
The flow problem as a LP problem

We let xe be the flow on edge e. We have the
constraints 0 ≤ xe ≤ c(e) for all e. For each
node x except s and t we have∑

e∈In(x)

xe =
∑

e∈Ut(x)

xe

We set

v =
∑

e∈Ut(s)
xe

The flow problem can be written as

Maximize v

when
v =

∑
e∈Ut(s) xe∑

e∈In(x) xe =
∑
e∈Ut(x) xe for all x except s,t

0 ≤ xe ≤ c(e) for all edges



A transport problem

The company Carla produces milk in 4 diffe-
rent plants. The milk is delivered to 5 custo-
mers. Carla has to consider three things:

1. The capacities of the plants.
2. The demands of the customers.
3. The costs of the transports between plants
and customers.

Let us call the plants F1, F2, F3, F4.

Capacity:

F1 F2 F3 F4
30 40 30 40

(The numbers represent 1000 liters.)

Let us call the customers K1, K2, K3, K4, K5.



Demand:

K1 K2 K3 K4 K5
20 30 15 25 20

(The numbers represent 1000 liters.)

Transport costs:

K1 K2 K3 K4 K4
F1 2,80 2,55 3,25 4,30 4,35
F2 4,30 3,15 2,55 3,30 3,50
F3 3,00 3,30 2,90 4,30 3,40
F4 5,20 4,45 3,50 3,75 2,45

Goal:

Decide how the ”flow” to the customers should
be so that

1. The customers are satisfied.
2. The cost are minimal.



Mathematical model:

Use variables xij for the flow from plant i to
customer j.

What demands do we have?

1. Capacities

Ex: For plant 1 we should have

x11 + x12 + x13 + x14 + x15 ≤ 30000

2. Demand

Ex: For customer 1 we should have
x11 + x21 + x31 + x41 = 20000

Cost:

z = 2,80x11 + 2,55x12 + ...+ 2,45x45



We use the following definitions:

Let cij be the cost for transport from plant
i to customer j.

Let si be the capacity for plant i.

Let dj be the demand of customer j.

The problem can now be written as

Minimize
∑4
i=1

∑5
j=1 cijxij

when

∑5
j=1 xij 6 si i = 1,2,3,4∑4

i=1 xij = dj j = 1,2,3,4,5
xij > 0



Linear Programming

A Linear Programming problem is the following:

Input: We have n variables x1, x2, ..., xn and m

linear equalities and/or inequalities in the va-
riables. We can also have constraints that say
that some (all) of the variables should be non-
negative. We are given a linear function f in
the variables.

Goal: We want to find values for the variables
so that the constraints are fulfilled and the fun-
ction f is optimized (maximized/minimized).



Different forms

We can express an LP-problem on different
forms. We have

1. General form: That is the one described
above.

2. Canonical form: Essentially a form with just
inequalities. This form is suitable for analy-
zing mathematical properties of solutions.

3. Standard form: Essentially a form with just
equalities. This form is used when actually
finding solutions.

The general form covers all LP-problems. But
all problems can in a certain way be transla-
ted to equivalent problems on canonical and
standard forms.



Canonical Form

A linear programming problem on canonical
form is

Minimize
∑n
j=1 cjxj

when∑n
j=1 aijxj 6 bi i = 1,2, ...,m

xj > 0

In some texts the authors use maximization
instead of minimization. This doesn’t matter
much since we can always translate one form
to the other by changing the sign of the ci :s.



Translations

If we have a problem that is not on canonical
form we can rewrite it on canonical form. We
show how it can be done by looking at some
examples:

Example:

Minimize

x1 + 2x2 − x3

when x1 + x3 = 1

x2 − x3 > 3

Inequalities "in the wrong direction"can be tur-
ned right by a sign change.



Equalities can be turned into inequalities by
using two using two inequalities for each equa-
lity.

In our problem we get

Minimize

x1 + 2x2 − x3

when


x1 + x3 6 1

−x1 − x3 6 −1

x3 − x2 6 −3



Towards solutions: Standard forms

Preparation: We transform the problem to so
called standard form.

Standard form: We have equalities instead of
inequalities.

Ex:

Minimize z = 3x1 + 5x2 − x3

when

x1 − x2 + 2x3 = 5

x1 + 2x2 + 4x3 = 12

x1, x2, x3 > 0



We get equalities by introducing Slack Varia-
bles.

Ex:
Let us assume that we have the inequality
x1 + 3x2 6 10

We set x3 = 10− (x1 + 3x2)

x3 is a new slack variable.

We get the equality x1 + 3x2 + x3 = 10



The Simplex MethodThe Simplex MethodThe Simplex Method

There is a famous algorithm called the Sim-
plex Algorithm that solves these problems. We
will describe this algorithm without going to
much into details.

Preparation: We transform the problem to so
called standard form

Standard form: We have equalities instead of
inequalities.



Ex:

Minimize z = 3x1 + 5x2 - x3

when

x1 − x2 + 2x3 = 5
x1 + 2x2 + 4x3 = 12
x1, x2, x3 > 0

We get equalities by introducing Slack Varia-
bles.

Ex: Let us assume that we have the in-
equality x1 + 3x2 6 10

We set x3 = 10- (x1 + 3x2 )

We get the equality x1 + 3x2 + x3 = 10



Let us assume that we have the following pro-
blem:

Maximize z = 20x1 + 18x2

when
x1 + 10x2 ≤ 3600

16x1 + 12x2 ≤ 5400

x1, x2 ≥ 0

7x1 + 10x2 6 3600 reduces to 7x1 + 10x2 +

x3 = 3600

16x1 +12x2 6 5400 reduces to 16x1 +12x2 +

x4 = 5400



We get

Maximize z = 20x1 + 18x2

when
7x1 + 10x2 + x3 = 3600
16x1 + 12x2 + x4 = 5400
x1, x2, x3, x4 > 0



Standard formStandard formStandard form

Minimize z =
∑n
j=1 cjxj

when∑n
j=1 aijxj = bi i = 1, ...,m

xj > 0 j = 1, ..., n

We can use matrix notation

Minimize c̄T x̄

when
Ax̄ = b̄

x̄ > 0̄



Our previous example will look like:

A =
(

7 10 1 0
16 2 0 1

)

x̄ =


x1
x2
x3
x4

 c̄ =


−20
−18

0
0

 b̄ =

(
3600
5400

)

Minimize (-20 -18 0 0 )


x1
x2
x3
x4


when(

7 10 1 0
16 2 0 0

)
x1
x2
x3
x4

 =

(
3600
5400

)


x1
x2
x3
x4

 >


0
0
0
0





How to find a solution

Maximize z = 20x1 + 18x2.
When

7x1+ 10x2+ x3 = 3600
16x1 + 12x2 + x4= 5400

How do we find the best solution?

One possibility is x3= x4= 0

7x1+ 10x2 = 3600
16x1 + 12x2 = 5400

If we solve the system we get x1≈ 142 , x2 ≈
260

It gives us z ≈ 7520



But instead, we can put x2 = x4= 0

We get the equations

7x1+ x3 = 3600
16x1 = 5400

They give us x1 ≈ 337 x3≈ 1237

Then z ≈ 2362.

Are there more solutions?



Basic solution:Basic solution:Basic solution:

Let us assume that we have n variables and
m equations. We also assume that all equa-
tions are linearly independent. We us say that
we have set n−m of the variables to 0.
Then the other m variables have unique values.
This gives us a basic solution .

Feasible basic solution:Feasible basic solution:Feasible basic solution:

If all variables are > 0 we have a feasible basic
solution.

The solution to a LP-problem is always a fea-
sible basic solution (FBS).

But which FBS?



Method:Method:Method:

Variables which are 0 (at a certain stage) are
called non-basic variables. The other variables
are called basic variables.

We test different FBS:s by changing the ba-
sic variables one at a time.

Ex: Minimize z = 2x1 + x2

when
x1 + x2 = 10
x1, x2 > 0

Set x1 = 0.

Then x2 = 10.

Then z = 10.



We now change basic variables so that x2 = 0 .

Then x1 ≈ 3,33

we get z ≈ 6,67.

So we have found a better solution.

How do you know if you have found the best
solution?

We look at our previous example:

x1 = 142 x2 = 260 z = 7520

Is that the best solution?



We can write

x3 = 3600 - 7x1 -10x2

x4 = 5400 - 16x1 - 12x2

x1 = 0,158x3 - 0,132x4 + 142,1
x2 = -0,2x3 + 0,092x4 + 260,5

That gives us z = 20x1 + 18x2 = 20(0,15x3

- 0,13x4 + 142,1) + 18( -0,21x3 + 0,09x4 +
260,5) =
7520 - 0,62x3 - 0,98x4

Now we see that we would gain nothing by
increasing x3 or x4.
We see that any change from this solution
must end in a worse solution.



General description of the Simplex MethodGeneral description of the Simplex MethodGeneral description of the Simplex Method

Let’s say that we have a maximization pro-
blem and a FBS with basic variables y1, y2, ...
, ym and non-basic variables v1, v2 , ... , vn−m.

This means that v1 = v2 = ... = vn−m = 0

We can then write y1, y2, ... , ym as func-
tions of v1, v2 , ... , vn−m

y1 = f1 (v1, ..., vn−m)

y2 = f2 (v1, ..., vn−m)

...
In the same way we can write z as

z = c1v1 + c2v2 + ... + cn−mvn−m + z0

If all ci are < 0 we must have an optimal solu-
tion.



If any ci > 0, say c1 > 0, we can increase z by
increasing v1. But then the values of the y:s
must change. How much do they change?

We can increase v1 until fk(v1, v2, ...) = 0 for
some k. Then v1 will be a new basic variable
and yk will be a new non-basic variable.
We go on like this until all ci ≤ 0. Then we
have found the optimal solution.

If we have a minimization problem we must
try to increase variables with ci < 0. When all
ci ≥ 0 we have a solution.



Ex:

Minimize z = 2x1 + 2x2 + x3

when
x1 + x2 + x3 = 5

x1 − x2 + 2x3 = 8

x1, x2, x3 > 0

One FBS is x2 = 0 (non-basic variable).

We get

x1 + x3 = 5− x2

x1 + 2x3 = 8 + x2

x1 = 2− 3x2

x3 = 3 + 2x2



z = 2(2− 3x2) + 2x2 + (3 + 2x2) = 7− 2x2

We can increase x2. But how much?

x1 and x3 must be > 0.

x1 = 2− 3x2

This means x2 6 2
3

x3 = 3 + 2x2

This gives us no bound on x2.

So x2 = 2
3 and x1 = 0.

x3 = 13
3

We now write x2, x3 as functions of x1.



x2 = 2
3 −

x1
3

x3 = 3 + 2x2 = 3 + 2(2
3 −

x1
3 ) = 13

3 −
2x1

3

z = 7− 2x2 = 7− 2(2
3 −

x1
3 ) = 17

3 + 2x1
3

Since we gain nothing by increasing x1, we are
done.



This is however far from the full story. There
is a problem called degeneracy that can occur.
This happens when when we have no ci > 0

and some ci = 0 (if we assume that we have
a minimization problem). In that case we will
have to chose some i with ci = 0. Then there
is a chance that we could get into an infini-
te cycle. In practice, there are several ways to
avoid this. Another problem is how to find a
starting point for the algorithm. It turns out
that we can use a modified variant of the sim-
plex algorithm to solve this problem.

Actually, in worst case, the Simplex Algorithm
is not a polynomial time algorithm. In practice,
however, it is always considered efficient enough
to be used.



Dual Problems

For each LP problem we can give a so called
dual problem.

Ex: We have the problem

Maximize 5x1 + 2x2

when
x1 + x2 6 10
2x1 + 3x2 6 20
x1 , x2 , x3 > 0



The dual problem is

Minimize 10v1 + 20v2

when
v1 +2v2 > 5
v1 + 3v2 > 2
v1, v2 > 0

How do we define the dual problem?



Definition of dual problems

We write the problem on the form

Maximize c̄T x̄

when
Ax̄ 6 b̄

x̄ > 0̄

The dual problem is

Minimize b̄T v̄

when
AT v̄ > c̄

v̄ > 0̄



The Duality TheoremThe Duality TheoremThe Duality Theorem

Let P1 and P2 be two dual problems. If one of
the problems has a unique solution with value
M , then the other problem also has a unique
solution with value M . If we solve one of the
problems we also get a solution to the other.

Our previous example:

We want to

Maximize 20x1 + 18x2

when
7x1 + 10x2 63600
16x1 + 12x2 65400
x1, x2 > 0



The corresponding dual problem is

Minimize 3600v1 + 5400v2

when
7v1 + 16v2 > 20
10v1 + 12v2 > 18
v1, v2 > 0

Both problems have the same value as solu-
tion.



About solutions to LP problemsAbout solutions to LP problemsAbout solutions to LP problems

If we try to solve a LP problem three cases
can occur.

1. The problem has a unique solution.

2. The inequalities defining the problem can-
not be satisfied.

Ex: Minimize x1 + x2

when
x1 - 2 x2 6 -2
x1 + 3x2 6 1
x1, x2 >0

Then, of course, there is no solution to the
problem.



3. The value can be arbitrarily large/small.

Ex: Maximize x1 - x2

when
x1 + x2 > 10

x1, x2 > 0

The problem is that x1 − x2 can be arbitrarily
large. There is no solution.

Part of what the Duality Theorem tells us is
that if one of two dual problems is of type 1,
the other one must be of type 1 as well.



Reduction of Shortest Path to Linear
Programming

Find the shortest path s → t in a weighted
(undirected) graph G.

We can define variables xe (one for each edge).
We can the see that this LP-problems solves
the Shortest Path-problem:

Minimize ∑
e
xew(e)

when
1 =

∑
e∈Ut(s) xe

1 =
∑
e∈In(t) xe∑

e∈In(x) xe =
∑
e∈Ut(x) xe for all x except s,t

0 ≤ xe for all edges



The dual form

Dualization will give us variables dv (one for
each node). Without going into details we sta-
te the dual form:

Maximize dt

when

du ≤ dv + w(u, v) for all edges (u, v)

ds = 0



Another dual problem

The flow problem can be put on dual form:

The vector ȳ contains |V |+ |E| numbers. They
are gi for each node vi and γj for each edge ej.

Minimize ∑
j

γjcj

when

gi − gj + γk ≥ 0 om ek = (vi, vj)

gn − g1 ≥ 1, γj ≥ 0 for all j

The solution to this problem generates a mini-
mal cut (S, V −S) and an assignment of values
gi = 0 if vi ∈ S, gi = 0 otherwise. γj = 1 if ej
goes from S to V − S, γj = 0 otherwise.



Other types of problems

Several of the problems we have seen are of in-
teger character in the sense that the solutions
have the form: Choose this object (1) and do
not choose that object (0). But LP mostly gi-
ves solutions that are real numbers. We can
define a new set of LP-problems called Integer
Programming Problems by demanding that the
solutions should have integer values.

Ex: Minimal spanning trees.



We can start with the LP-problem

Minimize ∑
e
xew(e)

when 
∑
e∈In(v) xe > 1 for all nodes v∑
e xe = |V | − 1

This will almost give us a MST. But we must
add the requirement that all xe should be 0 or
1. We can write this as

xe ∈ {0,1} for all edges

This gives us an Integer Programming Pro-
blem.



Subset Sum

We can look at the special problem
A = {2,7,9,12,16} and M = 23 and ask M

can be written as a sum of elements from A.

We can then state the following IP-problem:

Maximize 1
when 2x1 + 7x2 + ...+ 16x5 = 23

xi ∈ {0,1}

Even if it is nice to be able to state the pro-
blem as an IP-problem there is a catch: There
is no known efficient algorithm for solving IP-
problems!


