DD2371 Automata Theory

Examination Problems	Dilian Gurov
With solutions	KTH CSC
19 May 2008	$08-7908198$

1. Consider the language over the alphabet $\{a, b\}$ consisting of all strings that do not contain 2 or more consecutive a 's and do not end with b.
(a) Construct a deterministic finite automaton (DFA) that accepts this language. Draw its graph.
Solution: For example, see solution to problem 2(c).
(b) Suggest a regular expression that generates this language.

Solution: For example, the regular expression $(a+\epsilon)\left(b b^{*} a\right)^{*}$.
2. For the deterministic automaton given below, apply the minimization algorithm of textbook Lecture 14 to compute the equvalence classes of the collapsing relation \approx defined in textbook Lecture 13.

	a	b
$\rightarrow q_{0} \mathrm{~F}$	q_{1}	q_{3}
$q_{1} \mathrm{~F}$	q_{2}	q_{3}
q_{2}	q_{2}	q_{5}
q_{3}	q_{4}	q_{6}
$q_{4} \mathrm{~F}$	q_{2}	q_{6}
q_{5}	q_{2}	q_{5}
q_{6}	q_{7}	q_{3}
$q_{7} \mathrm{~F}$	q_{5}	q_{6}

(a) Show clearly the computation steps (use tables).
(b) List the computed equivalence classes.

Solution: The equivalence classes are: $\left\{q_{0}\right\},\left\{q_{1}, q_{4}, q_{7}\right\},\left\{q_{2}, q_{5}\right\}$ and $\left\{q_{3}, q_{6}\right\}$.
(c) Apply the quotient construction of textbook Lecture 13 to derive the minimized automaton. Draw its graph.
Solution: (as a table)

	a	b
$\rightarrow\left\{q_{0}\right\} \mathrm{F}$	$\left\{q_{1}, q_{4}, q_{7}\right\}$	$\left\{q_{3}, q_{6}\right\}$
$\left\{q_{1}, q_{4}, q_{7}\right\} \mathrm{F}$	$\left\{q_{2}, q_{5}\right\}$	$\left\{q_{3}, q_{6}\right\}$
$\left\{q_{2}, q_{5}\right\}$	$\left\{q_{2}, q_{5}\right\}$	$\left\{q_{2}, q_{5}\right\}$
$\left\{q_{3}, q_{6}\right\}$	$\left\{q_{1}, q_{4}, q_{7}\right\}$	$\left\{q_{3}, q_{6}\right\}$

3. Show that the class of regular languages is closed under the following unary operation on languages:

$$
\min A \stackrel{\text { def }}{=}\{x \in A \mid \text { no proper prefix of } x \text { is in } A\}
$$

(a) Define a construction on finite automata that has the corresponding effect on the accepted language.
Solution: An important result about a deterministic finite automaton $M=(Q, \Sigma, \delta, s, F)$ is that $\hat{\delta}(s, x \cdot y)=\hat{\delta}(\hat{\delta}(s, x), y)$. So, if both x and y are accepted by M, the unique path from s to $\hat{\delta}(s, x \cdot y) \in F$ has to pass state $\hat{\delta}(s, x) \in F$. Then, to elimiminate all suffixes of words in $\mathcal{L}(M)$, one has to eliminate all paths starting (and ending) in accept states of M. This is easily achieved by removing all outgoing edges from all accept states. Note that this results in a nondeterminstic finite automaton! So, we define:

$$
\begin{aligned}
N & \stackrel{\text { def }}{=}(Q, \Sigma, \Delta,\{s\}, F) \\
\Delta(q, a) & \stackrel{\text { def }}{=}\{\delta(q, a) \mid q \notin F\}
\end{aligned}
$$

(b) Prove the construction correct.

Solution: (Sketch) The important result that is needed here is that $\hat{\Delta}(\{q\}, x)$ equals $\{\hat{\delta}(q, x)\}$ exactly when the unique path from q to $\hat{\delta}(q, x)$ does not pass through an accepting state (since we removed all their outgoing edges), and is the empty set otherwise. Formally:

$$
\hat{\Delta}(\{q\}, x)= \begin{cases}\{\hat{\delta}(q, x)\} & \text { if for no proper prefix } y \text { of } x, \hat{\delta}(q, y) \in F \\ \emptyset & \text { otherwise }\end{cases}
$$

After proving this Lemma, it is straightforward to prove that $x \in \mathcal{L}(N) \Leftrightarrow x \in \min \mathcal{L}(M)$.
4. Consider the regular language A over alphabet $\Sigma=\{a, b\}$ defined through the regular expression $(a b+b)^{*}$. Recall the Myhill-Nerode Theorem, textbook Lecture 16, with the equivalence relation \equiv_{A} on strings over Σ defined by: (cf. equation (16.1) on page 97)

$$
x_{1} \equiv_{A} x_{2} \stackrel{\text { def }}{\Longleftrightarrow} \forall y \in \Sigma^{*} .\left(x_{1} \cdot y \in A \Leftrightarrow x_{2} \cdot y \in A\right)
$$

(a) Show the equivalence classes of Σ^{*} w.r.t. equivalence \equiv_{A}, represented as regular expressions.

Solution: There are three equivalence classes. They can be represented by the regular expressions: $(a b+b)^{*},(a b+b)^{*} a$ and $(a b+b)^{*} a a(a+b)^{*}$.
(b) For every pair of (different) equivalence classes A_{1} and A_{2}, give the shortest distinguishing experiment, by means of a string $y \in \Sigma^{*}$ such that $x_{1} \cdot y \in A \Leftrightarrow x_{2} \cdot y \notin A$ for any $x_{1} \in A_{1}$ and $x_{2} \in A_{2}$.
Solution: $(a b+b)^{*}$ is distinguished from $(a b+b)^{*} a$ by $\epsilon,(a b+b)^{*}$ is distinguished from $(a b+b)^{*} a a(a+b)^{*}$ by ϵ, and $(a b+b)^{*} a$ is distinguished from $(a b+b)^{*} a a(a+b)^{*}$ by b.
5. Consider the language family

$$
A_{n} \stackrel{\text { def }}{=}\left\{x \in\{a, b\}^{*} \mid \text { for every prefix } y \text { of } x, 0 \leq \sharp a(y)-\sharp b(y) \leq n\right\}
$$

Prove formally that for every n, the minimal DFA accepting A_{n} has exactly $n+2$ states.
Solution: We know that the minimal DFA accepting A_{n} is unique up to isomorphism. Then, one can prove the above result by exhibiting a DFA for A_{n} that has exactly $n+2$ states, and is minimal, in the sense that no two of its states are equivalent.
For a given n, define the DFA

$$
M_{n} \stackrel{\text { def }}{=}\left(\left\{q_{0}, \ldots, q_{n+1}\right\},\{a, b\}, \delta, q_{0},\left\{q_{0}, \ldots, q_{n}\right\}\right)
$$

where $\delta\left(q_{i}, a\right) \stackrel{\text { def }}{=} q_{i+1}$ for $0 \leq i \leq n, \delta\left(q_{i+1}, b\right) \stackrel{\text { def }}{=} q_{i}$ for $0 \leq i<n, \delta\left(q_{0}, b\right) \stackrel{\text { def }}{=} q_{n+1}, \delta\left(q_{n+1}, a\right) \stackrel{\text { def }}{=}$ q_{n+1}, and $\delta\left(q_{n+1}, b\right) \stackrel{\text { def }}{=} q_{n+1} . M_{n}$ has $n+2$ states, and it is easy to see that M_{n} accepts A_{n}.
We now show that M_{n} is minimal. For $0 \leq i<j \leq n$, we have $q_{i} \not \approx q_{j}$ with witness b^{i+1} (since $\hat{\delta}\left(q_{i}, b^{i+1}\right)=q_{n+1} \notin F$ while $\left.\hat{\delta}\left(q_{j}, b^{i+1}\right)=q_{j-(i+1)} \in F\right)$. And for $0 \leq i \leq n$, we have $q_{i} \not \approx q_{n+1}$ with the obvious witness ϵ.
6. Consider the context-free grammar:

$$
S \rightarrow \epsilon|a S| S b
$$

(a) Which language does this grammar generate?

Solution: It generates the language $\mathcal{L}\left(a^{*} b^{*}\right)$.
(b) Prove your answer correct.

Solution: The proof of $S \rightarrow{ }_{G}^{+} x \Leftrightarrow x \in \mathcal{L}\left(a^{*} b^{*}\right)$ is standard, as discussed in class.
7. Consider the following language:

$$
L \stackrel{\text { def }}{=}\left\{a^{m} b^{n} \mid m \neq n\right\}
$$

over the alphabet $\Sigma=\{a, b\}$.
(a) Refer to the closure properties of context-free languages to show that L is context-free.

Solution: We have $L=A \cdot C \cup C \cdot B$ for languages $A \xlongequal{\text { def }} \mathcal{L}\left(a a^{*}\right), B \stackrel{\text { def }}{=} \mathcal{L}\left(b b^{*}\right)$, and $C \stackrel{\text { def }}{=}$ $\left\{a^{n} b^{n} \mid n \geq 0\right\}$, all of which are context-free. Since CFLs are closed under concatenation and union, L must also be context-free.
(b) Guided by your answer, give a context-free grammar G generating L.

Solution: Using the constructions used for proving the corresponding closure properties, we easily obtain the grammar:

$$
\begin{aligned}
S & \rightarrow S_{A} S_{C} \mid S_{C} S_{B} \\
S_{A} & \rightarrow a \mid a S_{A} \\
S_{B} & \rightarrow b \mid b S_{B} \\
S_{C} & \rightarrow \epsilon \mid a S_{C} b
\end{aligned}
$$

(c) Construct a deterministic pushdown automaton (DPDA) that accepts L on final states. (Recall that DPDAs rewrite \perp only to strings of shape $\gamma \perp$, so they never halt because of an empty stack.) Draw its graph and explain its workings.
Solution: (Sketch) It is not difficult to come up with a DPDA for this language having 6 control states. The key idea is to push onto the stack a letter A for the first a of the input word, but push a different letter B for all following a 's. This allows to detect the b "matching" the first a, and to move to a non-final control state.
(d) Recall the Chomsky-Schützenberger Theorem (textbook Supplementary Lecture G). Show how this theorem applies to the above language L, by identifying:

- a suitable natural number n,
- a regular language R over the alphabet Σ_{n} of the n-th balanced parentheses language PAREN_{n}, and
- a homomorphism $h: \Sigma_{n} \rightarrow \Sigma^{*}$,
so that you can argue that $L=h\left(\operatorname{PAREN}_{n} \cap R\right)$ holds.
Solution: Again guided by the decomposition in (a), one can take $n=3$, regular language $R=\mathcal{L}\left(\left[1_{1}\left[1^{*}\right]_{1}{ }^{*}\left[2^{*}\right]_{2}{ }^{*}+\left[2^{*}\right]_{2}{ }^{*}\left[3^{*}\right]_{3}{ }^{*}[3)\right.\right.$ and homomorphism h defined by $h([1)=h([2)=a$, $\left.\left.h(]_{2}\right)=h(]_{3}\right)=b$, and $\left.h(]_{1}\right)=h\left(\left[{ }_{3}\right)=\epsilon\right.$.

8. Consider the language:

$$
A=\left\{a^{l} b^{m} a^{n} \mid l<m<n\right\}
$$

Use the Pumping Lemma for context-free languages, as a game with a Deamon, to prove that A is not context-free.
Solution: (Sketch) By picking $z=a^{k} b^{k+1} a^{k+2}$ it is easy to win the game, by pumping out (i.e. picking $i=0$) or in (e.g. picking $i=2$) depending on whether $v \cdot x$ overlaps with the last block (in which case it cannot overlap with the first block) or not, respectively.
9. Give a detailed description, preferably as a graph, of a total Turing machine accepting the language:

$$
A=\left\{a^{n^{2}} \mid n \geq 0\right\}
$$

Explain the underlying algorithm.
Solution: (Sketch) One idea is to procede in rounds, by marking the letters on the tape with single or double dots, so that at the end of round k the tape contents are:

$$
\vdash \underbrace{\overbrace{a \ddot{a} \ldots \ddot{a}}^{k} \dot{a} \ldots \dot{a}}_{k^{2}} a a \ldots a
$$

Noticing that $(k+1)^{2}=k^{2}+2 k+1$ and that a block of $k^{2} a$'s and another one of $k a$'s are readily present after round k, it is not difficult to compute the tape contents needed at the end of round $k+1$, namely:

$$
\vdash \underbrace{\overbrace{\ddot{a} \ddot{a} \ldots}^{k+1} \dot{a} \dot{a} \dot{a} \ldots \dot{a}}_{k^{2}+2 k+1} a a \ldots a
$$

The machine accepts if after some completed round all a 's are marked, and rejects if all a 's are marked before completion of the latest round.
10. Show that the problem of whether a Turing machine eventually writes a given letter on its tape for exactly 777 input strings is undecidable. Or, in other words, show that the set

$$
P \stackrel{\text { def }}{=}\{\hat{M} \sharp \hat{a} \mid \text { for } 777 \text { inputs, } M \text { eventually writes } a \text { on its tape }\}
$$

is not recursive.
Hint: Find a suitable problem P^{\prime} on recursively enumerable sets, for which you:
(a) argue that P^{\prime} is not trivial and hence, by Rice's Theorem, is undecidable, and
(b) reduce P^{\prime} to the original problem P, by describing how from a total TM for P you can build a total TM for P^{\prime}.

Solution: The bottom-line idea in many problems like this one is to reduce acceptance to the given problem, in this case eventual writing of some letter to the tape.

The problem P^{\prime} of whether a Turing machine M accepts exactly 777 strings (i.e. whether $|\mathcal{L}(M)|=777)$ is obviously a nontrivial problem on recursively enumerable sets, and hence, by Rice's Theorem, is undecidable. We will reduce this problem to the original problem P above.
Assume M_{P} is a total TM for P. Construct Turing machine N as follows. On input \hat{M}, machine N :

- modifies \hat{M} to \hat{M}^{\prime} by adding: a new symbol a to the input alphabet of M, a new state $t_{\text {new }}$ which is made the accept state of M^{\prime}, and transitions from the original accepting state (of M) to $t_{\text {new }}$ that on any tape symbol rewrite this symbol to a, and
- overwrites the input with $\hat{M}^{\prime} \sharp \hat{a}$, rewinds, and continues as M_{P}.

Then, we have:

$$
\begin{aligned}
N \text { accepts } \hat{M} & \Leftrightarrow M_{P} \text { accepts } \hat{M}^{\prime} \nvdash \hat{a} \\
& \Leftrightarrow \text { for } 777 \text { inputs, } M^{\prime} \text { eventually writes } a \text { on its tape } \\
& \Leftrightarrow \text { for } 777 \text { inputs, } M \text { accepts } \\
& \Leftrightarrow|\mathcal{L}(M)|=777
\end{aligned}
$$

Since M_{P} is total, we obtain that N rejects \hat{M} if $|\mathcal{L}(M)| \neq 777$, and hence N is a total TM deciding problem P^{\prime}. But this problem is undecidable, and so we arrived at a contradiction. Therefore no total TM for P exists, and hence problem P is undecidable.

