
Johan Karlander, KTH, CSC

Lösningar till Teoritenta i Algoritmer (datastrukturer) och komplexitet
för KTH DD1352–2354 2010-12-13 klockan 14.00–17.00

1. (8 p)

Are these statements true or false? For each sub-task a correct answer gives 1 point
and an answer with convincing justification gives 2 points.

a. If an algorithm runs in time O(2log n) it actually runs in polynomial time.

b. There are problems that cannot be solved by any Turing machine.

c. For all K > 1, the problem of deciding if a graph can be colored with K colors is
NP-complete.

d. If we have a 3-SAT formula with 5 clauses, we can decide in polynomial time if it
is satisfiable.

Solution:

a. True. In fact, the laws of the logarithm shows that 2log n = nlog 2.

b. True. For instance, the Halting problem is undecibable.

c. False. We can use the BFS-search to tell if a graph can be 2-colored.

d. True. At most 15 variables can occur in the formula. So there are just 215 possible
assignments to consider.

2. (4 p)

During the course we have studied some important classes of algorithms. Three of these
are Divide and Conquer Algorithms, Greedy Algorithms and Dynamic Programming
Algorithms. Give non-trivial examples of each of these three types of algorithms and
describe them in detai. For each example, explain what makes it such an algorithm.
(That is, for your example of a greedy algorithm you should explain exactly what makes
it a greedy algorithm, and so on.)

Solution: There are lot of possible solutions. Natural examples would be: Divide and
Conquer: Mergesort Greedy: Kruskal’s algorithm. Dynamic Programming: Dijkstra’s
algorithm or Bellman-Ford’s algorithm.

3. (4 p)

Let us assume that Q is a problem known to be NP-complete. We also assume that
P 6= NP so that Q /∈ P . Let A be another problem.

1



a. Carefully explain why the existence of a reduction Q ≤ A shows that A /∈ P but
A ≤ Q does not necessarily show that A /∈ P .

b. Here is an attempt to reduce from SUBSET SUM to TSP. (Travelling Salesperson
Problem.) Given an instance {a1, a2, ..., an}, M of SUBSET SUM we construct
a complete graph G with n nodes. We choose n edges arbitrarily and give them
weights a1, a2, ..., an. All other edges are given weight 0. We then define the instance
of TSP as G, M .
Is this reduction correct or not?
Motivate your answer.

Solution:

a. We know that Q cannot be decided in polynomial time. If Q ≤ A and A could be
decided in polynomial time then we could take an instance x of Q, reduce it to an
instance R(x) of A and decide in polynomial time if R(x) is a yes-instance. Then
we could decide in polynomial time if x is a yes-instance of Q. Impossible! On the
other hand, if Q is NP-complete, we know that any problem in NP can be reduced
to Q. So even problems in P can be reduced to Q since P ⊆ NP .

b. The reduction is not correct. SUBSET SUM will have a yes-instance if there are
numbers with sum M . The TSP-instance will be a yes-instance only if there are
edges in a Hamiltonian cycle with sum M . And, of course, it is simple to find
examples when the first instance (SUBSET SUM)is a yes-instance and the second
(TSP) is not.

4. (4 p)

When we are faced with a hard optimization problem, NP-complete or not, we can try
to design an approximation algorithm. In this problem I will sketch an algorithm for the
optimization variant of the NP-Complete problem CLIQUE. The algorithm is as follows:
Given G, find a node v with highest degree. Put v into a set S. Remove v and all its
non-neighbors from G. Repeat this step on the remaining graph until there are no nodes
left. When the algorithm ends, S will be our clique.

a. Express the algorithm in pseudo code and calculate the time-complexity.
b. What is an approximation quotient? Explain what it would mean if the algorithm

had an approximation quotient 2.
c. In fact, the algorithm does not have an approximation quotient 2. Give an example

which shows this.

Solutions:

a. The time complexity will be O(n2), where n is the number of nodes. This will
probably only be true if we use adjacency list and use a heap to keep track of the
nodes with higheest degrees.

b. If our algorithm returns a clique of size APP and the optimal cliquue-size is OPT ,
then OPT

APP ≤ 2.

2



c. Take a graph which has two parts. The first is a clique of size M . The second is a
”star” with a node connected to K other nodes. (So this part just have K edges.)
If K > M − 1 and M > 2 we get APP = 2 and OPT = M so OPT

APP = M
2 . So if

M ≥ 5 we get OPT
APP > 2.

3


