

Dijkstra's algorithm and shortest paths in graphs

SHORTEST PATH

Input: A directed graph with edge weights. A start node s
Goal: The distances and shortest paths from s to all other nodes.

(Distance = minimal sum of weights on directed paths from s to the node.)

Two important cases:

1. All weights are > 0.

2. We allow negative weights.

Two other cases:

1. Directed graphs.

2. Undirected graphs.

We will focus on the first case.

 Special case: If all weights are = 1 we can use the BFS algorithm. But if we have
weights not equal to 1 it's easy to find cases when BFSs doesn't work.

Def: If u ∈ V then d(u) = lenght of shortest path s →u in G. (By lenght we mean the
sum of the weights along the path.)

Idea: We compute the distances from s to all other nodes in a certain order. Let S be a
set such that at each step in the algorithm the distance from s to the nodes in S are
computed correctly. Then we expand this set with one node at each step.

We start with S = {s} and d(s) = 0. All neighbors to s are given temporary distance
d(v) = w(s,v). We give all other nodes a temporary distance d(v) = ∞.

At each step we consider the neighbors to S, i.e. nodes v ∉ S such that there is a
node u S and edge (u,v) ∈ E.

We chose the imediate neighbor with minimal temporary distance and put it into S.
The temporary distance will be now be a permanent (real) distance.

For each neighbor q ∉ S to v we see if d(q) > d(v) + w(v,q). If this is the case we
set d(q) = d(v) + w(v,q) as new temporary distance.

When S = V the algorithm ends and all distances are computed.

Dijkstra's algorithm

Page 2: Dijkstra 1Page 2

Pseudo code:

Set S = {s}, d(s) = 0
For all neighbors u to s, set d(u) = w(s,u)
For all other nodes, set d(u) = ∞
While S ≠ V
 Chose v ∈ S with d(v) minimal
 Set S = S ∪ {v}
 For all neighbors q to v such that q ∈ S
 If d(q) > d(v) + w(v,q)
 Set d(q) = d(v) + w(q,v)
 End if
 End for
End while

Complexity: It depends on what method you use to find the v with d(v) minimal. Without
a clever method this will take O(| V |) steps. Since we have to do this O(| V |) times
we get a complexity O(| V |²). The step " For all neighbors q to v ..." will take O(| E |)
steps if we use adjacency lists. For dense graphs this is O(| V |²). In any case,
O(| V |²) is an upper bound on the complexity.

Page 3: Dijkstra 2

/

/

Page 3

I : For all nodes u in S, the values d(u) tell the correct distances from s to u in G. For
all nodes v not in S the values d(v) tell the length of the shortest path from s to v only
using nodes in S (except v). (And d(v) = ∞ tells that there are no such paths.)

I is obviously true when the loop starts and it can be shown that I is always true.
The loop ends after | V | - 1 steps. Then all distances are computed.

Comment: The algorithm is stated for directed graphs. It actually works
equally well (without modifications) for undirected graphs.

Outside S, v must be
closest to s

When v is added to S, we
update the distance to v'.

d(v') > d(v)

Correctness: We will sketch an argument for the correctness.
At the center of the algorithm we have to loop "While S ≠ V ..."
We can define an invariant I for this loop.

Page 4: Dijkstra bevisPage 4

 Negative weights

Dijkstra's algorithm does not work for graphs with negative weights.

There are other algorithms that sometimes work for negative weights. The
crucial question is if a graph contain negative cycles or not.

Negative cycle: 2 + 3 - 6 = - 1

If a graph does not contain any negative cycles there are algorithms for finding
shortest paths. Examples are Bellman - Ford's algorithm and Warshall's
algorithm. They both work i time O(| V |³).

Obs: When we talk about paths we mean a sequence of nodes connected by edges
such that no node occur more than one time.

Page 5: Negativa kanterPage 5

Bellman-

Ford(G = hV,Ei,s 2 V , w : E !)

(1) foreach u 2 V

(2) d[u] 1
(3) d[s] 0
(4) for i = 1 to |V |� 1
(5) foreach (u, v) 2 E

(6) if d[v] > d[u] + w(u, v)
(7) d[v] d[u] + w(u, v)
(8) p[v] u

(9) foreach (u, v) 2 E

(10) if d[v] > d[u] + w(u, v)
(11) return Negative Cycle!

(12) return d, p

This is Bellman - Ford's algorithm:

The time complexity is O(|V| |E|), which makes it slower than Dijkstra's
algorithm. The advantages are that the algoritm can handle negative weights
and detect negative cycles if there are any.

Page 6: Bellman - FordPage 6

All this goes for directed graphs. If you have an undirected graph with negative
weights but no negative cycles there are algorithms for finding shortest paths but
they are surprisingly complicated.

There is no efficient algorithm for finding shortest paths in graphs with negative
cycles. In fact, it can be shown that the problem is NP-complete. (More about
this later.)

Page 7: Avslutande kommentarerPage 7

We will study the so called flow-problem. We start with a directed graph with
two special nodes s (source) and t (sink) given. We assume that there is at
least one directed path from s to t.

On each edge e we have a capacity c(e). It is a number 0

Value of flow: We set val(f) = f(e)

It's obvious that this is equal to f(e)

Some more notation: If e = (u,v) we write f(e) = f(u,v)

If X V and Y V we set f(X,Y) = f(x,y)

Flow problems

Flow: A flow is given by a number f(e) for each edge. The numbers must
satisfy two conditions.

1. 0 f(e) c(e) for all e.
 Let In(v) be the set of all edges going in to v and Out(v) be the set of
all edges going out from v.

2. f(e) = f(e) for all v except s and t
In(v)

In(t)

Out(v)

Out(s)

 Cut: A cut is a partition of V into two disjoint parts X, Y such
that s X and t Y.

It is not hard to prove that if (X,Y) is a cut, then val(f) = f(X,Y) - f(Y, X)

Two questions:

1. What is the maximal possible value for a flow in G?

2. How do we find a maximum flow?

The capacity of a cut

Def: Given a cut (X,Y) we define C(X,Y) = c(x,y)

We see that for any cut (X,Y) we have val(f) C(X,Y)

This is because val(f) = f(X,Y) - f(Y,X) f(X,Y)
and, since f(e) c(e), we have f(X,Y) c(X,Y)

Let MC be the minimal capacity for cuts in G. Then we get val(f) MC.

The famous Max flow- min cut theorem says that if f * is a maximum flow we
actually have val(f *)= MC.

We will soon prove this theorem.

 Ford - Fulkerson's algorithm

We start with f(e) = 0 for all edges and build up a flow in several steps.
We look for so called augmenting paths.

Unsaturated forward edge:

Unsaturated backward edge:

An augmented path is a path consisting of unsaturated edges (forward and/or
backward) going from s to t.

If we can find an augmenting path we can increase the flow. How much?

For each edge e in an augmenting path P we define a number (e). If e is a forward edge
(in the path) we set (e) = c(e) - f(e). If e is a backward edge we set (e) = f(e). Then we
let δ be the minimum value of (e) for all edges in P.

We now increase the theflow by setting f'(e) = f(e) + δ for all forward edges and
f'(e) = f(e) - δ for all backward edges.

 We will now try to show the following:
We have reached a maximum flow if and only if there are no augmenting paths
left in G.

It's obvious that if we have reached a maximum flow there can be no augmenting
paths left. The other direction is the difficult one.

We assume that there are no augmenting paths left. We will construct a special
typeof cut: Starting at s we try to build paths using unsatureted edges. Let X'
be set of all nodes that can be reached from s by such paths. Let Y' be V - X.
Then we have s X' and t Y. So (X',Y') is a cut.

For this cut, and this flow, we have val(f) = C(X',Y') !

Why? Let (x,y) be a directed edge going from X' to Y'. Since x but not y can be
reached by unsaturated edges we must have f(x,y) = c(x,y). If (y,x) is a directed
edge going from Y' to X' we must have f(y,x) = 0. This means that val(f) = f(X',Y')
- f(Y',X') = f(X',Y) = C(X',Y').

We know that if f * is a maximum flow and MC is the size of a minimum
cut then val(f) ≤ val(f *) and MC ≤ C(X',Y'). But since val(f) = C(X',Y') we
get val(f) = val(f *) = MC = C(X',Y').

This gives us

1. We see that f is amaximum flow and the Ford-Fulkerson algorithm works.

2. We have proved the Max flow - Min cut theorem.

 Implementing the Ford - Fulkerson algorithm

When we implement the algorithm we use a so called Residual Graph. Let us assume that
we are given a directed graph G with capacities on the edges.

We want to find augmenting paths in G. It can be shown that it's better not just
to look for any augmenting paths. Instead we should use BFS and look for
shortest augmenting paths. This variant of Ford - Fulkerson's algorithm is
called Edmond - Karp's algorithm.

We want to use BFS in standard form. The problem is that BFS looks for "forward"
paths. To get around this problem we use so called residual graphs.

Let G be a directed graph and a flow f (not necessarily maximal). Given G
and f we construct a new graph with some new edges and capacities:

For each edge we define a new capacity
c'(e) = c(e)-f(e) and we define a new edge and capacity:

Then all edges with f(e) = c(e) are removed. This gives us the residual graph Gf

 We then use the following algorithm:

Ford Fulkerson's algorithm in pseudocode

c[u,v] is the capacity from u to v, f[u,v] is the flow, cf[u,v] is the residual
capacity.

foreach edge (u,v) in the graph do
 f[u,v]:=0; f[v,u]:=0
 cf[u,v]:=c[u,v]; cf[v,u]:=c[v,u]
while there is a path p from s to t in the residual flow graph do
 r:=min(cf[u,v]: (u,v) is in p)
 foreach edge (u,v) in p do
 f[u,v]:=f[u,v]+r; f[v,u]:= -f[u,v]
 cf[u,v]:=c[u,v] - f[u,v]; cf[v,u]:=c[v,u] - f[v,u]

 We can use the flow algorithm to solve another problem: The matching problem for
bipartite graphs.

BIPARTITE MATCHING

Input: A bipartite graph (X Y, E).
Goal: A matching of maximal size.

Start with:

Then we add some nodes and
edges and directions:

Give all edges capacity 1 and run the flow algorithm. When the algorithm ends
the edges from the original graph that are saturated (i.e. f(e) = 1) gives us a
maximal matching.

