KTH CSC VT 2008

DD2371 Automata Theory

Dilian Gurov

Lecture Outline

. T he lecturer

. Introduction to automata theory

. Course syllabus

. Course objectives

. Course organization

. First definitions

1. Lecturer
Name: DilianGurov
E-mail: dilian®@csc.kth.se
Phone: 08-790 81 98 (office)
Visiting address: Osquarsbacke 2, room4417

Research interests:
- Analysis of program behaviour
- Correctness: logics, compositionality

2. Introduction to Automata Theory

Automata are abstract computing devices.

Purpose: to capture the abstract notions of
computation and effective computability.

We shall study and compare the computa-
tional power of three different classes of au-
tomata: Finite Automata, Pushdown Automata,
and Turing Machines.

T he comparison is made through the concept
of formal languages.

Basic notions: state, nondeterminism, equiv-
alence and minimization.

Algorithmic decidability.

Aim

The overall aim of the course is to provide
students with a profound understanding of
computation and effective computability through
the abstract notion of automata and the lan-
guage classes they recognize.

Along with this, the students will get ac-
quainted with the important notions of state,
nondeterminism and minimization.

Part 1.

Part II.

Part III.

3. Course Syllabus

Finite Automata and Regular Languages:
determinisation, closure properties, regu-
lar expressions, state minimization, prov-
ing non-regularity with the Pumping lemma,
Myhill-Nerode relations.

Pushdown Automata and Context-Free
Languages. context-free grammars and
languages, normal forms, closure prop-
erties, proving non-context-freeness with
the Pumping lemma, pushdown automata.

Turing Machines and Effective Computabil-
ity: Turing machines, recursive sets, Uni-
versal Turning machines, diagonalization,
decidable and undecidable problems, re-
duction, other models of computability.

4. Course Objectives

After the course, the successful student will
be able to perform the following construc-
tions:

e Determinize and minimize automata;

e Construct an automaton for a given reg-
ular expression;

e Construct a pushdown automaton for a
given context-free language;

e Construct a Turing machine deciding a
given problem,

...be able to prove results such as:

e Closure properties of language classes;

e Prove that a language is not regular or
context-free by using the Pumping Lem-
mata;

e Prove that a given context-free grammar
generates a given context-free language;

e Prove undecidability of a problem by re-
ducing from a known undecidable one,

as well as be able to apply the fundamental
theorems of the course:

e Myhill-Nerode, Chomsky-Schutzenberger,
and Rice's theorems.

5. Course Organization

Credits: 4 points. Optional for graduate
students.

Webpage: www.csc.kth.se/DD2371

Structure:

- 15 lectures/tutorials,

- 3 assignments,

- 1 written exam (open book).

Graduate students work in addition on a project.

Course book: Dexter Kozen, Automata and
Computability, Springer, 1997. (Karbokhandeln)

Course board: Group of student represen-
tatives. Any volunteers?

Strings and Sets

Definition 1 (Strings) Basic notions:

e An alphabet is a finite set > of symbols.

e A string x over > is a finite-length se-
quence of elements of >. Concatenation
x-y or simply xy. The set of all strings
over ¥ s denoted **.

e A language over > is a subset of >X*.

e The length of a string x is denoted |x|.

e [he empty string is denoted .

e x is a prefix of y if xz =1y for some z.

Definition 2 (Sets) Basic notions:

e Set membership x € A

e Set union

AUdeef{:I:|:C€AOI’a:€B}

e Set intersection

AﬂBd:ef{:I;|a:€Aanda:EB}

e String set concatenation

A-deef{xy|azeAandy€B}

e Powers A™

o Asterates A*, AT

Finite Automata and Regular Languages

Definition 3 (DFA) A deterministic finite
automaton is a structure

ME(Q,%,6, s, F)

where:

e () - finite set of states.

e > - input alphabet.

e 0. QXX — @ - transition function. In-
duces §: Q x =* — Q.

e sc (@ - initial state.

o 'C () - final states.

Graphical representation.

M accepts z if (s,z) € F.

The language accepted by M is

L(M) o {x € =% | M accepts z}.

A language is called regular if it is accepted
by some DFA.

Example 1 Build M4 accepting Lq & {ax | x € Z*}
and M, accepting Lo & {zb |z € Z*}.

Exrecise: HW 1.1(a)

Closure properties of regular languages.

The Complement Construction
Let M = (Q,%,0,s,F) be a DFA.

The complement of M is defined as the au-
tomaton:

ME(Q,x,5,s,F)

Theorem 1 L(M) = L(M)

Hence regular languages are closed under com-
plement.

The Product Construction

Let
My = (Q1,%,61,51,F1) and
Mo = (QQ, Z,52,SQ,F2) be two DFAs.

The product of My and M5 is defined as the
automaton:

def
My x My = (Q1 X Q2,%,6,(s1,52) , F1 X F5)

where

5((q1,42),a) = (61(q1,0a),52(q2, a))

Theorem 2 L(Mq x My) = L(M1) N L(M>)

Hence regular languages are closed under in-
tersection.

Exercise: HW 1.2(a)

Home exercises: HW 1.1, HW 1.2, ME 2.

Nondeterministic Finite Automata
def *
Example 2 L = {zab |z € ¥*}

Definition 4 (NFA) A nondeterministic finite
automaton is a structure

NE(Q,x,A, S8 F)

where:

e A : Qx X — 29 - transition function,
inducing A : 29 x ¥* — 2@,

e SCQ - Initial states.

N accepts z if A(S,2)NF £ 0.

Theorem 3 Thelanguages accepted by NFAs
are the regular languages.

From DFA to NFA

For M = (Q,X,d,s, F) we construct

NZ(Q,%,A,{s},F)

where

A(g,a) = {5(q,a)}

Theorem 4 L(N) = L(M)

Hence every regular language is accepted by
some NFA.

From NFA to DFA:
The Subset Construction

For N = (Qn, >, AN, Sy, Fy) we construct

def
M = (Qur X, 0 501 Far)

so that:

o 511(A,a) = An(A,a)

def
[SN — SN

o Fiyy E{AcQy | AnFy # 0}

Theorem 5 L(M) = L(N)

Hence every language accepted by an NFA is
regular.

Exercises: ME 4(a), HW 2.2
NFA extension: e-transitions.
More closure properties.

Home exercises: HW 2.1, ME 3, ME 5,
ME 6 (1), ME 10 (a, b).

Pattern Matching

For any pattern «:

L(a) = {x € Z* | matches a}

Atomic patterns:

a - exactly by a € >

g - exactly by e

- @ - by no string

- # - by any symbol in >

- @ - by any string in ><*

Compound patterns, matched by x:

- a—+ B - if x matches a or 8

- aNP - if x matches o and G

«- (3 - if for some y, z such that x =y - z,
y matches a and z matches g3

- ~a - iIf £ does not match «
- o - if x matches a™ for some n >0
- aT - if z matches o™ for some n > 0

Example 3 All strings:
- of the shape xaybz
- with no occurrence of a

Pattern Matching and
Regular Expressions

Regular expressions:
- atomic patterns: a, €, ©
- operators: +, -, *

Theorem 6 Let A C >*. The statements:

(i) A= L(M) for some finite automaton M
(ii) A = L(«a) for some pattern o

(iii) A = L(«) for some regular expression «
are equivalent.

Proof.

(i) = (iii) - next lecture

(i) = (ii) - trivial

(ii) = (i) - by structural induction:

- holds for the basic patterns, and

- is preserved by the operators. []

Example 4 Automaton for (ab)™ + (bc)*

Regular Expressions and
Finite Automata

Let N =(Q,>X,A,S, F) be an NFA.

For X C Q and u,v € Q, let a;: denote the
regular expression representing all paths in NV
from v to v with intermediate nodes in X.

Then for
def
eN = D O‘sQf

seS
fEF

we have L(eyn) = L(N).

We can build oz}, inductively:

(®—|— Z a ifu*wv

acA(u,v)

e+ > a otherwise
ac(u,v)

aX & astad 4 ai%—{q}(aéfq—{q})*aég—{q}

where A(u, v) e {aeX|ve A(u,a)}.
Example 5 Automaton:

- initial state qqg, final state q,
- a-edge from qg to qp, b-edge from qqg to q;.

Kleene Algebra and
Regular Expressions

Equivalence o = 8 when L(a) = L(3).

Axioms:

(A1) a4+ B+ = (a+8)+~
(A2) a+8 = f+a
(A3) a+Q = «

(Ayg) at+a = «

(As) a-(B-v) = (a-8)-~
(Ag) a-£€ = «

(A7) a0 = Q

(Ag) a-(B+7) = a-Bt+a-v
(A9) (B+v)a = p-aty «
(A10) et+a-af = of

Rules of Equational Logic:
- equivalence rules:

reflexivity, symmetry, transitivity
- substitution rule

Example 6 ¢ 4+ o™ = o*

Other derived laws:

(L1) (@-B)" a = a-(B-a)
(L2) o -B%-a* = (a+B)"
(L3) e+a* = of

(Lyg) a-af = of -«

Exercises: HW 3, ME 11-20.

DFA State Minimization

Observable behaviour of a system. Distin-
guishing experiment. Indistinguishability by
experiment is an equivalence! Forms the ba-
sis for minimization.

For two DFAs: what is a distinguishing ex-
periment? The equivalence IS:

My =~ MQ L(Ml) = L(M>)

One can apply the same reasoning to states.
Equivalence of states:

def
g1 ~ q> <:e)> Vox € 2_%. (51((]1,33) c < 52((]2,33) c FQ)

Minimization of a DFA by collapsing equiv-
alent states: the quotient construction. EX-
ample.

Equivalence class of gq:

[= {deQld~q}

The Quotient Construction

For M = (Q,X,d,s, F) we construct

def

M/% — (Q/7275/78/7F/)

so that:

e E {lgdqeQt=0Q/~

o 5'([q],a) ¥ [6(q,a)]

sound because p~ q = d6(p,a) =~ 6(q,a)

o s’ £ [5]

« 'S {[g]|q€F}=F/x
sound because p=~qgANqg€E F=peEeF

Theorem 7 L(M/~) = L(M)

Minimality of M/~:

o w.r.t. M: [p] = |[q] = [p] = [q]
because ¢ ~ [q]

e w.r.t. L(M): yes, in later lecture.

Minimization Algorithms

Equivalence/undistinguishability of states:
q1 ~ Qg2 <d:ef> V. (Sl(ql,az) c < 82((]2,33) c FQ)

Stratified equivalence/undistinguishability:
“within k steps’:

def - -
G~k go = Vo |z < k. (61(qu,z) € F1 < 62(go, z) € F»)
T hen we have:

q1 ~ g2 < Vk. q1 RE @2

But actually, if g1 and ¢o are distinguishable,
then there is a distinguishing sequence of
length less than |Q]:

q1 ~ g2 & VE < |Q| —1.q91 = g2

We can compute these “approximants’ iter-
atively:

P Qo q PN peEF &S qge F

def
P41 q &S prjgand Va e Z.6(p,a) ~; 6(q,a)

Define, for any relation R C Q x Q, the map-
ping f:2@%X@ _ 2@XQ py:

p f(R) q Lovg e x d(p,a) Rd6(q,a)

Using this notation, we can redefine:

~0 & (FxF)U(Q-F)x(Q—F))
Nir1 = o~ Nf(R)

Algorithm:

E ==,
while E A EnN f(F) do E:= EN f(F)

Example.

Exercises: HW 4.3, ME 47.

Myhillm-Nerode Theorem
Let M = (Q,X,d,s,F) be a DFA. Recall:
p%q<d:ef>V£C e X*. d(p,x) € F<d(q,x) €EF
x € L(M) JEEN 6(s,x) € F
Question: Is M/~ the least DFA for L(M)~
Answer: Yes.

We need an abstract notion of state in terms
of strings.

state - a maximal set of histories undistin-
guishable by experiment!

.., 1.e., an equivalence class of >* w.r.t. undis-
tinguishablity.

- what is a history?
- what is a distinguishing experiment?
- is undistinguishability an equivalence?

In our case:

- histories are strings,

- a distinguishing experiment is appending
some string to both histories and checking
membership to L,

- undistinguishability is an equivalence.

Let L C >*. Define =;,C X* x Z* by:

X1 EL$2<d:ef>\V/yEZ*.($1°yEL<:>CU2°yEL)

Reformulated question: Do @/~ correspond
to Z*/EL(M)? Yes! Indeed:

d establishes the correspondence X* « Q.
We have:

éM/%(Saxl) ? 5M/%(87332)

op(s,z1) = op(s, z2) o

Vy S Z*(QM(éM(Saxl)ay) S F,i<:> 5M(5M(87$2)7y) €
Vye XZ*.(0p(s,21-y) € F< op(s,z1-y) € F)
Vye >X*(x1-ye€ L(M) < xo-y€ L(M))

teeo

One can even directly construct the minimal
automaton for L as:

def
ML é (Z* EL7275L7 [8]L7L/EL)

where 61 ([z]r ,a) e [xa] ;.

Theorem 8 (Myhill-Nerode Theorem)

L is regular < X*/=, is finite.
Example 7 Construct My for L(a*b*).

Exercise: ME 55.

Limitations of Finite Automata

Theorem 9 (Cantor) Let S be aset. There
IS no bijection:

f:8—2%

Proof. Let f: S5 — 25 be a mapping. Define
the set:

def

A={seS|s¢ f(s)}
Assume f is a bijection. Then A = f(s) for
some s € S. But then:

se f(s) & sc A
& s & f(s)

which is a contradiction. Hence f is not a
bijection. []
For example, there is no bijection

[D A,

from strings over > to languages over 3.

Theorem 10 (DG) Let M be a class of ac-
cepting automata. Let™: M — 3X* be an
(injective) encoding. Then there is a lan-
guage L C >* which is not accepted by any
M e M.

Proof. Define the set:

L& {M € >* | M does not accept M}

Assume there is M € M such that L(M) = L.
But then:
M accepts M < M € L(M)
& MeL
& M does not accept M
which is a contradiction. Hence there is no
such M. []

Pumping Lemma

Consider the language:

BE {a"™" | n > 0}

It is not regular, and to recognize it we need
unbounded memory!

For, if we assume otherwise, then there must
be a DFA M so that:
L(M)=RB

Then, take the string a*bF for some k > |Q].
It must be that:

U v w
@aaad - aaada - aaa - bbbbbbbbbbbb
T T T T
s q q J

Then u-w must also be accepted, and all
other strings of the form w-v*-w as well. But
none of these strings, with the exception of
wvw itself, is in B!

Theorem 11 (Pumping Lemma) Let A be
regular. Then:

dk > 0.
Ve,y,z € 2% 1 xyz € AN |y| > k.
Ju,v,w € ¥ Iy = uvw Av F €.
Vi > 0.

ruv'wz € A
Or, in contrapositive form:
If for A C >*:

Vk > 0.
Jr,y,z € X% 1 xyz € AN |y| > k.
Vu,v,w € Z* . y = uvw A v £ .
Ji > 0.
ruvtwz & A

then A is not reqgular.

Exercises: L 12, HW 4.1, ME 35-45.

Context-Free Grammars and Lanuages
Finite-state vs. finite-control.
Grammars vs. automata.

Definition 5 (CFG) A context-free grammar
IS a structure

G E (N,=,P,S)

where:

e N - finite set of non-terminals.

e > - finite set of terminals.

e PC Nx(NUZX)* - finite set of productions
of the shape A — «.

e Sc N - start symbol.

Example 8 S — €| aSb

One-step derivability:

a—ag O

if a = a1Aas and B = aqvyap for some a1, as
and production (A — ~) € P.

A sentential form of G is a string over (N U X)*
derivable from S.

A sentence of G is a string over >* derivable
from S.

The language of G is the set of all its sen-
tences:

def

L&) E{zex |5 5S¢ af

A language is context-free if it is the lan-
guage of some CFG.

Balanced Parentheses
Let N ={S} and = ={[,]}.

Define the functions:
def

L(z) ;f#[(fv)
R(z) = #](x)

A string x of parentheses is balanced if:
- L(x) = R(x)
- L(y) > R(y) for all prefixes y of x

Theorem 12 The set of all balanced strings
of parentheses is a context-free language.

Proof. Consider the CFG

S —e|[S]|SS

We show that a string of parentheses is bal-
anced exactly when it is a sentence of this
grammar.

Normal Forms

Definition 6 Let G be a CFG.

e (G isin Chomsky normal form (CNF) if all
its productions are of the form:

A— BC or A — a

e GG is in Greibach normal form (GNF) if all
its productions are of the form:

A — aB1B2...B,

Theorem 13 For every CFG G there is a
CFG G’ in CNF and a CFG G" in GNF such
that:

(@) = L(G") = L(G) — {¢}

Pumping Lemma for CFL

Consider the language:

LE {a"b"™ | n > 0}

and the grammar G given by
S — €| aSh

generating L. Consider the string aabb €&
L(G). It is generated by the parse tree:

We have a path where the non-terminal S
occurs more than once. Take the last two
occurrences. T hese generate two subtrees,
T and t. But replacing T for t yields an-
other parse tree for a word in L! SO, aaabbb,
aaaabbbb, ..., are also in L.

If x € L is sufficiently long, there is a parse
tree where some non-terminal repeats along

a path! For G in CNF this is guaranteed for
| > 2+,

Theorem 14 (Pumping Lemma for CFL)
Let A be context-free. Then:

dk > 0.
Vze A:|z| > k.
Ju,v,w,xr,y € *:
z = uwvwzy N ve # e A |vwz| < k.
Vi > 0.

w'lwzly € A
Or, in contrapositive form:
If for A C >*:

Vk > 0.
dze A:|z| > k.
Vu,v,w,x,y € >
z = uwvwzy N\ ve # € A\ |[vwz| < k.
d¢ > 0.
w'lwzly € A

then A is not context-free.

Exercises: HW 5.1-3, ME 72, 84.

Pushdown Automata

Definition 7 (NPDA) A nondeterministic
pushdown automaton is a structure

ME(@Q =65, 1)

where:

e () - finite set of control states.
> - a finite input alphabet.
[T - a finite stack alphabet.

e 0 C (QXxINxXx(QxTI™*) - a finite set
of labelled productions of the shape:

a

(q1,A) — (q2,7)

e s € () - start state.
1 el - initial stack symbol.

A state of a NPDA consists of a control state
and the state of the stack: configurations
Q x M~

Initial configuration: (s, L).

Let A C(QxT*) x X x (Q xT*) be the least
labelled transition relation closed under the
prefix rule:

a

(g1, A) = (2,7) if {(q1,A) = (q2,7) €
inducing A C (Q x M) x Z* x (Q x).

M accepts z if (s, L) — (g, ¢€).

The language accepted by M is

LM E {x € X" | M accepts z}.

Example 9 L(M) = {a™b" | n > 1}
def

Q= {qy,9-}

> £ {a,b)

r&s A
(a+:5)

def< <q+’ A>

N

<Q+, A> ,
(44, AA),

def
S — q4

1 ¥g

This PDA is actually deterministic. How about
a nondeterministic PDA with one control state?

From CFG to NPDA

From a CFG G = (N,X,P,S) in GNF, we
construct canonically a NPDA

M= ({¢},=,N,8,4,5)

where:

e g - single control state,
the input alphabet of M are the terminals
of GG,
the stack alphabet of M are the non-
terminals of G,
the initial stack symbol of M is the start
symbol of G,

o (q,A) < (g,v) in 6 iff A—a-vin P.
Theorem 15 L(M) = L(G).
Exercises: HW 5.4, 6.2, 6.4, ME 76.

Homework: HW 7.2.

Parsing

Parsing is the process of producing a parse
tree for a sentence w.r.t. a grammar.

Example 10 Arithmetic expressions:
E— (EBE) | (UE)|C |V

B—+4+|—|x|+
U— —

C—-0|1]|2]---
V-X|Y|Z]---

Parse the expression:

(X +1)xY)+(2x(-X)))

Parsing procedure for arithmetic expressions.

Ambiguous and unambigous grammars.

Operator precedence.
Example: X +2xY and X +2-Y.

Example 11 Arithmetic expressions:

E — EB;F | F
F — FByG | G
G—-UG|H
H—C|V|(F)
B —+ |-
BH—>X‘+
U— —
C—-0|1]|2]---
V-X|Y|Z]|- -

Parse the expression:

X+2x44+-Y

Modified parsing procedure.

Exercises: HW 7.1.

Turing Machines and
Effective Computability

What is effective computability?

Formalisms:

e Turing machines, by Alan Turing

e Post systems, by Emil Post

e u-recursive functions, by Kurt Godel

e)\-calculus, by Alonzo Church

e Combinatory logic, by Haskell B. Curry

Church’s thesis.

Universality and self-reference.

Definition 8 (TM) A deterministic one-tape
Turing machine is a structure

ME Q=M U,é6,s,tr)

where:

e () - finite set of control states,
> - a finite input alphabet,
[D > - a finite tape alphabet,
el — 2> - the left endmarker,
LI €l — 2 - the blank symbol,

e 0. QX —=QxTI x{L,R} - the transition
function,

e s € () - the start state,
t € QQ - the accept state,
r € (Q - the reject state.

Configurations: Q x '™ x N.
Start configuration on input x € ~*: (s, z,0).

Let
—C(QXT"xN)x(QxT*x N)

be the least transition relation closed under
the rules:

5(19, Zn) — (Q7b7 L)
(p,z,n) — <Q7 SZ’(Z),’I’L T 1>

5(29, Zn) — (Q7b7 R)
(p,z,n) — <Q7 S?(Z),TL + 1>

Machine M accepts input =z € >* if:

(s, x,0) =™ (t,y,n)

and rejects x if:

(s,Fx,0) =% (r,y,n)

Machine M halts on z if it either accepts or
rejects x.

M is total if it halts on all inputs.

As usual, the language L(M) of M is the set
of all input strings accepted by M.

A set of strings A C >* is called recursively
enumerable if A = L(M) for some Turing
machine M, and recursive if M is total.

Example 12 Turing machine for:

LE (w w|we {a,b}*)

Equivalent models: multiple tapes, two-way
infinite tapes, two stacks, counter automata,
enumeration machines.

Exercises: HW 8.1, ME 96.

Universal Machines and Undecidability

Encoding Turing machines over {0,1}:
0™10™10%10%10%10"10%10%1 - - -

for a Turing machine with:

- n states represented by O ton — 1,

- m tape symbols represented by O to m — 1,

of which the first k£ are the input symbols,

- s, t, r are the start, accept and reject states,

- u, v are the endmarker and blank symbols,
followed by a sequence of substrings:

0P10%10910%104%1 - - .
for each é6(p,a) = (q,b,d).

We can construct a universal Turing machine
U such that:

L(U) = {Mﬁf | M accepts a:}

One can view U as a programmable device,
and M as its program! U can also be easily
modified to U’ for semideciding rejection.

There are countably many Turing machines,
but uncountably many decision problems on
Turing machines, and, due to Cantor's the-
orem, there is no bijection between the two
sets.

Recall from Theorem 10 that:

LE {M | M does not accept M}

IS not r.e. But then, neither is

Lygs = {MﬂM | M does not accept M}

r.e. since we can reduce from the previous
problem: If there was a machine Mpyg4 ac-
cepting Lyga, We could modify it to Mj so
that it first scans the input x and replaces
it by zffxz, and then continues as Mpyg4. But
then M; would accept L which is impossible!

By a similar argument,

Lyg = {Mﬁi | M does not accept az}

IS not r.e., since we can reduce from the pre-
vious problem by inserting an initial check
whether the input string is of the shape xfx.
(cf. L(U))

Now,

Ly ¥ {Mﬁf | M halts on :c}

is r.e. (cf. L(U)), but not recursive since
we can reduce from the previous problem: If
there was a total My accepting Ly, we could
modify it to a machine Mpj 4 by running Lg
first, and either accepting if Ly rejects, or
continuing as U’ otherwise. Mpy 4 will thus
accept Ly4y.

