
Algorithms and Complexity

Exercise session 9

Repetition

Di�erent exercises from old exams

This is not a standard exam template but just a collection of mixed exercises.

1. PSPACE is the complexity class consisting of all languages for which there exists a determin-

istic Turing machine that recognizes the language in polynomial space (memory). EXPTIME
consists of all languages for which there exists a deterministic Turing machine that recognizes
the language of exponential time. Show that PSPACE⊆EXPTIME.

2. (6p) [Classical �rst exercise in the theory part]
Are these statements true or false? For each sub-task provide a correct answer 1 point and
proven correct answer 2 points;

a) The problem of determining whether a n-digit number is prime number, is in the com-
plexity class co-NP.

b) There exists a constant c > 1 such that n3 ∈ O(clog n).
c) Binary tree is usually implemented by inserting two pointers in each entry (left and

right). When you implement ternary trees (where each node has three children), you
can not use less than three pointers in each entry.

3. In a large organization such as KTH there are many groups of people such as teachers
at NADA, teachers at F, students of the Algorithms and Complexity course , members of
Teknologkoren, etc. Each individual is included in at least one group, but one can be in
many groups. Now the president wants to create a group of representatives who can quickly
disseminate information to all individuals at KTH. He wants each group to be represented
in this group (ie at least one member of each group will be in the representative group), but
he wants the representative group to be as small as possible.

This is an example of a general problem which, given a set of groups, �nds the smallest
group of representatives.

a) (1p) Formulate the problem mathematically as a set problem and describe it at the
same time as a decision problem.

b) (5p) Show that the problem is NP-complete.

4. (6p) Input to the optimization problem Max k-Cut is a graph G. A solution is a cut of
the vertices of G in k groups. The problem is to �nd a solution that maximizes the number
of edges in the intersection between the groups, that is, between the vertices belonging to
di�erent groups. For k = 2 the problem is thus the same as Max Cut.

Describe a probabilistic approximation algorithm for Max k-Cut�and analyze the expected
value of objective function (ie the number of edges that go between the vertices belonging to
di�erent groups). Try to develop an algorithm where the expected value is at least 1− 1/k
of all edges, which means that approximation factor is k/(k − 1).

5. a) (6p) MAX 2∧SAT is an optimization problem which is de�ned as a decision problem
as follows.

Input: A positive integer K between 1 and n and n clauses where each clause
consists of one or two literals combined by the operator ∧. Example: x1 ∧ x3,
x2 ∧ x3.
Problem: Is there a variable assignment that satis�es at least K clauses?

1

Show that the decision version of MAX 2∧SAT problem is NP-complete. You might
reduce it to the MAX 2SAT - the equivalent problem with the operator ∨ instead of ∧
- which is NP-complete.

b) (5p) Construct a probabilistic approximation algorithm that approximates the opti-
mization problem MAX 2∧SAT within a factor of 4 (on average).

Solutions to exercises from old exams

1. If a Turing machine uses a polynomial amount of memory, there is a constant k such that the
number of locations on the tape is O(nk) where n is the input data length. If the alphabet
consists of three characters (0, 1, blank), the number of di�erent possible con�gurations of

the tape limited by 3O(nk), the number of possible locations for read/write head is O(nk)
and the number of possible states of the Turing machine is �nite, ie O(1). The total number
of con�gurations of a Turing machine using polynomial memory is thus O(nk) · 3O(nk), ie
exponential in n. Since the Turing machine can not return to the same con�guration multiple
times (then it would go into an in�nite loop), this is also an upper bound of time. Thus, all
problems that can be solved with polynomial memory can solved in exponential time.

2. a) True. A problem lies in co-NP if its complementary problem is in NP. The complemen-
tary problem is in this case to determine if a number with n digits can be factored in
at least two factors (greater than 1). This problem is in NP since a solution (ie, a fac-
torization of the number) can be veri�ed in polynomial time (by multiplying together
factors and check that the product is the given number).

b) True. if we assume that log n is the logarithm in base 2, we know that clog n = 2log clog n

=
2log n log c = nlog c. If we choose c ≥ 8 then log c ≥ 3 and n3 ∈ O(nlog c) = O(clog n).

c) False. For general tree it is su�cient to have two pointers in each node (firstson and
next).

3. a) Let k be a positive integer, S be the set of persons and C = {C1, . . . , Cm} be those m
groups. The problem is to �nd a subset S′ ⊆ S with more than k elements such that
S′ ∩ Ci 6= ∅ for 1 ≤ i ≤ m. In English this problem is called hitting set.

b) The problem is in NP since one can guess k elements that should be in the S′ and verify
that S′ ∩ Ci 6= ∅ for 1 ≤ i ≤ m in polynomial time.

The problem is NP-hard as it is a generalization of the vertex cover problem which
is known to be NP-complete. Given a graph G = (V,E), let S = V and C = E. A
vertex cover of size k corresponds to a subset S′ ⊆ S of size k that contains at least
one element from each Ci.

4. Let the algorithm for each of n vertices choose randomly which group it should belong to:

for i← 1 to n do group[i]← random(1, k)

The probability that the endpoints of a certain edge fall into the same group is 1/k, as a
vertex with probability 1/k falls in a particular group. The probability that the endpoints
of a certain edge do not to fall into the same group is therefore 1 − 1/k. If there are |E|
edges in the graph then the expected value of the number of edges that go between vertices
in di�erent groups is |E|(1− 1/k). Since a solution can never contain more than |E| edges,
the algorithm has approximation guarantee 1/(1 − 1/k) = k/(k − 1) on average. You can
derandomize the algorithm to achieve an approximation factor k/(k−1) with a deterministic
algorithm.

5. a) MAX 2∧SAT is in NP because it is easy to verify that a variable assignment (a solution)
satis�es at least K of the clauses. We show that it is NP-hard by reducing MAX 2-SAT.

2

Each 2-SAT clause with a single literal is also an instance of MAX 2∧SAT. For each
clause li∨ lj of a MAX 2-SAT instance we build three clauses of MAX 2∧SAT instance:
li ∧ lj , li ∧ lj and li ∧ lj . We can easily see that li ∨ lj is true if and only if one of the
three constructed clauses are true. If li ∨ lj is false then all the three clauses are false.
So the number of satisfying MAX 2-SAT clauses is exactly the number of satisfying
MAX 2∧SAT clauses. Therefore, choose the K for the constructed problem the same
value as K for MAX 2-SAT problem and you are done.

b) Let the algorithm randomly choose the values of each boolean variables with equal
probability. What is the probability that a clause li∧lj satis�es this variable assignment?
Well, since both literals must be true and the probability that one of them is true is
1/2, a clause is satis�ed with probability (1/2) · (1/2) = 1/4. The expected number
of satisfying clauses becomes m/4 if the number of clauses is m. Since the optimal
solution satis�es at most m clauses, the approximation factor is at most 4, ie, the
algorithm approximates MAX 2∧SAT with a factor 4.

3

