
     
Dijkstra's algorithm and shortest paths in graphs    

SHORTEST PATH     

Input: A directed graph with edge weights. A start node s 
Goal: The distances and shortest paths from s to all other nodes.    

(Distance = minimal sum of weights on directed paths from s to the node.)    

Two important cases: 
 
1. All weights are  > 0. 
 
2.  We allow negative weights. 
 

Two other cases: 
 
1. Directed graphs. 
 
2. Undirected graphs. 
 
We will focus on the first case.    



        Special case:  If all weights are = 1 we can use the BFS algorithm. But if we have 
weights not equal to 1 it's easy to find cases when BFSs doesn't work.       

Def: If u ∈ V then d(u) = lenght of shortest path s →u in G.  (By lenght we mean the 
sum of the weights along the path.)        

Idea: We compute the distances from s to all other nodes in a certain order. Let S be a 
set such that at each step in the algorithm the distance from s to the nodes in S are 
computed correctly. Then we expand this set with one node at each step.       

We start with S = {s} and d(s) = 0. All neighbors to s are given temporary distance 
d(v) = w(s,v). We give all other nodes a temporary distance d(v) = ∞.       

At each step we consider the neighbors to S, i.e. nodes v ∉ S such that there is a 
node u  S and edge (u,v) ∈ E.       

We chose the imediate neighbor with minimal temporary distance and put it into S. 
The temporary distance will be now be a permanent (real) distance.   
       

For each neighbor q ∉ S to v we see if d(q) > d(v) + w(v,q). If this is the case we 
set d(q) = d(v) + w(v,q) as new temporary distance.       

When S = V the algorithm ends and all distances are computed.     

Dijkstra's algorithm       
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Pseudo code:      

Set S = {s}, d(s) = 0 
For all neighbors u to s, set d(u) = w(s,u) 
For all other nodes, set d(u) = ∞ 
While S ≠ V 
 Chose v ∈ S with d(v) minimal 
 Set S = S ∪ {v} 
 For all neighbors q to v such that q ∈ S 
  If d(q) > d(v) + w(v,q) 
   Set d(q) = d(v) + w(q,v) 
  End if 
 End for 
End while       

Complexity: It depends on what method you use to find the v with d(v) minimal. Without 
a clever method this will take O( | V | ) steps. Since we have to do this O( | V | ) times 
we get a complexity  O( | V |² ). The step " For all neighbors q to v ..." will take O( | E | ) 
steps if we use adjacency lists. For dense graphs this is O( | V |² ). In any case,  
O( | V |² ) is an upper bound on the complexity.      
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I : For all nodes u in S, the values d(u) tell the correct distances from s to u in G. For 
all nodes v not in S the values d(v) tell the length of the shortest path from s to v only 
using nodes in S (except v). ( And  d(v) = ∞ tells  that there are no such paths.)    

I is obviously true when the loop starts and it can be shown that I is always true. 
The loop ends after | V | - 1 steps. Then all distances are computed.    

Comment: The algorithm is stated for directed graphs. It actually works 
equally well (without modifications) for undirected graphs.    

Outside S, v must be 
closest to s  

When v is added to S, we 
update the distance to v'.  

d(v') > d(v)  

Correctness:  We will sketch an argument for the correctness.  
At the center of the algorithm we have to loop "While S  ≠ V ..."  
We can define an invariant I for this loop.     
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     Negative weights    

Dijkstra's algorithm does not work for graphs with negative weights. 
    

There are other algorithms that sometimes work for negative weights.  The 
crucial question is if a graph contain negative cycles or not.    

Negative cycle: 2 + 3 - 6 = - 1  

If a graph does not contain any negative cycles there are algorithms for finding 
shortest paths. Examples are Bellman - Ford's algorithm and Warshall's 
algorithm. They both work i time O( | V |³ ).    

Obs:  When we talk about paths we mean a sequence of nodes connected by edges 
such that no node occur more than one time.     

Page 5: Negativa kanterPage 5



Bellman-

Ford(G = hV,Ei,s 2 V , w : E !)

(1) foreach u 2 V

(2) d[u] 1
(3) d[s] 0
(4) for i = 1 to |V |� 1
(5) foreach (u, v) 2 E

(6) if d[v] > d[u] + w(u, v)
(7) d[v] d[u] + w(u, v)
(8) p[v] u

(9) foreach (u, v) 2 E

(10) if d[v] > d[u] + w(u, v)
(11) return Negative Cycle!

(12) return d, p

This is Bellman -  Ford's algorithm:

The time complexity is O( |V| |E|), which makes it slower than Dijkstra's 
algorithm. The advantages are that the algoritm can handle negative weights 
and detect negative cycles if there are any.
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All this goes for directed graphs. If you have an undirected graph with negative 
weights but no negative cycles there are algorithms for finding shortest paths but 
they are surprisingly complicated.

There is no efficient algorithm for finding shortest paths in graphs with negative 
cycles. In fact, it can be shown that the problem is NP-complete. (More about 
this later.)    
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We will study the so called flow-problem. We start with a directed graph with 
two special nodes  s (source) and t (sink) given.  We assume that there is at 
least one directed path from s to t.                   

On each edge e we have a capacity c(e). It is a number     0                  

Value of flow:   We set val(f)  =                 f(e)                  

It's obvious that this is equal to               f(e)                  

Some more notation:  If  e = (u,v) we write  f(e) = f(u,v)                  

If  X     V   and  Y     V  we set  f(X,Y) =                                      f(x,y)                  

Flow problems                

Flow:    A flow is given by a number f(e) for each edge. The numbers must 
satisfy two conditions. 
 
1.    0    f(e)     c(e)      for all e. 
                  Let  In(v) be the set of all edges going in to v and Out(v) be the set of 
all edges going out from v.                   

2.               f(e)   =              f(e)    for all v    except s and t  
In(v)

In(t)

Out(v)

Out(s)



                Cut:   A cut is a partition of V into two disjoint parts  X, Y  such 
that  s     X   and   t     Y.               

It is not hard to prove that if (X,Y) is a cut, then  val(f)  =  f(X,Y) - f(Y, X)               

Two questions: 
 
1. What is the maximal possible value for a flow in G? 
 
2. How do we find a maximum flow?            

The capacity of a cut            

Def:  Given a cut  (X,Y) we define   C(X,Y) =                        c(x,y)            

We see that for any cut  (X,Y)  we have  val(f)          C(X,Y)            

This is because   val(f) = f(X,Y) - f(Y,X)      f(X,Y)  
and, since f(e)      c(e), we have  f(X,Y)     c(X,Y)            

Let  MC be the minimal capacity for cuts in G.  Then we get   val(f)       MC. 
 
The famous Max flow- min cut theorem says that if f * is a maximum flow we 
actually  have  val(f *)= MC. 
 
We will soon prove this theorem.            



          Ford - Fulkerson's algorithm         

We start with  f(e) = 0 for all edges and build up a flow in several steps.   
We look for so called augmenting paths.          

Unsaturated forward edge:         

Unsaturated backward edge:         

An augmented path is a path consisting of unsaturated edges (forward and/or 
backward) going from s to t.          

If we can find an augmenting path we can increase the flow. How much?          

For each edge e in an augmenting path P we define a number (e). If e is a forward edge 
(in the path) we set (e) = c(e) - f(e). If e is a backward edge we set (e) = f(e).  Then we 
let δ be the minimum value of (e) for all edges in P.         

We now increase the theflow by setting  f'(e) = f(e) + δ for all forward edges and 
f'(e) = f(e) - δ for all backward edges.          



         We will now try to show the following: 
We have reached a maximum flow if and only if there are no augmenting paths 
left in G.        

It's obvious that if we have reached a maximum flow there can be no augmenting 
paths left.  The other direction is the difficult one.        

We assume that there are no augmenting paths left. We will construct a special 
typeof cut: Starting at s we try to build paths using unsatureted edges. Let  X'  
be set of all nodes that can be reached from s by such paths. Let Y' be V - X. 
Then we have s  X' and t  Y.  So (X',Y') is a cut.        

For this cut, and this flow, we have val(f) = C(X',Y') !        

Why? Let (x,y) be a directed edge going from X' to Y'. Since x but not y can be 
reached by unsaturated edges we must have f(x,y) = c(x,y). If (y,x) is a directed 
edge going from Y' to X' we must have f(y,x) = 0. This means that val(f) = f(X',Y') 
- f(Y',X') = f(X',Y) = C(X',Y').        

We know that if f * is a maximum flow and MC is the size of a minimum 
cut then val(f) ≤ val(f *)  and MC ≤ C(X',Y').  But since val(f) = C(X',Y') we 
get  val(f) = val(f *) = MC = C(X',Y').        

This gives us  
 
1. We see that f is amaximum flow and the Ford-Fulkerson algorithm works. 
 
2. We have proved the Max flow - Min cut theorem.       



            Implementing the Ford - Fulkerson algorithm           

When we implement the algorithm we use a so called Residual Graph. Let us assume that 
we are given a directed graph G with capacities on the edges.        

We want to find augmenting paths in G.  It can be shown that it's better not just 
to look for any augmenting paths. Instead we should use BFS and look for 
shortest augmenting paths. This variant of Ford - Fulkerson's algorithm is 
called Edmond - Karp's algorithm.        

We want to use BFS in standard form. The problem is that BFS looks for "forward" 
paths. To get around this problem we use so called residual graphs.       

Let G be a directed graph and a flow f (not necessarily maximal).  Given G 
and f we construct a new graph with some new edges and capacities:       

For each edge                                                                   we define a new capacity  
c'(e) = c(e)-f(e) and we define a new edge and capacity:       

Then all edges with f(e) = c(e) are removed. This gives us the residual graph  Gf       



        We then use the following algorithm:        

Ford Fulkerson's algorithm in pseudocode 
      

c[u,v] is the capacity from u to v, f[u,v] is the flow, cf[u,v] is the residual 
capacity. 
 
foreach edge (u,v) in the graph do  
            f[u,v]:=0; f[v,u]:=0  
            cf[u,v]:=c[u,v]; cf[v,u]:=c[v,u]  
while there is a path p from s to t in the residual flow graph do  
            r:=min(cf[u,v]: (u,v) is in p)  
           foreach edge (u,v) in p do  
           f[u,v]:=f[u,v]+r; f[v,u]:= -f[u,v]  
           cf[u,v]:=c[u,v] - f[u,v]; cf[v,u]:=c[v,u] - f[v,u] 
      



         We can use the flow algorithm to solve another  problem: The matching problem for 
bipartite graphs.        

BIPARTITE MATCHING  
 
Input: A bipartite graph  ( X     Y,  E). 
Goal:  A matching of maximal size.        

Start with:        

Then we add some nodes and 
edges and directions:        

Give all edges capacity 1 and run the flow algorithm. When the algorithm ends 
the edges from the original graph that are saturated ( i.e. f(e) = 1) gives us a 
maximal matching.        


