
KTH CSC VT 2008

DD2371 Automata Theory

Dilian Gurov

Lecture Outline

1. The lecturer

2. Introduction to automata theory

3. Course syllabus

4. Course objectives

5. Course organization

6. First definitions

1. Lecturer

Name: DilianGurov

E-mail: dilian@csc.kth.se

Phone: 08-790 81 98 (office)

Visiting address: Osquarsbacke 2, room4417

Research interests:

- Analysis of program behaviour

- Correctness: logics, compositionality

2. Introduction to Automata Theory

Automata are abstract computing devices.

Purpose: to capture the abstract notions of

computation and effective computability.

We shall study and compare the computa-

tional power of three different classes of au-

tomata: Finite Automata, Pushdown Automata,

and Turing Machines.

The comparison is made through the concept

of formal languages.

Basic notions: state, nondeterminism, equiv-

alence and minimization.

Algorithmic decidability.

Aim

The overall aim of the course is to provide

students with a profound understanding of

computation and effective computability through

the abstract notion of automata and the lan-

guage classes they recognize.

Along with this, the students will get ac-

quainted with the important notions of state,

nondeterminism and minimization.

3. Course Syllabus

Part I. Finite Automata and Regular Languages:

determinisation, closure properties, regu-

lar expressions, state minimization, prov-

ing non-regularity with the Pumping lemma,

Myhill-Nerode relations.

Part II. Pushdown Automata and Context-Free

Languages: context-free grammars and

languages, normal forms, closure prop-

erties, proving non-context-freeness with

the Pumping lemma, pushdown automata.

Part III. Turing Machines and Effective Computabil-

ity: Turing machines, recursive sets, Uni-

versal Turning machines, diagonalization,

decidable and undecidable problems, re-

duction, other models of computability.

4. Course Objectives

After the course, the successful student will

be able to perform the following construc-

tions:

• Determinize and minimize automata;

• Construct an automaton for a given reg-

ular expression;

• Construct a pushdown automaton for a

given context-free language;

• Construct a Turing machine deciding a

given problem,

...be able to prove results such as:

• Closure properties of language classes;

• Prove that a language is not regular or

context-free by using the Pumping Lem-

mata;

• Prove that a given context-free grammar

generates a given context-free language;

• Prove undecidability of a problem by re-

ducing from a known undecidable one,

as well as be able to apply the fundamental

theorems of the course:

• Myhill-Nerode, Chomsky-Schützenberger,

and Rice’s theorems.

5. Course Organization

Credits: 4 points. Optional for graduate

students.

Webpage: www.csc.kth.se/DD2371

Structure:

- 15 lectures/tutorials,

- 3 assignments,

- 1 written exam (open book).

Graduate students work in addition on a project.

Course book: Dexter Kozen, Automata and

Computability, Springer, 1997. (Kårbokhandeln)

Course board: Group of student represen-

tatives. Any volunteers?

Strings and Sets

Definition 1 (Strings) Basic notions:

• An alphabet is a finite set Σ of symbols.

• A string x over Σ is a finite-length se-

quence of elements of Σ. Concatenation

x ·y or simply xy. The set of all strings

over Σ is denoted Σ∗.

• A language over Σ is a subset of Σ∗.

• The length of a string x is denoted |x|.

• The empty string is denoted ε.

• x is a prefix of y if xz = y for some z.

Definition 2 (Sets) Basic notions:

• Set membership x ∈ A

• Set union

A ∪ B
def
= {x | x ∈ A or x ∈ B}

• Set intersection

A ∩ B
def
= {x | x ∈ A and x ∈ B}

• String set concatenation

A · B
def
= {xy | x ∈ A and y ∈ B}

• Powers An

• Asterates A∗, A+

Finite Automata and Regular Languages

Definition 3 (DFA) A deterministic finite

automaton is a structure

M
def
= (Q,Σ, δ, s, F)

where:

• Q - finite set of states.

• Σ - input alphabet.

• δ : Q × Σ → Q - transition function. In-

duces δ̂ : Q × Σ∗ → Q.

• s ∈ Q - initial state.

• F ⊆ Q - final states.

Graphical representation.

M accepts x if δ̂(s, x) ∈ F .

The language accepted by M is

L(M)
def
= {x ∈ Σ∗ | M accepts x} .

A language is called regular if it is accepted

by some DFA.

Example 1 Build M1 accepting L1
def
= {ax | x ∈ Σ∗}

and M2 accepting L2
def
= {xb | x ∈ Σ∗}.

Exrecise: HW 1.1(a)

Closure properties of regular languages.

The Complement Construction

Let M = (Q,Σ, δ, s, F) be a DFA.

The complement of M is defined as the au-

tomaton:

M
def
= (Q,Σ, δ, s, F)

Theorem 1 L(M) = L(M)

Hence regular languages are closed under com-

plement.

The Product Construction

Let

M1 = (Q1,Σ, δ1, s1, F1) and

M2 = (Q2,Σ, δ2, s2, F2) be two DFAs.

The product of M1 and M2 is defined as the

automaton:

M1 × M2
def
= (Q1 × Q2,Σ, δ, 〈s1, s2〉 , F1 × F2)

where

δ((q1, q2), a)
def
= (δ1(q1, a), δ2(q2, a))

Theorem 2 L(M1 × M2) = L(M1) ∩ L(M2)

Hence regular languages are closed under in-

tersection.

Exercise: HW 1.2(a)

Home exercises: HW 1.1, HW 1.2, ME 2.

Nondeterministic Finite Automata

Example 2 L
def
= {xab | x ∈ Σ∗}

Definition 4 (NFA) A nondeterministic finite

automaton is a structure

N
def
= (Q,Σ,∆, S, F)

where:

• ∆ : Q × Σ → 2Q - transition function,

inducing ∆̂ : 2Q × Σ∗ → 2Q.

• S ⊆ Q - initial states.

N accepts x if ∆̂(S, x) ∩ F 6= ∅.

Theorem 3 The languages accepted by NFAs

are the regular languages.

From DFA to NFA

For M = (Q,Σ, δ, s, F) we construct

N
def
= (Q,Σ,∆, {s} , F)

where

∆(q, a)
def
= {δ(q, a)}

Theorem 4 L(N) = L(M)

Hence every regular language is accepted by

some NFA.

From NFA to DFA:

The Subset Construction

For N = (QN ,Σ,∆N , SN , FN) we construct

M
def
= (QM ,Σ, δM , sM , FM)

so that:

• QM
def
= 2QN

• δM(A, a)
def
= ∆̂N(A, a)

• sM
def
= SN

• FM
def
= {A ∈ QM | A ∩ FN 6= ∅}.

Theorem 5 L(M) = L(N)

Hence every language accepted by an NFA is

regular.

Exercises: ME 4(a), HW 2.2

NFA extension: ε-transitions.

More closure properties.

Home exercises: HW 2.1, ME 3, ME 5,

ME 6 (!), ME 10 (a, b).

Pattern Matching

For any pattern α:

L(α) = {x ∈ Σ∗ | x matches α}

Atomic patterns:

- a - exactly by a ∈ Σ

- ε - exactly by ε

- � - by no string

- # - by any symbol in Σ

- @ - by any string in Σ∗

Compound patterns, matched by x:

- α + β - if x matches α or β

- α ∩ β - if x matches α and β

- α · β - if for some y, z such that x = y · z,

y matches α and z matches β

- ∼ α - if x does not match α

- α∗ - if x matches αn for some n ≥ 0

- α+ - if x matches αn for some n > 0

Example 3 All strings:

- of the shape xaybz

- with no occurrence of a

Pattern Matching and

Regular Expressions

Regular expressions:

- atomic patterns: a, ε, �

- operators: +, · , ∗

Theorem 6 Let A ⊆ Σ∗. The statements:

(i) A = L(M) for some finite automaton M

(ii) A = L(α) for some pattern α

(iii) A = L(α) for some regular expression α

are equivalent.

Proof.

(i) ⇒ (iii) - next lecture

(iii) ⇒ (ii) - trivial

(ii) ⇒ (i) - by structural induction:

- holds for the basic patterns, and

- is preserved by the operators. []

Example 4 Automaton for (ab)∗ + (bc)∗

Regular Expressions and

Finite Automata

Let N = (Q,Σ,∆, S, F) be an NFA.

For X ⊆ Q and u, v ∈ Q, let αX
uv denote the

regular expression representing all paths in N

from u to v with intermediate nodes in X.

Then for

eN
def
=

∑

s∈S
f∈F

α
Q
sf

we have L(eN) = L(N).

We can build αX
uv inductively:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

α∅
uv

def
=

� +
∑

a∈λ(u,v)

a if u 6= v

ε +
∑

a∈λ(u,v)

a otherwise

αX
uv

def
= α

X−{q}
uv + α

X−{q}
uq (α

X−{q}
qq)

∗
α

X−{q}
qv

where λ(u, v)
def
= {a ∈ Σ | v ∈ ∆(u, a)}.

Example 5 Automaton:

- initial state q0, final state q1,

- a-edge from q0 to q0, b-edge from q0 to q1.

Kleene Algebra and

Regular Expressions

Equivalence α ≡ β when L(α) = L(β).

Axioms:

(A1) α + (β + γ) ≡ (α + β) + γ
(A2) α + β ≡ β + α
(A3) α + � ≡ α
(A4) α + α ≡ α

(A5) α · (β · γ) ≡ (α · β) · γ
(A6) α · ε ≡ α
(A7) α · � ≡ �

(A8) α · (β + γ) ≡ α · β + α · γ
(A9) (β + γ) · α ≡ β · α + γ · α

(A10) ε + α · α∗ ≡ α∗

Rules of Equational Logic:

- equivalence rules:

reflexivity, symmetry, transitivity

- substitution rule

Example 6 ε + α∗ ≡ α∗

Other derived laws:

(L1) (α · β)∗ · α ≡ α · (β · α)∗

(L2) α∗ · β∗ · α∗ ≡ (α + β)∗

(L3) ε + α∗ ≡ α∗

(L4) α · α∗ ≡ α∗ · α

Exercises: HW 3, ME 11–20.

DFA State Minimization

Observable behaviour of a system. Distin-

guishing experiment. Indistinguishability by

experiment is an equivalence! Forms the ba-

sis for minimization.

For two DFAs: what is a distinguishing ex-

periment? The equivalence is:

M1 ≈ M2
def
⇐⇒ L(M1) = L(M2)

One can apply the same reasoning to states.

Equivalence of states:

q1 ≈ q2
def
⇐⇒ ∀x ∈ Σ∗. (δ̂1(q1, x) ∈ F1 ⇔ δ̂2(q2, x) ∈ F2)

Minimization of a DFA by collapsing equiv-

alent states: the quotient construction. Ex-

ample.

Equivalence class of q:

[q]
def
=

{

q′ ∈ Q | q′ ≈ q
}

The Quotient Construction

For M = (Q,Σ, δ, s, F) we construct

M/≈
def
= (Q′,Σ, δ′, s′, F ′)

so that:

• Q′ def
= {[q] | q ∈ Q} = Q/≈

• δ′([q] , a)
def
= [δ(q, a)]

sound because p ≈ q ⇒ δ(p, a) ≈ δ(q, a)

• s′
def
= [s]

• F ′ def
= {[q] | q ∈ F} = F/≈

sound because p ≈ q ∧ q ∈ F ⇒ p ∈ F

Theorem 7 L(M/≈) = L(M)

Minimality of M/≈:

• w.r.t. M : [p] ≈ [q] ⇒ [p] = [q]

because q ≈ [q]

• w.r.t. L(M): yes, in later lecture.

Minimization Algorithms

Equivalence/undistinguishability of states:

q1 ≈ q2
def
⇐⇒ ∀x. (δ̂1(q1, x) ∈ F1 ⇔ δ̂2(q2, x) ∈ F2)

Stratified equivalence/undistinguishability:
“within k steps”:

q1 ≈k q2
def
⇐⇒ ∀x : |x| ≤ k. (δ̂1(q1, x) ∈ F1 ⇔ δ̂2(q2, x) ∈ F2)

Then we have:

q1 ≈ q2 ⇔ ∀k. q1 ≈k q2

But actually, if q1 and q2 are distinguishable,

then there is a distinguishing sequence of

length less than |Q|:

q1 ≈ q2 ⇔ ∀k ≤ |Q| − 1. q1 ≈k q2

We can compute these “approximants” iter-

atively:

p ≈0 q
def
⇐⇒ p ∈ F ⇔ q ∈ F

p ≈i+1 q
def
⇐⇒ p ≈i q and ∀a ∈ Σ. δ(p, a) ≈i δ(q, a)

Define, for any relation R ⊆ Q×Q, the map-

ping f : 2Q×Q → 2Q×Q by:

p f(R) q
def
⇐⇒ ∀a ∈ Σ. δ(p, a) R δ(q, a)

Using this notation, we can redefine:

≈0
def
= (F × F) ∪ ((Q − F) × (Q − F))

≈i+1
def
= ≈i ∩f(≈i)

Algorithm:

∣
∣
∣
∣
∣

E :=≈0;
while E 6= E ∩ f(E) do E := E ∩ f(E)

Example.

Exercises: HW 4.3, ME 47.

Myhill–Nerode Theorem

Let M = (Q,Σ, δ, s, F) be a DFA. Recall:

p ≈ q
def
⇐⇒ ∀x ∈ Σ∗. δ̂(p, x) ∈ F ⇔ δ̂(q, x) ∈ F

x ∈ L(M)
def
⇐⇒ δ̂(s, x) ∈ F

Question: Is M/≈ the least DFA for L(M)?

Answer: Yes.

We need an abstract notion of state in terms

of strings.

state - a maximal set of histories undistin-

guishable by experiment!

..., i.e., an equivalence class of Σ∗ w.r.t. undis-

tinguishablity.

- what is a history?

- what is a distinguishing experiment?

- is undistinguishability an equivalence?

In our case:

- histories are strings,

- a distinguishing experiment is appending

some string to both histories and checking

membership to L,

- undistinguishability is an equivalence.

Let L ⊆ Σ∗. Define ≡L⊆ Σ∗ × Σ∗ by:

x1 ≡L x2
def
⇐⇒ ∀y ∈ Σ∗.(x1 · y ∈ L ⇔ x2 · y ∈ L)

Reformulated question: Do Q/≈ correspond

to Σ∗/≡L(M)
? Yes! Indeed:

δ̂ establishes the correspondence Σ∗ ↔ Q.

We have:

δ̂M/≈(s, x1) = δ̂M/≈(s, x2)

⇔ δ̂M(s, x1) ≈ δ̂M(s, x2)

⇔ ∀y ∈ Σ∗.(δ̂M(δ̂M(s, x1), y) ∈ F ⇔ δ̂M(δ̂M(s, x2), y) ∈ F)

⇔ ∀y ∈ Σ∗.(δ̂M(s, x1 · y) ∈ F ⇔ δ̂M(s, x1 · y) ∈ F)
⇔ ∀y ∈ Σ∗.(x1 · y ∈ L(M) ⇔ x2 · y ∈ L(M))
⇔ x1 ≡L(M) x2

One can even directly construct the minimal

automaton for L as:

ML
def
= (Σ∗/≡L,Σ, δL, [s]L , L/≡L)

where δL([x]L , a)
def
= [xa]L.

Theorem 8 (Myhill-Nerode Theorem)

L is regular ⇔ Σ∗/≡L is finite.

Example 7 Construct ML for L(a∗b∗).

Exercise: ME 55.

Limitations of Finite Automata

Theorem 9 (Cantor) Let S be a set. There

is no bijection:

f : S → 2S

Proof. Let f : S → 2S be a mapping. Define

the set:

A
def
= {s ∈ S | s 6∈ f(s)}

Assume f is a bijection. Then A = f(s) for

some s ∈ S. But then:

s ∈ f(s) ⇔ s ∈ A
⇔ s 6∈ f(s)

which is a contradiction. Hence f is not a

bijection. []

For example, there is no bijection

f : Σ∗ → 2Σ∗

from strings over Σ to languages over Σ.

Theorem 10 (DG) Let M be a class of ac-

cepting automata. Let ˆ : M → Σ∗ be an

(injective) encoding. Then there is a lan-

guage L ⊆ Σ∗ which is not accepted by any

M ∈ M.

Proof. Define the set:

L
def
=

{

M̂ ∈ Σ∗ | M does not accept M̂
}

Assume there is M ∈ M such that L(M) = L.

But then:

M accepts M̂ ⇔ M̂ ∈ L(M)
⇔ M̂ ∈ L
⇔ M does not accept M̂

which is a contradiction. Hence there is no

such M . []

Pumping Lemma

Consider the language:

B
def
= {anbn | n ≥ 0}

It is not regular, and to recognize it we need

unbounded memory!

For, if we assume otherwise, then there must

be a DFA M so that:

L(M) = B

Then, take the string akbk for some k > |Q|.

It must be that:

u
︷ ︸︸ ︷
aaaaa ·

v
︷ ︸︸ ︷
aaaa ·

w
︷ ︸︸ ︷

aaa · bbbbbbbbbbbb
↑ ↑ ↑ ↑
s q q f

Then u · w must also be accepted, and all

other strings of the form u ·vi ·w as well. But

none of these strings, with the exception of

uvw itself, is in B!

Theorem 11 (Pumping Lemma) Let A be

regular. Then:

∃k ≥ 0.

∀x, y, z ∈ Σ∗ : xyz ∈ A ∧ |y| ≥ k.

∃u, v, w ∈ Σ∗ : y = uvw ∧ v 6= ε.

∀i ≥ 0.

xuviwz ∈ A

Or, in contrapositive form:

If for A ⊆ Σ∗:

∀k ≥ 0.

∃x, y, z ∈ Σ∗ : xyz ∈ A ∧ |y| ≥ k.

∀u, v, w ∈ Σ∗ : y = uvw ∧ v 6= ε.

∃i ≥ 0.

xuviwz 6∈ A

then A is not regular.

Exercises: L 12, HW 4.1, ME 35-45.

Context-Free Grammars and Lanuages

Finite-state vs. finite-control.

Grammars vs. automata.

Definition 5 (CFG) A context-free grammar

is a structure

G
def
= (N,Σ, P, S)

where:

• N - finite set of non-terminals.

• Σ - finite set of terminals.

• P ⊆ N×(N ∪ Σ)∗ - finite set of productions

of the shape A → α.

• S ∈ N - start symbol.

Example 8 S → ε | aSb

One-step derivability:

α →G β

if α = α1Aα2 and β = α1γα2 for some α1, α2

and production (A → γ) ∈ P .

A sentential form of G is a string over (N ∪ Σ)∗

derivable from S.

A sentence of G is a string over Σ∗ derivable

from S.

The language of G is the set of all its sen-

tences:

L(G)
def
=

{

x ∈ Σ∗ | S
∗
→G x

}

A language is context-free if it is the lan-

guage of some CFG.

Balanced Parentheses

Let N = {S} and Σ = {[,]}.

Define the functions:

L(x)
def
= #[(x)

R(x)
def
= #](x)

A string x of parentheses is balanced if:

- L(x) = R(x)

- L(y) ≥ R(y) for all prefixes y of x

Theorem 12 The set of all balanced strings

of parentheses is a context-free language.

Proof. Consider the CFG

S → ε | [S] | SS

We show that a string of parentheses is bal-

anced exactly when it is a sentence of this

grammar.

Normal Forms

Definition 6 Let G be a CFG.

• G is in Chomsky normal form (CNF) if all

its productions are of the form:

A → BC or A → a

• G is in Greibach normal form (GNF) if all

its productions are of the form:

A → aB1B2 . . . Bk

Theorem 13 For every CFG G there is a

CFG G′ in CNF and a CFG G′′ in GNF such

that:

L(G′) = L(G′′) = L(G) − {ε}

Pumping Lemma for CFL

Consider the language:

L
def
= {anbn | n ≥ 0}

and the grammar G given by

S → ε | aSb

generating L. Consider the string aabb ∈

L(G). It is generated by the parse tree:

We have a path where the non-terminal S

occurs more than once. Take the last two

occurrences. These generate two subtrees,

T and t. But replacing T for t yields an-

other parse tree for a word in L! So, aaabbb,

aaaabbbb, . . . , are also in L.

If x ∈ L is sufficiently long, there is a parse

tree where some non-terminal repeats along

a path! For G in CNF this is guaranteed for

|x| ≥ 2|N |+1.

Theorem 14 (Pumping Lemma for CFL)
Let A be context-free. Then:

∃k ≥ 0.
∀z ∈ A : |z| ≥ k.

∃u, v, w, x, y ∈ Σ∗ :
z = uvwxy ∧ vx 6= ε ∧ |vwx| ≤ k.

∀i ≥ 0.
uviwxiy ∈ A

Or, in contrapositive form:

If for A ⊆ Σ∗:

∀k ≥ 0.
∃z ∈ A : |z| ≥ k.

∀u, v, w, x, y ∈ Σ∗ :
z = uvwxy ∧ vx 6= ε ∧ |vwx| ≤ k.

∃i ≥ 0.
uviwxiy 6∈ A

then A is not context-free.

Exercises: HW 5.1-3, ME 72, 84.

Pushdown Automata

Definition 7 (NPDA) A nondeterministic

pushdown automaton is a structure

M
def
= (Q,Σ,Γ, δ, s,⊥)

where:

• Q - finite set of control states.

Σ - a finite input alphabet.

Γ - a finite stack alphabet.

• δ ⊆ (Q × Γ) × Σ × (Q × Γ∗) - a finite set

of labelled productions of the shape:

〈q1, A〉
a

↪→ 〈q2, γ〉

• s ∈ Q - start state.

⊥ ∈ Γ - initial stack symbol.

A state of a NPDA consists of a control state

and the state of the stack: configurations

Q × Γ∗.

Initial configuration: 〈s,⊥〉.

Let ∆ ⊆ (Q×Γ∗)×Σ× (Q×Γ∗) be the least

labelled transition relation closed under the

prefix rule:

〈

q1, A · γ′〉 a
−→

〈

q2, γ · γ′〉 if 〈q1, A〉
a

↪→ 〈q2, γ〉 ∈ δ

inducing ∆̂ ⊆ (Q × Γ∗) × Σ∗ × (Q × Γ∗).

M accepts x if 〈s,⊥〉
x

−→ 〈q, ε〉.

The language accepted by M is

L(M)
def
= {x ∈ Σ∗ | M accepts x} .

Example 9 L(M) = {anbn | n ≥ 1}

Q
def
= {q+, q−}

Σ
def
= {a, b}

Γ
def
= {S, A}

δ
def
=

〈

q+, S
〉 a

↪→
〈

q+, A
〉

,
〈

q+, A
〉 a

↪→
〈

q+, AA
〉

,
〈

q+, A
〉 b

↪→ 〈q−, ε〉 ,

〈q−, A〉
b

↪→ 〈q−, ε〉

s
def
= q+

⊥
def
= S

This PDA is actually deterministic. How about

a nondeterministic PDA with one control state?

From CFG to NPDA

From a CFG G = (N,Σ, P, S) in GNF, we
construct canonically a NPDA

M
def
= ({q},Σ, N, δ, q, S)

where:

• q - single control state,

the input alphabet of M are the terminals
of G,

the stack alphabet of M are the non-
terminals of G,
the initial stack symbol of M is the start

symbol of G,

• 〈q, A〉
a

↪→ 〈q, γ〉 in δ iff A → a · γ in P .

Theorem 15 L(M) = L(G).

Exercises: HW 5.4, 6.2, 6.4, ME 76.

Homework: HW 7.2.

Parsing

Parsing is the process of producing a parse

tree for a sentence w.r.t. a grammar.

Example 10 Arithmetic expressions:

E → (EBE) | (UE) | C | V
B → + | − | × | ÷
U → −
C → 0 | 1 | 2 | · · ·
V → X | Y | Z | · · ·

Parse the expression:

(((X + 1) × Y) + (2 × (−X)))

Parsing procedure for arithmetic expressions.

Ambiguous and unambigous grammars.

Operator precedence.

Example: X + 2 × Y and X + 2 − Y .

Example 11 Arithmetic expressions:

E → EBLF | F
F → FBHG | G
G → UG | H
H → C | V | (E)
BL → + | −
BH → × | ÷
U → −
C → 0 | 1 | 2 | · · ·
V → X | Y | Z | · · ·

Parse the expression:

X + 2 × 4 + −Y

Modified parsing procedure.

Exercises: HW 7.1.

Turing Machines and

Effective Computability

What is effective computability?

Formalisms:

• Turing machines, by Alan Turing

• Post systems, by Emil Post

• µ-recursive functions, by Kurt Gödel

• λ-calculus, by Alonzo Church

• Combinatory logic, by Haskell B. Curry

Church’s thesis.

Universality and self-reference.

Definition 8 (TM) A deterministic one-tape

Turing machine is a structure

M
def
= (Q,Σ,Γ,`,t, δ, s, t, r)

where:

• Q - finite set of control states,

Σ - a finite input alphabet,

Γ ⊃ Σ - a finite tape alphabet,

` ∈ Γ − Σ - the left endmarker,

t ∈ Γ − Σ - the blank symbol,

• δ : Q×Γ → Q×Γ×{L, R} - the transition

function,

• s ∈ Q - the start state,

t ∈ Q - the accept state,

r ∈ Q - the reject state.

Configurations: Q × Γ∗ × N .

Start configuration on input x ∈ Σ∗: 〈s,` x,0〉.

Let

→⊆ (Q × Γ∗ × N) × (Q × Γ∗ × N)

be the least transition relation closed under

the rules:

δ(p, zn) = (q, b, L)

〈p, z, n〉 →
〈

q, sn
b (z), n − 1

〉

δ(p, zn) = (q, b, R)

〈p, z, n〉 →
〈

q, sn
b (z), n + 1

〉

Machine M accepts input x ∈ Σ∗ if:

〈s,` x,0〉 →∗ 〈t, y, n〉

and rejects x if:

〈s,` x,0〉 →∗ 〈r, y, n〉

Machine M halts on x if it either accepts or

rejects x.

M is total if it halts on all inputs.

As usual, the language L(M) of M is the set

of all input strings accepted by M .

A set of strings A ⊆ Σ∗ is called recursively

enumerable if A = L(M) for some Turing

machine M , and recursive if M is total.

Example 12 Turing machine for:

L
def
=

{

w · w | w ∈ {a, b}∗
}

Equivalent models: multiple tapes, two-way

infinite tapes, two stacks, counter automata,

enumeration machines.

Exercises: HW 8.1, ME 96.

Universal Machines and Undecidability

Encoding Turing machines over {0,1}:

0n10m10k10s10t10r10u10v1 · · ·

for a Turing machine with:

- n states represented by 0 to n − 1,

- m tape symbols represented by 0 to m − 1,

- of which the first k are the input symbols,

- s, t, r are the start, accept and reject states,

- u, v are the endmarker and blank symbols,

followed by a sequence of substrings:

0p10a10q10b10d1 · · ·

for each δ(p, a) = (q, b, d).

We can construct a universal Turing machine

U such that:

L(U) =
{

M̂]x̂ | M accepts x
}

One can view U as a programmable device,

and M as its program! U can also be easily

modified to U ′ for semideciding rejection.

There are countably many Turing machines,

but uncountably many decision problems on

Turing machines, and, due to Cantor’s the-

orem, there is no bijection between the two

sets.

Recall from Theorem 10 that:

L
def
=

{

M̂ | M does not accept M̂
}

is not r.e. But then, neither is

LNSA
def
=

{

M̂]M̂ | M does not accept M̂
}

r.e. since we can reduce from the previous

problem: If there was a machine MNSA ac-

cepting LNSA, we could modify it to ML so

that it first scans the input x and replaces

it by x]x, and then continues as MNSA. But

then ML would accept L which is impossible!

By a similar argument,

LNA
def
=

{

M̂]x̂ | M does not accept x
}

is not r.e., since we can reduce from the pre-

vious problem by inserting an initial check

whether the input string is of the shape x]x.

(cf. L(U))

Now,

LH
def
=

{

M̂]x̂ | M halts on x
}

is r.e. (cf. L(U)), but not recursive since

we can reduce from the previous problem: If

there was a total MH accepting LH, we could

modify it to a machine MNA by running LH

first, and either accepting if LH rejects, or

continuing as U ′ otherwise. MNA will thus

accept LNA.

