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1. Lecturer

Name: DilianGurov

E-mail: dilian@csc.kth.se

Phone: 08-790 81 98 (office)

Visiting address: Osquarsbacke 2, room4417

Research interests:

- Analysis of program behaviour

- Correctness: logics, compositionality



2. Introduction to Automata Theory

Automata are abstract computing devices.

Purpose: to capture the abstract notions of

computation and effective computability.

We shall study and compare the computa-

tional power of three different classes of au-

tomata: Finite Automata, Pushdown Automata,

and Turing Machines.

The comparison is made through the concept

of formal languages.

Basic notions: state, nondeterminism, equiv-

alence and minimization.

Algorithmic decidability.



Aim

The overall aim of the course is to provide

students with a profound understanding of

computation and effective computability through

the abstract notion of automata and the lan-

guage classes they recognize.

Along with this, the students will get ac-

quainted with the important notions of state,

nondeterminism and minimization.



3. Course Syllabus

Part I. Finite Automata and Regular Languages:

determinisation, closure properties, regu-

lar expressions, state minimization, prov-

ing non-regularity with the Pumping lemma,

Myhill-Nerode relations.

Part II. Pushdown Automata and Context-Free

Languages: context-free grammars and

languages, normal forms, closure prop-

erties, proving non-context-freeness with

the Pumping lemma, pushdown automata.

Part III. Turing Machines and Effective Computabil-

ity: Turing machines, recursive sets, Uni-

versal Turning machines, diagonalization,

decidable and undecidable problems, re-

duction, other models of computability.



4. Course Objectives

After the course, the successful student will

be able to perform the following construc-

tions:

• Determinize and minimize automata;

• Construct an automaton for a given reg-

ular expression;

• Construct a pushdown automaton for a

given context-free language;

• Construct a Turing machine deciding a

given problem,



...be able to prove results such as:

• Closure properties of language classes;

• Prove that a language is not regular or

context-free by using the Pumping Lem-

mata;

• Prove that a given context-free grammar

generates a given context-free language;

• Prove undecidability of a problem by re-

ducing from a known undecidable one,

as well as be able to apply the fundamental

theorems of the course:

• Myhill-Nerode, Chomsky-Schützenberger,

and Rice’s theorems.



5. Course Organization

Credits: 4 points. Optional for graduate

students.

Webpage: www.csc.kth.se/DD2371

Structure:

- 15 lectures/tutorials,

- 3 assignments,

- 1 written exam (open book).

Graduate students work in addition on a project.

Course book: Dexter Kozen, Automata and

Computability, Springer, 1997. (Kårbokhandeln)

Course board: Group of student represen-

tatives. Any volunteers?



Strings and Sets

Definition 1 (Strings) Basic notions:

• An alphabet is a finite set Σ of symbols.

• A string x over Σ is a finite-length se-

quence of elements of Σ. Concatenation

x ·y or simply xy. The set of all strings

over Σ is denoted Σ∗.

• A language over Σ is a subset of Σ∗.

• The length of a string x is denoted |x|.

• The empty string is denoted ε.

• x is a prefix of y if xz = y for some z.



Definition 2 (Sets) Basic notions:

• Set membership x ∈ A

• Set union

A ∪ B
def
= {x | x ∈ A or x ∈ B}

• Set intersection

A ∩ B
def
= {x | x ∈ A and x ∈ B}

• String set concatenation

A · B
def
= {xy | x ∈ A and y ∈ B}

• Powers An

• Asterates A∗, A+



Finite Automata and Regular Languages

Definition 3 (DFA) A deterministic finite

automaton is a structure

M
def
= (Q,Σ, δ, s, F )

where:

• Q - finite set of states.

• Σ - input alphabet.

• δ : Q × Σ → Q - transition function. In-

duces δ̂ : Q × Σ∗ → Q.

• s ∈ Q - initial state.

• F ⊆ Q - final states.



Graphical representation.

M accepts x if δ̂(s, x) ∈ F .

The language accepted by M is

L(M)
def
= {x ∈ Σ∗ | M accepts x} .

A language is called regular if it is accepted

by some DFA.

Example 1 Build M1 accepting L1
def
= {ax | x ∈ Σ∗}

and M2 accepting L2
def
= {xb | x ∈ Σ∗}.

Exrecise: HW 1.1(a)

Closure properties of regular languages.



The Complement Construction

Let M = (Q,Σ, δ, s, F ) be a DFA.

The complement of M is defined as the au-

tomaton:

M
def
= (Q,Σ, δ, s, F )

Theorem 1 L(M) = L(M)

Hence regular languages are closed under com-

plement.



The Product Construction

Let

M1 = (Q1,Σ, δ1, s1, F1) and

M2 = (Q2,Σ, δ2, s2, F2) be two DFAs.

The product of M1 and M2 is defined as the

automaton:

M1 × M2
def
= (Q1 × Q2,Σ, δ, 〈s1, s2〉 , F1 × F2)

where

δ((q1, q2), a)
def
= (δ1(q1, a), δ2(q2, a))

Theorem 2 L(M1 × M2) = L(M1) ∩ L(M2)

Hence regular languages are closed under in-

tersection.

Exercise: HW 1.2(a)

Home exercises: HW 1.1, HW 1.2, ME 2.



Nondeterministic Finite Automata

Example 2 L
def
= {xab | x ∈ Σ∗}

Definition 4 (NFA) A nondeterministic finite

automaton is a structure

N
def
= (Q,Σ,∆, S, F )

where:

• ∆ : Q × Σ → 2Q - transition function,

inducing ∆̂ : 2Q × Σ∗ → 2Q.

• S ⊆ Q - initial states.

N accepts x if ∆̂(S, x) ∩ F 6= ∅.

Theorem 3 The languages accepted by NFAs

are the regular languages.



From DFA to NFA

For M = (Q,Σ, δ, s, F ) we construct

N
def
= (Q,Σ,∆, {s} , F )

where

∆(q, a)
def
= {δ(q, a)}

Theorem 4 L(N) = L(M)

Hence every regular language is accepted by

some NFA.



From NFA to DFA:

The Subset Construction

For N = (QN ,Σ,∆N , SN , FN) we construct

M
def
= (QM ,Σ, δM , sM , FM)

so that:

• QM
def
= 2QN

• δM(A, a)
def
= ∆̂N(A, a)

• sM
def
= SN

• FM
def
= {A ∈ QM | A ∩ FN 6= ∅}.

Theorem 5 L(M) = L(N)

Hence every language accepted by an NFA is

regular.



Exercises: ME 4(a), HW 2.2

NFA extension: ε-transitions.

More closure properties.

Home exercises: HW 2.1, ME 3, ME 5,

ME 6 (!), ME 10 (a, b).



Pattern Matching

For any pattern α:

L(α) = {x ∈ Σ∗ | x matches α}

Atomic patterns:

- a - exactly by a ∈ Σ

- ε - exactly by ε

- � - by no string

- # - by any symbol in Σ

- @ - by any string in Σ∗



Compound patterns, matched by x:

- α + β - if x matches α or β

- α ∩ β - if x matches α and β

- α · β - if for some y, z such that x = y · z,

y matches α and z matches β

- ∼ α - if x does not match α

- α∗ - if x matches αn for some n ≥ 0

- α+ - if x matches αn for some n > 0

Example 3 All strings:

- of the shape xaybz

- with no occurrence of a



Pattern Matching and

Regular Expressions

Regular expressions:

- atomic patterns: a, ε, �

- operators: +, · , ∗

Theorem 6 Let A ⊆ Σ∗. The statements:

(i) A = L(M) for some finite automaton M

(ii) A = L(α) for some pattern α

(iii) A = L(α) for some regular expression α

are equivalent.

Proof.

(i) ⇒ (iii) - next lecture

(iii) ⇒ (ii) - trivial

(ii) ⇒ (i) - by structural induction:

- holds for the basic patterns, and

- is preserved by the operators. []

Example 4 Automaton for (ab)∗ + (bc)∗



Regular Expressions and

Finite Automata

Let N = (Q,Σ,∆, S, F ) be an NFA.

For X ⊆ Q and u, v ∈ Q, let αX
uv denote the

regular expression representing all paths in N

from u to v with intermediate nodes in X.

Then for

eN
def
=

∑

s∈S
f∈F

α
Q
sf

we have L(eN) = L(N).



We can build αX
uv inductively:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α∅
uv

def
=







� +
∑

a∈λ(u,v)

a if u 6= v

ε +
∑

a∈λ(u,v)

a otherwise

αX
uv

def
= α

X−{q}
uv + α

X−{q}
uq (α

X−{q}
qq )

∗
α

X−{q}
qv

where λ(u, v)
def
= {a ∈ Σ | v ∈ ∆(u, a)}.

Example 5 Automaton:

- initial state q0, final state q1,

- a-edge from q0 to q0, b-edge from q0 to q1.



Kleene Algebra and

Regular Expressions

Equivalence α ≡ β when L(α) = L(β).

Axioms:

(A1) α + (β + γ) ≡ (α + β) + γ
(A2) α + β ≡ β + α
(A3) α + � ≡ α
(A4) α + α ≡ α

(A5) α · (β · γ) ≡ (α · β) · γ
(A6) α · ε ≡ α
(A7) α · � ≡ �

(A8) α · (β + γ) ≡ α · β + α · γ
(A9) (β + γ) · α ≡ β · α + γ · α

(A10) ε + α · α∗ ≡ α∗



Rules of Equational Logic:

- equivalence rules:

reflexivity, symmetry, transitivity

- substitution rule

Example 6 ε + α∗ ≡ α∗

Other derived laws:

(L1) (α · β)∗ · α ≡ α · (β · α)∗

(L2) α∗ · β∗ · α∗ ≡ (α + β)∗

(L3) ε + α∗ ≡ α∗

(L4) α · α∗ ≡ α∗ · α

Exercises: HW 3, ME 11–20.



DFA State Minimization

Observable behaviour of a system. Distin-

guishing experiment. Indistinguishability by

experiment is an equivalence! Forms the ba-

sis for minimization.

For two DFAs: what is a distinguishing ex-

periment? The equivalence is:

M1 ≈ M2
def
⇐⇒ L(M1) = L(M2)

One can apply the same reasoning to states.

Equivalence of states:

q1 ≈ q2
def
⇐⇒ ∀x ∈ Σ∗. (δ̂1(q1, x) ∈ F1 ⇔ δ̂2(q2, x) ∈ F2)

Minimization of a DFA by collapsing equiv-

alent states: the quotient construction. Ex-

ample.

Equivalence class of q:

[q]
def
=

{

q′ ∈ Q | q′ ≈ q
}



The Quotient Construction

For M = (Q,Σ, δ, s, F ) we construct

M/≈
def
= (Q′,Σ, δ′, s′, F ′)

so that:

• Q′ def
= {[q] | q ∈ Q} = Q/≈

• δ′([q] , a)
def
= [δ(q, a)]

sound because p ≈ q ⇒ δ(p, a) ≈ δ(q, a)

• s′
def
= [s]

• F ′ def
= {[q] | q ∈ F} = F/≈

sound because p ≈ q ∧ q ∈ F ⇒ p ∈ F



Theorem 7 L(M/≈) = L(M)

Minimality of M/≈:

• w.r.t. M : [p] ≈ [q] ⇒ [p] = [q]

because q ≈ [q]

• w.r.t. L(M): yes, in later lecture.



Minimization Algorithms

Equivalence/undistinguishability of states:

q1 ≈ q2
def
⇐⇒ ∀x. (δ̂1(q1, x) ∈ F1 ⇔ δ̂2(q2, x) ∈ F2)

Stratified equivalence/undistinguishability:
“within k steps”:

q1 ≈k q2
def
⇐⇒ ∀x : |x| ≤ k. (δ̂1(q1, x) ∈ F1 ⇔ δ̂2(q2, x) ∈ F2)

Then we have:

q1 ≈ q2 ⇔ ∀k. q1 ≈k q2

But actually, if q1 and q2 are distinguishable,

then there is a distinguishing sequence of

length less than |Q|:

q1 ≈ q2 ⇔ ∀k ≤ |Q| − 1. q1 ≈k q2

We can compute these “approximants” iter-

atively:

p ≈0 q
def
⇐⇒ p ∈ F ⇔ q ∈ F

p ≈i+1 q
def
⇐⇒ p ≈i q and ∀a ∈ Σ. δ(p, a) ≈i δ(q, a)



Define, for any relation R ⊆ Q×Q, the map-

ping f : 2Q×Q → 2Q×Q by:

p f(R) q
def
⇐⇒ ∀a ∈ Σ. δ(p, a) R δ(q, a)

Using this notation, we can redefine:

≈0
def
= (F × F ) ∪ ((Q − F ) × (Q − F ))

≈i+1
def
= ≈i ∩f(≈i)

Algorithm:

∣
∣
∣
∣
∣

E :=≈0;
while E 6= E ∩ f(E) do E := E ∩ f(E)

Example.

Exercises: HW 4.3, ME 47.



Myhill–Nerode Theorem

Let M = (Q,Σ, δ, s, F ) be a DFA. Recall:

p ≈ q
def
⇐⇒ ∀x ∈ Σ∗. δ̂(p, x) ∈ F ⇔ δ̂(q, x) ∈ F

x ∈ L(M)
def
⇐⇒ δ̂(s, x) ∈ F

Question: Is M/≈ the least DFA for L(M)?

Answer: Yes.

We need an abstract notion of state in terms

of strings.



state - a maximal set of histories undistin-

guishable by experiment!

..., i.e., an equivalence class of Σ∗ w.r.t. undis-

tinguishablity.

- what is a history?

- what is a distinguishing experiment?

- is undistinguishability an equivalence?

In our case:

- histories are strings,

- a distinguishing experiment is appending

some string to both histories and checking

membership to L,

- undistinguishability is an equivalence.



Let L ⊆ Σ∗. Define ≡L⊆ Σ∗ × Σ∗ by:

x1 ≡L x2
def
⇐⇒ ∀y ∈ Σ∗.(x1 · y ∈ L ⇔ x2 · y ∈ L)

Reformulated question: Do Q/≈ correspond

to Σ∗/≡L(M)
? Yes! Indeed:

δ̂ establishes the correspondence Σ∗ ↔ Q.

We have:

δ̂M/≈(s, x1) = δ̂M/≈(s, x2)

⇔ δ̂M(s, x1) ≈ δ̂M(s, x2)

⇔ ∀y ∈ Σ∗.(δ̂M(δ̂M(s, x1), y) ∈ F ⇔ δ̂M(δ̂M(s, x2), y) ∈ F )

⇔ ∀y ∈ Σ∗.(δ̂M(s, x1 · y) ∈ F ⇔ δ̂M(s, x1 · y) ∈ F )
⇔ ∀y ∈ Σ∗.(x1 · y ∈ L(M) ⇔ x2 · y ∈ L(M))
⇔ x1 ≡L(M) x2



One can even directly construct the minimal

automaton for L as:

ML
def
= (Σ∗/≡L,Σ, δL, [s]L , L/≡L)

where δL([x]L , a)
def
= [xa]L.

Theorem 8 (Myhill-Nerode Theorem)

L is regular ⇔ Σ∗/≡L is finite.

Example 7 Construct ML for L(a∗b∗).

Exercise: ME 55.



Limitations of Finite Automata

Theorem 9 (Cantor) Let S be a set. There

is no bijection:

f : S → 2S

Proof. Let f : S → 2S be a mapping. Define

the set:

A
def
= {s ∈ S | s 6∈ f(s)}

Assume f is a bijection. Then A = f(s) for

some s ∈ S. But then:

s ∈ f(s) ⇔ s ∈ A
⇔ s 6∈ f(s)

which is a contradiction. Hence f is not a

bijection. []

For example, there is no bijection

f : Σ∗ → 2Σ∗

from strings over Σ to languages over Σ.



Theorem 10 (DG) Let M be a class of ac-

cepting automata. Let ˆ : M → Σ∗ be an

(injective) encoding. Then there is a lan-

guage L ⊆ Σ∗ which is not accepted by any

M ∈ M.

Proof. Define the set:

L
def
=

{

M̂ ∈ Σ∗ | M does not accept M̂
}

Assume there is M ∈ M such that L(M) = L.

But then:

M accepts M̂ ⇔ M̂ ∈ L(M)
⇔ M̂ ∈ L
⇔ M does not accept M̂

which is a contradiction. Hence there is no

such M . []



Pumping Lemma

Consider the language:

B
def
= {anbn | n ≥ 0}

It is not regular, and to recognize it we need

unbounded memory!

For, if we assume otherwise, then there must

be a DFA M so that:

L(M) = B

Then, take the string akbk for some k > |Q|.

It must be that:

u
︷ ︸︸ ︷
aaaaa ·

v
︷ ︸︸ ︷
aaaa ·

w
︷ ︸︸ ︷

aaa · bbbbbbbbbbbb
↑ ↑ ↑ ↑
s q q f

Then u · w must also be accepted, and all

other strings of the form u ·vi ·w as well. But

none of these strings, with the exception of

uvw itself, is in B!



Theorem 11 (Pumping Lemma) Let A be

regular. Then:

∃k ≥ 0.

∀x, y, z ∈ Σ∗ : xyz ∈ A ∧ |y| ≥ k.

∃u, v, w ∈ Σ∗ : y = uvw ∧ v 6= ε.

∀i ≥ 0.

xuviwz ∈ A

Or, in contrapositive form:

If for A ⊆ Σ∗:

∀k ≥ 0.

∃x, y, z ∈ Σ∗ : xyz ∈ A ∧ |y| ≥ k.

∀u, v, w ∈ Σ∗ : y = uvw ∧ v 6= ε.

∃i ≥ 0.

xuviwz 6∈ A

then A is not regular.

Exercises: L 12, HW 4.1, ME 35-45.



Context-Free Grammars and Lanuages

Finite-state vs. finite-control.

Grammars vs. automata.

Definition 5 (CFG) A context-free grammar

is a structure

G
def
= (N,Σ, P, S)

where:

• N - finite set of non-terminals.

• Σ - finite set of terminals.

• P ⊆ N×(N ∪ Σ)∗ - finite set of productions

of the shape A → α.

• S ∈ N - start symbol.



Example 8 S → ε | aSb

One-step derivability:

α →G β

if α = α1Aα2 and β = α1γα2 for some α1, α2

and production (A → γ) ∈ P .

A sentential form of G is a string over (N ∪ Σ)∗

derivable from S.

A sentence of G is a string over Σ∗ derivable

from S.

The language of G is the set of all its sen-

tences:

L(G)
def
=

{

x ∈ Σ∗ | S
∗
→G x

}

A language is context-free if it is the lan-

guage of some CFG.



Balanced Parentheses

Let N = {S} and Σ = {[, ]}.

Define the functions:

L(x)
def
= #[(x)

R(x)
def
= #](x)

A string x of parentheses is balanced if:

- L(x) = R(x)

- L(y) ≥ R(y) for all prefixes y of x

Theorem 12 The set of all balanced strings

of parentheses is a context-free language.

Proof. Consider the CFG

S → ε | [S] | SS

We show that a string of parentheses is bal-

anced exactly when it is a sentence of this

grammar.



Normal Forms

Definition 6 Let G be a CFG.

• G is in Chomsky normal form (CNF) if all

its productions are of the form:

A → BC or A → a

• G is in Greibach normal form (GNF) if all

its productions are of the form:

A → aB1B2 . . . Bk

Theorem 13 For every CFG G there is a

CFG G′ in CNF and a CFG G′′ in GNF such

that:

L(G′) = L(G′′) = L(G) − {ε}



Pumping Lemma for CFL

Consider the language:

L
def
= {anbn | n ≥ 0}

and the grammar G given by

S → ε | aSb

generating L. Consider the string aabb ∈

L(G). It is generated by the parse tree:

We have a path where the non-terminal S

occurs more than once. Take the last two

occurrences. These generate two subtrees,

T and t. But replacing T for t yields an-

other parse tree for a word in L! So, aaabbb,

aaaabbbb, . . . , are also in L.

If x ∈ L is sufficiently long, there is a parse

tree where some non-terminal repeats along

a path! For G in CNF this is guaranteed for

|x| ≥ 2|N |+1.



Theorem 14 (Pumping Lemma for CFL)
Let A be context-free. Then:

∃k ≥ 0.
∀z ∈ A : |z| ≥ k.

∃u, v, w, x, y ∈ Σ∗ :
z = uvwxy ∧ vx 6= ε ∧ |vwx| ≤ k.

∀i ≥ 0.
uviwxiy ∈ A

Or, in contrapositive form:

If for A ⊆ Σ∗:

∀k ≥ 0.
∃z ∈ A : |z| ≥ k.

∀u, v, w, x, y ∈ Σ∗ :
z = uvwxy ∧ vx 6= ε ∧ |vwx| ≤ k.

∃i ≥ 0.
uviwxiy 6∈ A

then A is not context-free.

Exercises: HW 5.1-3, ME 72, 84.



Pushdown Automata

Definition 7 (NPDA) A nondeterministic

pushdown automaton is a structure

M
def
= (Q,Σ,Γ, δ, s,⊥)

where:

• Q - finite set of control states.

Σ - a finite input alphabet.

Γ - a finite stack alphabet.

• δ ⊆ (Q × Γ) × Σ × (Q × Γ∗) - a finite set

of labelled productions of the shape:

〈q1, A〉
a

↪→ 〈q2, γ〉

• s ∈ Q - start state.

⊥ ∈ Γ - initial stack symbol.



A state of a NPDA consists of a control state

and the state of the stack: configurations

Q × Γ∗.

Initial configuration: 〈s,⊥〉.

Let ∆ ⊆ (Q×Γ∗)×Σ× (Q×Γ∗) be the least

labelled transition relation closed under the

prefix rule:

〈

q1, A · γ′〉 a
−→

〈

q2, γ · γ′〉 if 〈q1, A〉
a

↪→ 〈q2, γ〉 ∈ δ

inducing ∆̂ ⊆ (Q × Γ∗) × Σ∗ × (Q × Γ∗).

M accepts x if 〈s,⊥〉
x

−→ 〈q, ε〉.

The language accepted by M is

L(M)
def
= {x ∈ Σ∗ | M accepts x} .



Example 9 L(M) = {anbn | n ≥ 1}

Q
def
= {q+, q−}

Σ
def
= {a, b}

Γ
def
= {S, A}

δ
def
=







〈

q+, S
〉 a

↪→
〈

q+, A
〉

,
〈

q+, A
〉 a

↪→
〈

q+, AA
〉

,
〈

q+, A
〉 b

↪→ 〈q−, ε〉 ,

〈q−, A〉
b

↪→ 〈q−, ε〉







s
def
= q+

⊥
def
= S

This PDA is actually deterministic. How about

a nondeterministic PDA with one control state?



From CFG to NPDA

From a CFG G = (N,Σ, P, S) in GNF, we
construct canonically a NPDA

M
def
= ({q},Σ, N, δ, q, S)

where:

• q - single control state,

the input alphabet of M are the terminals
of G,

the stack alphabet of M are the non-
terminals of G,
the initial stack symbol of M is the start

symbol of G,

• 〈q, A〉
a

↪→ 〈q, γ〉 in δ iff A → a · γ in P .

Theorem 15 L(M) = L(G).

Exercises: HW 5.4, 6.2, 6.4, ME 76.

Homework: HW 7.2.



Parsing

Parsing is the process of producing a parse

tree for a sentence w.r.t. a grammar.

Example 10 Arithmetic expressions:

E → (EBE) | (UE) | C | V
B → + | − | × | ÷
U → −
C → 0 | 1 | 2 | · · ·
V → X | Y | Z | · · ·

Parse the expression:

(((X + 1) × Y ) + (2 × (−X)))

Parsing procedure for arithmetic expressions.

Ambiguous and unambigous grammars.



Operator precedence.

Example: X + 2 × Y and X + 2 − Y .

Example 11 Arithmetic expressions:

E → EBLF | F
F → FBHG | G
G → UG | H
H → C | V | (E)
BL → + | −
BH → × | ÷
U → −
C → 0 | 1 | 2 | · · ·
V → X | Y | Z | · · ·

Parse the expression:

X + 2 × 4 + −Y

Modified parsing procedure.

Exercises: HW 7.1.



Turing Machines and

Effective Computability

What is effective computability?

Formalisms:

• Turing machines, by Alan Turing

• Post systems, by Emil Post

• µ-recursive functions, by Kurt Gödel

• λ-calculus, by Alonzo Church

• Combinatory logic, by Haskell B. Curry

Church’s thesis.

Universality and self-reference.



Definition 8 (TM) A deterministic one-tape

Turing machine is a structure

M
def
= (Q,Σ,Γ,`,t, δ, s, t, r)

where:

• Q - finite set of control states,

Σ - a finite input alphabet,

Γ ⊃ Σ - a finite tape alphabet,

` ∈ Γ − Σ - the left endmarker,

t ∈ Γ − Σ - the blank symbol,

• δ : Q×Γ → Q×Γ×{L, R} - the transition

function,

• s ∈ Q - the start state,

t ∈ Q - the accept state,

r ∈ Q - the reject state.



Configurations: Q × Γ∗ × N .

Start configuration on input x ∈ Σ∗: 〈s,` x,0〉.

Let

→⊆ (Q × Γ∗ × N) × (Q × Γ∗ × N)

be the least transition relation closed under

the rules:

δ(p, zn) = (q, b, L)

〈p, z, n〉 →
〈

q, sn
b (z), n − 1

〉

δ(p, zn) = (q, b, R)

〈p, z, n〉 →
〈

q, sn
b (z), n + 1

〉

Machine M accepts input x ∈ Σ∗ if:

〈s,` x,0〉 →∗ 〈t, y, n〉

and rejects x if:

〈s,` x,0〉 →∗ 〈r, y, n〉



Machine M halts on x if it either accepts or

rejects x.

M is total if it halts on all inputs.

As usual, the language L(M) of M is the set

of all input strings accepted by M .

A set of strings A ⊆ Σ∗ is called recursively

enumerable if A = L(M) for some Turing

machine M , and recursive if M is total.

Example 12 Turing machine for:

L
def
=

{

w · w | w ∈ {a, b}∗
}

Equivalent models: multiple tapes, two-way

infinite tapes, two stacks, counter automata,

enumeration machines.

Exercises: HW 8.1, ME 96.



Universal Machines and Undecidability

Encoding Turing machines over {0,1}:

0n10m10k10s10t10r10u10v1 · · ·

for a Turing machine with:

- n states represented by 0 to n − 1,

- m tape symbols represented by 0 to m − 1,

- of which the first k are the input symbols,

- s, t, r are the start, accept and reject states,

- u, v are the endmarker and blank symbols,

followed by a sequence of substrings:

0p10a10q10b10d1 · · ·

for each δ(p, a) = (q, b, d).

We can construct a universal Turing machine

U such that:

L(U) =
{

M̂]x̂ | M accepts x
}

One can view U as a programmable device,

and M as its program! U can also be easily

modified to U ′ for semideciding rejection.



There are countably many Turing machines,

but uncountably many decision problems on

Turing machines, and, due to Cantor’s the-

orem, there is no bijection between the two

sets.

Recall from Theorem 10 that:

L
def
=

{

M̂ | M does not accept M̂
}

is not r.e. But then, neither is

LNSA
def
=

{

M̂]M̂ | M does not accept M̂
}

r.e. since we can reduce from the previous

problem: If there was a machine MNSA ac-

cepting LNSA, we could modify it to ML so

that it first scans the input x and replaces

it by x]x, and then continues as MNSA. But

then ML would accept L which is impossible!



By a similar argument,

LNA
def
=

{

M̂]x̂ | M does not accept x
}

is not r.e., since we can reduce from the pre-

vious problem by inserting an initial check

whether the input string is of the shape x]x.

(cf. L(U))

Now,

LH
def
=

{

M̂]x̂ | M halts on x
}

is r.e. (cf. L(U)), but not recursive since

we can reduce from the previous problem: If

there was a total MH accepting LH, we could

modify it to a machine MNA by running LH

first, and either accepting if LH rejects, or

continuing as U ′ otherwise. MNA will thus

accept LNA.


