤ r ∗/

INV= r − a < a′ = q′a ≤ r
a′ ← a′ + a
q′ ← q′ + 1

qi ← q′

r ← r − a′

return 〈q, r〉 /∗ Quotient and remainder ∗/

Let us compute now the time complexity of the algorithm. The for-loop runs for n iterations.
Each time it performs a constant number of assignments, comparisons, additions and subtractions.
Moreover, the while loop goes up to B iterations (since B is the base and B × a ≥ r). Since the
base can be considered a constant, we compute a constant number of operations, in each iteration
of the for-loop. And since all arithmetic operations are done with n-bit numbers, any comparison,
addition and subtraction will take time O(n). In total, we have n · c ·O(n) = O(n2).

2

Euclid's algorithm Analyze Euclid's algorithm that �nds the greatest common divisor between
two integers. Do the analysis in terms of bit cost and unit cost. Below we present the
algorithm and assume that a ≥ b.

gcd(a, b)=
if b|a then

gcd← b
else

gcd← gcd(b, a mod b)

Solution to Euclid's algorithm

Since the algorithm is recursive, it is not clear if it always terminates, so we start to prove it.
In order to prove termination, we usually use a potential variable that has a lower bound (eg zero)
and decreases by one at each recursive call. In this algorithm we can use a as a potential variable.
Since a is always at least as large as b, the algorithm terminates as soon as a = b or b = 1. Thus
we have a lower bound on a and we can see that it decreases in each call. The number of calls
depends obviously on the input size, so let's calculate how the main parameter, a, decreases. Let
ai be the value of a in the i− th step of the algorithm. We prove the following lemma:

Lemma 1 ai+2 ≤ ai/2.

3

Bevis. We know that ai+2 = bi+1 and bi+1 = ai mod bi, so ai+2 = ai mod bi. Now assume that
ai+2 > ai/2. This means that bi ≥ ai/2, which gives a contradiction, as ai = ai+2 + cbi >
ai/2 + ai/2 = ai. 2

Using the above lemma we can prove that

dlog ai+2e ≤
⌈
log

ai
2

⌉
= dlog ai − log 2e = dlog aie − 1.

This means that in each recursive call, the input size decreases (at least) a bit. Therefore, the
total number of calls will be at most 2dlog ae. In each recursive call we made only modulo and
the unit cost operations, which take constant time. Thus, we conclude that the time complexity
is 2dlog ae = 2n ∈ O(n). If we analyze the algorithm with respect to bit cost, we must be more
accurate. A division between two n-bit integers takes (as we have seen) O(n2), and so does the
modulo operation. In conclusion, if we make O(n) calls and each call takes O(n2) bit operations,
then the total time complexity is O(n3).

2

Exponentiation with repeated squaring The following algorithm computes a power of 2 with
the exponent which is itself a power of 2. Analyze the algorithm in terms of unit cost and
bit cost.

Input: m = 2n

Output: 2m

power(m) =
pow ← 2
for i← 1 to logm do

pow ← pow · pow
return pow

Solution to Exponentiation with repeated squaring

Note that the for-loop takes logm = n iterations. Since each operation takes a unit time, the time
complexity is O(n).

If we use the bit cost, we must examine the cost of each multiplication inside the loop. We
assume that the cost for multiplying two l-bit integers is O(l2) (in practice, there are faster ways).

In each iteration i , let the variable pow = powi be 22
i

so each multiplication requires
O((log powi)

2) = O((log 22
i

)2) = O(22i). Adding up all iterations, we have

logm∑
i=1

c22i = c

logm∑
i=1

4i = 4c

logm−1∑
i=0

4i = 4c
4logm − 1

4− 1
∈ O(4logm) = O(4n).

The algorithm has a linear time complexity in terms of unit cost, but exponential in terms of
bit cost. 2

Incidence matrix product In the lecture we showed how to represent a directed graph G =
〈V,E〉 by an incidence matrix of size |V | × |E|. The element at position (i, j) is set to 1 i�
vi ∈ ej , namely, the vertex vi is covered by the edge ej . Show what does the elements of
matrix BBT represent (BT is the transposed matrix of B).

4

Solution to Incidence matrix product

Note that diagonal elements (i, i) indicate the number of edges having endpoints in node i. The
elements at position (i, j) denote the number of edges between nodes i and j. 2

Bipartite graphs Describe and analyze an algorithm that determines whether a given graph is
bipartite. The time complexity will be linear in the number of nodes and edges of the graph.
A graph G = (N,E) is bipartite i� the nodes can be divided into two disjoint sets U and V
such that every edge connects a vertex in U to one in V .

Solution to Bipartite graphs

Perform a DFS visit in the graph and color each node by alternating red and green. If you �nd an
edge between two nodes with the same color, the graph is not bipartite. 2

5

