
Algorithms and Complexity. Exercise session 2

Greedy + Divide and Conquer

MST greedy Describe a greedy algorithm that �nds a minimum spanning tree for a connected
weighted undirected graph. Namely, it �nds a subset of the edges that forms a tree that
includes every vertex, where the total weight of all the edges in the tree is minimized.

Solution to MST greedy

Prim's algorithm for computing the minimum spanning tree on a weighted graph. 2

Max and min Let v[1..n] be a vector of n integers. Give a recursive algorithm that computes
the largest and the smallest number in v. The algorithm uses at most d3n/2e−2 comparisons
between elements in v. Note that the number of elements in v may not be a power of 2.

Solution to Max and Min

When you only have two numbers it takes is a single comparison to both �nd the largest and the
smallest number.

MinMax(v,i,j)=

if i=j then return (v[i],v[i])

else if i+1=j then

if v[i]<v[j] then return (v[i],v[j])

else return (v[j],v[i])

else

m:=Floor((j-i)/2)

if Odd(m) then m:=m+1;

(min1,max1):=MinMax(v,i,i+m-1);

(min2,max2):=MinMax(v,i+m,j);

min:=(if min1<min2 then min1 else min2);

max:=(if max1>max2 then max1 else max2);

return (min,max);

The computation tree will have dn/2e leaves and dn/2e − 1 internal nodes. If n is even, all
n/2 leaves will make a comparison. If n is odd, there is one leaf (the rightmost) that requires no
comparison. Therefore the leaves require bn/2c comparisons. In each internal node we made two
comparisons, ie a total of 2 dn/2e−2 comparisons. In total, we get bn/2c+2 dn/2e−2 = d3n/2e−2
comparisons. It can be proved that the problem can not be solved with fewer comparisons. 2

Matrix multiplication Strassen's algorithm multiplies two n× n-matrices in time O(n2.808) by
decomposition of 2 × 2-block matrices. It is faster than O(n3) because it computes seven
multiplications instead of eight to form the product matrix. Another idea is to make the
decomposition of 3×3-block matrices instead. A researcher at NADA tried a couple of years
ago to �nd the minimum number of multiplications needed to multiply two 3× 3-matrices.
He managed to get almost 22 multiplications. If he had succeeded, what would have been
the time complexity to the multiplication of two n× n-matrices?

1



Solution to Matrix multiplication

The recursive equation is T (n) = 22 · T (n/3) + O(n2). The master theorem gives the solution
T (n) = O(nlog3 22) = O(n2.814). 2

Complex multiplication If we multiply two complex numbers a+ bi and c+ di in the standard
way, it requires four multiplications and two additions of real numbers. Since multiplications
are more expensive than additions (and subtractions), it pays to minimize the number of
multiplications if one would allow large numbers. Find an algorithm that uses only three
multiplications (but more additions) to multiply two complex numbers.

Solution to Complex multiplication

Exercise. 2

Majority Consider an array A of n elements (say integers). Construct and analyze an algorithm
to determine whether any element of the array A is in majority, namely, it occurs in A at
least n/2 times. If this is the case, return it. The algorithm will be a recursive one and will
have time complexity O(n log n). The only operation you are allowed to use on the elements
of A is = (equality test). Moreover, there is no order relationship between the elements.

Solution to Majority

If there is a majority element, it must be of at least one half of the array elements.
Recursive view: Check majority recursively in the left and right half of the array and then count
how many times the half array majority elements are present in the entire array. If any elements
are in total majority return it.

Majority(A[1..n]) =
if n = 1 then return A[1]
m← dn/2e
v ← Majority(A[1..m− 1])
h← Majority(A[m..n])
if v = h then return v
vn← 0; hn← 0
for i← 1 to n do

if A[i] = v then vn← vn + 1
else if A[i] = h then hn← hn + 1

if vn ≥ m then return v
if hn ≥ m then return h
else return NULL

Time complexity: Each recursive call will half the array and perform O(n) operations. Using
the master theorem we get O(n log n) time complexity.

2

2



Inside or outside? Let P be a convex n-angle polygon described as an array of angles p1, p2, . . . pn

in cyclic order. Construct an algorithm that computes whether a given point q is inside the
polygon P . The algorithm will run in time O(log n) in worst case.

Solution to Inside or outside?

We use an interval halving search to exclude the half of the remaining polygon each time, until only
one triangle remains. Then we can easily (with a constant number of comparisons) to determine
whether q lies in P . See Figure 1.

Figur 1: A convex polygon and the lines that the algorithm uses to halve it.

InsideConvex(P, q, l, u) =
if u = l + 1 then /∗ a triangel ∗/
choose a point q′ outside the triangle p1�pl�pu

if line q�q′ cut exactly one of the edges of the triangle then
return inside

else

return outside
else

mid←
⌈

l+u
2

⌉
if q is on the same side of line p1�pmid as pmid+1 then

return InsideConvex(P, q, mid, u)
else

return InsideConvex(P, q, l,mid)

The algorithm starts with InsideConvex(P, q, 2, n).
If we assume that InsideConvex(P, q, 2, n) take time T (n) we get the recursive equation

T (n) = T
(n

2

)
+ c

which has solution c log n. Thus, the time complexity is T (n) ∈ O(log n). 2

3


