
Algorithms and Complexity
Hösten 2010

Mästarprov1: Algorithms

Mästarprov 1 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Friday, November 12th
17.00, in my postbox or in the student reception in Osquars backe 2 plane 2.
Be sure to save a copy of your solutions. Mästarprov 1 is a mandatory and rated
part of the course. The test consists of four tasks. The test is roughly graded as
follows: Two task correctly solved give an E. Three tasks correctly solved give a
C and all tasks correctly solved give an A. You can read more about the grading
criteria and the final grade on the course web page. The report should be written
either in English or Swedish. (Not all teachers doing the examining will be able
to speak Swedish so even if you are a Swedish speaker it could perhaps be nice
if you give English a try.) You should be prepared to argue for the correctness
of everything you have written.

1. Fixpoints in sequences
Given a sorted array of distinct integers A[1, ..., n], we say that a fix point is an
index i such that A[i] = i. Of course, there doesn’t have to be any fix points in
a sequence. Design a divide-and-conquer algorithm that runs in time O(log n)
and decides if there are any fix points in the seqeunce. The algorithm doesn’t
have to find all fix points, just decide if there are any fix points. Prove that the
time complexity is correct.

2. Identifying corrupted strings
In this problem we are given a string of characters s[1, 2, ..., n], which we be-
lieve to be a corrupted text document in which all punctuation has vanished.
The text could look something like ’itwasasmallroomlookingoutonthebackgar-
den’. We have an electronic dictionary in the form of a Boolean function dict()
such that

dict(w) =

{
1 if w is a valid word
0 otherwise

We assume that this test can be done in time O(1).

We now want to know if the string s is a valid string of words or not. (We don´t
try to decide if it is a valid sentence.) We try to use Dynamic programming.

We define T (k) =

{
1 if s[1,...,k] is a valid string of words
0 otherwise

Show that this is a correct recursion formula for T (k):{
T (0) = 1
T (k) = max {T (i) · dict(s[i + 1, ..., k]) : 0 ≤ i ≤ k − 1} for 1 ≤ k ≤ n

Use the formula to write a program in pseudo-code that decides if s[1, ..., n] is
a valid string of words or not. Estimate the time complexity of your algorithm.

1



3. Reliable connections in a network
You are working in a company which has a set of n computers connected in a
network. Not all computers are connected directly to each other, but for each
pair of computers we know that there is at least one path in the network that
connects them. For each connection between two computers, there is a proba-
bility p that the connection might be corrupted. If we have a path, then the
probability that the path is corrupted is 1− (1− p1)(1− p2) · ... · (1− pk) where
p1, p2, ..., pk are the probabilities for corruption of the connections on the path.
Your boss wants to know if, given a small number ε, for each pair of computers
there is a path between them with a chance of corruption smaller than ε.

Your boss wants you develop an algorithm that solves this problem. You start
to think about it and realizes that you perhaps can use a famous algorithm
you know already. But in order to do that you have to simplify the problem
a bit: You want to replace (1 − pi)(1 − pj) with 1 − pi − pj . That means that
we cancel all products pipj . This means that the probability of corruption of
the path will be approximated p1 + p2 + ... + pk. Your boss says it is OK to

use this simplification. Design an effective algorithm that solves the problem,
that is, finds if there for each pair of computers is at least one path with chance
of corruption smaller than ε. Estimate and prove the time complexity of your
algorithm. It should be as efficient as possible.

We assume that the information about the network is given by an array f [i, j]
such that

f [i, j] =

{
p if there is a connection with chance p of corruption
∞ otherwise

4. Winning a game
You and an friend play a game which has the following form: At each step the
game consists of two piles of chips. (One of them could be empty). On each chip
there is a positive number. You and your friend take turns and choose one pile
at each turn and take the top chip from the pile. So for instance, if the piles
look like:

2
4 1
1 7
3 2

and it is your turn you can choose between the top chips 2 or 1. If one of the
piles is empty you only have one choice. And if both piles are empty the game
ends. The winner is the player with the largest sum on the chips chosen by the
player. In this simple type of game it is possible to construct an optimal strategy
for each player. By a strategy we mean a rule for how you should chose your
pile in every possible situation. By an optimal strategy we mean a strategy that
works at least as well as any other strategy when your friend play as well as
possible. Design an algorithm that finds such an optimal strategy. We assume
that we know the contents of the piles at the start of the game. The algorithm
should precompute the strategy in time at most O(n2) where n is the number
of chips. Then in every move you should be able to consult your strategy and
find the best move in time O(1).

2


