
Algorithms and Complexity. Exercise session 8

Approximation Algorithms

Approximation of Independent Set Let Independent Set−B be the problem of �nding a
maximum number of independent vertices in a graph whose degree (for each vertex) is limited
by the constant B. Show that this problem is in APX, ie. it can be approximated with a
constant in polynomial time.

Solution to Approximation of Independent Set

Given a graph G = (V,E) whose degrees are bounded by B, construct an independent set of
vertices as follows.

V ′ ← ∅
W ← V
for v ∈W do

V ′ ← V ′ ∪ {v}
W ←W − {w ∈W : (w, v) ∈ E} − {v}

The algorithm yields an independent set of vertices V ′. It is also easy to see that V ′ is a dominating
set. The optimal independent set V ′opt can not be more than B times larger than |V ′|. To see this,
you only need to look at one of the vertices of V ′ and its neighbors in V . If all its neighbors are in
V ′opt, they can't be more than B. Since V ′ is a dominating set, every vertex of V ′opt is either in V ′

or a neighbor to a vertex of V ′. This means that V ′opt is at most B times larger than V ′, namely
the approximation factor is B, which is a constant. 2

Probabilistic not-all-equal-satisfying The NP-hard problem Max Not-All-Equal 3-CNF

Sat is de�ned as follows.

Input: A CNF-formula consisting of clauses c1, c2, . . . , cm where each clause is a
disjunction of exactly three literals (variables or negated variables). The variables
are x1, x2, . . . , xn.
Solution: A variable assignment.
Objective function: The number of clauses that contain at least one true literal
and at least one false literal.
Problem: Maximize the objective function.

Since this problem is NP-hard, we want an algorithm that approximates the input within
a constant in polynomial time. Constructing a probabilistic approximation algorithms for
the problem to give an expected approximation factor of 4/3. Analyze your algorithm time
complexity and expected approximation guarantee. You will need a randomized algorithm.

Solution to Probabilistic not-all-equal-satisfying

The algorithm is quite simple: set each variable to a random value. It should be equally likely that
a variable is set to true or false. If we now look at an arbitrary clause, there are only two cases
out of eight (ie false-false-false-and true-true-true) that will not be counted. The expected value
of the number of clauses that counts is

E[number of clauses that have both true and false literals] =
= m · Pr[an arbitrary clause is neither completely true nor completely false] =
= m · (1− Pr[ an arbitrary clause is either completely true or completely false]) =
= m · (1− 2/8) = 3m/4.
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Since at most m clauses can be chosen, the expected approximation factor is

OPT

APPROX
≥ m

3m/4
=

4
3
.

The algorithm runs in linear time and requires a linear number of random variables. 2

Approximation of linear inequalities Max Sat LR≥ (maximum satis�able linear subsystem)
is the problem that, given a set of linear inequalities of type ≥, �nd a variable assignment
that satis�es as many inequalities as possible. Construct an approximation algorithms that
approximates Max Sat LR≥ in factor 2.

Solution to Approximation of linear inequalities

Assume that the input is given as a set X of rational variables and a set of E of linear inequalities
over X.

while E 6= ∅ do
if (there are inequalities in E with a single variable) then

U ← {x ∈ X : x is the only variable in at least one inequality in E}
Choose arbitrarily y ∈ U .
F (y)← {e ∈ E : e contains only variable y}
Give y a value that satis�es as many inequalities in F (y) as possible.
E ← E − F (y)

else

Choose arbitrarily y ∈ X.
y ← 0

Evaluate all inequalities in E which contain y.
X ← X − {y}

The algorithm always assigns to y a value which satis�es at least half of the inequalities in F (y).
Thus, it builds a solution that satis�es at least half of the inequalities in input. Therefore, the
maximum number of inequalities that can be satis�ed gives an approximation factor of 2. The
time complexity is polynomial, since each variable and term is processed only once. 2

Upper bound for approximation of homogeneous bipolar inequalities

Max Hom Bipolar Sat LR≥ (maximum homogeneous bipolar satis�able linear subsystem)
is the same problem as Max Sat LR≥ but the variables may only assume the values 1 and
−1, and all inequalities are homogeneous, ie no constant terms.

Show that Max Hom Bipolar Sat LR≥ can be approximated with a factor 2 and that
Max Hom Bipolar Sat LR> can be approximated with a factor 4.

Solution to Upper bound for approximation of homogeneous bipolar inequalities

We start with an approximation of Max Hom Bipolar Sat LR≥. Take an arbitrary bipolar
vector x and look for numbers satisfying the inequalities on the variables set to x and −x. If the
left hand side of an inequality is positive for x, it is negative for −x and vice versa. Therefore, one
of these two vectors will satisfy at least half of the inequalities, that is, the approximation factor
is 2.
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This trivial algorithm does not work forMax Hom Bipolar Sat LR>since for many relations
it can be zero for both vectors. Therefore, we start to look for a solution with many non-zero
relations. The approximation algorithm for Max Sat LR≥ above can be modi�ed so that it �nds
a solution x for which at least half of the relations are non-zero. The same is true also for −x, and
one of these two vectors must then satisfy at least a quarter of all relations. 2

Lower bound for the approximation of binary inequalities Max Binary Sat LR≥ (max-
imum binary satis�able linear subsystem) is the same problem as Max Sat LR≥ where the
variables may only assume the values 0 and 1.

Show that Max Binary Sat LR≥ 6∈APX.

Solution to Lower bound for the approximation of binary inequalities

We show this by reducing Max Clique to Max Binary Sat LR≥ with an approximation
preserving reduction. Since we know that Max Clique is not in APX it will mean that Max

Binary Sat LR≥ 6∈APX.
Let G = (V,E) be the input to Max Clique. For each vertex vi ∈ V , we assign a variable xi

and the inequality

xi −
∑

j∈N(vi)

xj ≥ 1

where j is in N(vi) if vj 6= vi and (vi, vj) 6∈ E (ie. vj is not a neighbor of vi). We have a system
of |V | inequalities. Note that the i-th inequality is satis�ed if and only if xi = 1 and xj = 0 for all
j ∈ N(vi).

It is easy to verify that if one has a s-click V ′ ⊆ V , he can obtain a binary solution that satis�es
the s corresponding inequalities by setting xi = 1 if vi ∈ V ′ and xi = 0 otherwise. On the other
hand, if one gets a binary solution x that satis�es s inequalities, he can get an s-click bu putting
in V ′ all the vertices that satisfy the corresponding inequalities.

This reduction is not only approximation preserving but also cost preserving as it preserves
the objective function value as well.

Note that this reduction works also for Ax > 0 and Ax = 1, so we can show thatMax Binary

Sat LR> 6∈APX and Max Binary Sat LR= 6∈APX. 2
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