
Algorithms and Complexity
2016

Mästarprov1: Algorithms

Mästarprov 1 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Friday, February 26th
17.00, to Mladen (course assistent) in written or printed form, personally or
his mailbox. (Yes, we would like to have it in paper form. ) Be sure to save a copy
of your solutions. Mästarprov 1 is a mandatory and rated part of the course.
The test consists of four tasks. The test is roughly graded as follows: Two task
correctly solved give an E. Three tasks correctly solved give a C and all tasks
correctly solved give an A. You can read more about the grading criteria and
the final grade on the course web page. The report should be written in English.

In all problems you should give an analysis of the time complexity of your
algorithm and you should be able to argue for its correctness.

1. A student has a number of subjects to study. She has N days to do it. Let
us number the days 1, 2, ..., N . Every day she has K ours left for her studies.
For each subject i there is an number ti of hours needed to master the subject.
For each subject there is a deadline di such that 1 ≤ di ≤ N . To be precise,
the task should be completed at the end of the day. Is it possible for her to
plan her studies so that no deadline is exceeded? How should the studies be
planned? We are allowed to split the studies on several different days. Find a
greedy algorithm that tells her which subjects to study each day.

2. We will now look at a variant of the max-flow problem. Assume that we have a
network of n computers connected in i graph G. One computer s is a sender and
a set R of computers are receivers. Then, of course, there are other computers.
To state it formally, R ⊂ V (G), s /∈ R. We assume that all computers in R are
connected to s in the network. We are now going to send information from s to
all nodes in R. We will think of this information sent as a flow and the value
of the flow as a transmission rate. For each node v ∈ R we have a demand that
the node should get a flow dv. We can assume that s can send an unlimited
amount of information. The communication protocol we use works so that each
computer in the network processes the information a certain time before sending
it forward. This means that for each node in v ∈ V (G) − R − {s} there is a
number αv such that the flow trough v cannot be greater that αv. (So observe
that the capacities are on the nodes instead of the edges). Your task is now to
construct an efficient algorithm that decides if it is possible to get a flow of this
type, i.e., a flow from s to the nodes in R such that each v ∈ R gets at least dv.
Analyse the complexity of your algorithm carefully.

1



3. In this problem we assume that we have a set F1, F2, ...Fn of n two-dimensional
figures. The figures are pieces of paper and they are connected (that is in one
piece). If we can take figure Fi, rotate it, translate it and place it all inside Fj ,we
say that Fi is contained in Fj . Another equivalent way of defining this relation
is to say that we can cover Fi with Fj . We are now interested in finding a the
largest k such that it is possible to find a sequence of figures Fi1 , Fi2 , ..., Fik such
that Fit is contained in Fit+1

for t = 1, 2, ..., k−1. You can not use a figure more
than once. Your task is to describe an algorithm that solves this problem. We
will assume that we do not know much about the figures. The only information
we get is a matris C with dimension n× n with

cij =

{
1 if Fi is contained in Fj

0 otherwise

Your algorithm should be polynomial in n.

4. We will study a very abstract deductive system. We have a set of n sentences
s1, s2, ..., sn. We can deduce certain sentences from other with the help of a set
of k basic deduction rules. A basic deduction rule will be written in this form:
Let U be a set of sentences and s a sentence. Then [U ; s] means that s can be
deduced from the set U . Informally, we can think of a proof of a sentence s from
a set A as a sequence of a finite number of applications of basic deduction rules.
To put it more formally, we will use the notation D(A; s) to mean that s can
be derived from A . We can define D recursively by:

a. If s ∈ A then D(A; s).

b. If there is a set C such that all sentences in C can be derived from A in
a finite number of steps and there is a basic deduction rule [C; s], then
D(A; s).

We should note some things that follow from this definition:

If D(A; s) and A ⊂ A′, then D(A′; s).

If D(A; s), then it is possible that there is a set A0 ⊂ A such that D(A0; s).

Since D({s}; s) it is possible to have arbitrarily long proofs.

So given a set B of sentences and a sentence s we want to know if D(B; s) is
true or not. Construct an algorithm that decides this. Assume that the input
is M = {s1, s2, ..., sn}, a specified subset B ⊂ M , a specified sentence s ∈ M
and a set of k basic deduction rules given on the format described above. Your
algorithm should be polynomial in n and k.

(This is a very simplified form of deduction. In normal cases we do not assume
that the set M is limited. It is also common to have the ”basic deduction rules”
in a more general form. For instance, we could have [{P, P ⇒ Q};Q] for all
sentences and not just for some sentences. This means we do not have a limited
number k of rules.)

2


