
DD2371 Automata Theory

– Additional Exercises –

Dilian Gurov
Royal Institute of Technology – KTH

e–mail: dilian@csc.kth.se

1 Finite Automata and Regular Languages

1.1 Simple Constructions on Finite Automata

1. Give a deterministic finite automaton over the alphabet {a, b} which accepts all strings containing
no more than two consecutive occurrences of the same input letter. (For example, abba should be
accepted but not abaaab.)

2. Convert the nondeterministic automaton given below to an equivalent deterministic one using the
subset construction. Omit inaccessible states. Draw the graph of the resulting DFA.

a b
→ q1 {q2} ∅
→ q2 F ∅ {q1, q3}

q3 F {q2, q3} {q1}

Solution: (presented as a table)

a b
→ {q1, q2} F {q2} {q1, q3}

{q1, q3} F {q2, q3} {q1}
{q2, q3} F {q2, q3} {q1, q3}

{q1} {q2} ∅
{q2} F ∅ {q1, q3}

∅ ∅ ∅

3. Convert the nondeterministic automaton given below to an equivalent deterministic one using the
subset construction. Omit inaccessible states. Draw the graph of the resulting DFA.

a b
→ q1 q1, q2 q3 F

q2 − q4 F
→ q3 q4 −

q4 − q1, q4

Solution: (given as a table)

1

a b
→ {q1, q3} {q1, q2, q4} {q3} F

{q1, q2, q4} {q1, q2} {q1, q3, q4} F
{q1, q3, q4} {q1, q2, q4} {q1, q3, q4} F
{q1, q2} {q1, q2} {q3, q4} F
{q3, q4} {q4} {q1, q4}
{q1, q4} {q1, q2} {q1, q3, q4} F
{q4} {} {q1, q4}
{q3} {q4} {}
{} {} {}

4. Convert the nondeterministic automaton given below to an equivalent deterministic one using the
subset construction (textbook Lecture 6). Omit inaccessible states. Draw the graph of the resulting
DFA.

a b
→ q0 {q2} ∅
→ q1 F {q0, q2} ∅

q2 F ∅ {q1, q2}

Solution: (as a table)

a b
→ {q0, q1} F {q0, q2} ∅

{q0, q2} F {q2} {q1, q2}
{q1, q2} F {q0, q2} {q1, q2}
{q2} F ∅ {q1, q2}
∅ ∅ ∅

5. Convert the nondeterministic automaton given below to an equivalent deterministic one using the
subset construction, textbook Lecture 6. Omit inaccessible states. Draw the graph of the resulting
DFA.

a b
→ q0 {q1} {q2}

q1 {q0, q1} {q0}
q2 F ∅ {q1, q2}

Solution: Easy: has 8 states, and hence no inaccessible ones!

6. Give a (as simple as possible) nondeterministic finite automaton for the language defined by the
regular expression ab∗ + a(ba)∗. Apply the subset construction to obtain an equivalent deterministic
automaton. Draw the graph of this DFA, omitting inaccessible states.

7. Give a DFA for the language defined by the regular expression a∗a, and another one for a(ba)∗. The
union of the two DFAs defines a nondeterministic FA for the language a∗a + a(ba)∗.

(a) Apply the subset construction to this NFA to produce a DFA for this language. Omit the
inaccessible states. Draw the graph of the resulting DFA.

(b) Is this DFA minimal? If not, which states are equivalent?

1.2 Closure Properties of Regular Languages

8. Show that regular languages are closed under doubling: If language L is regular, then so is the
language L2

def= {two x | x ∈ L}, where string doubling is defined inductively by two ε
def= ε and

two xa
def= (two x) · aa.

Solution: Here is a standard solution using finite automata; alternative solutions exist using regular
expressions or homomorphisms.

Let L be regular. Then there is an NFA N = (QN ,Σ,∆N , SN , FN) such that L(N) = L. Define
another NFA, N2, as follows: start with N and replace every edge q

a−→ q′ with two edges q
a−→ q′′

and q′′
a−→ q′ by inserting (for each edge!) a new state q′′. We can formalize this idea by taking as

states of N2 the states of N plus the edges of N , the latter represented for example as the set of triples
{(qN , a, q′N) | qN ∈ QN , q′N ∈ ∆N (qN , a)}. So, we can define N2 as follows:

• QN2

def= QN ∪ {(qN , a, q′N) | qN ∈ QN , q′N ∈ ∆N (qN , a)}
• ∆N2 is given by the two defining equations:

∆N2(qN , a) def= QN ∪ {(qN , a, q′N) | q′N ∈ ∆N (qN , a)} and
∆N2((qN , b, q′N), a) def= if a = b then {q′N} else ∅

• SN2

def= SN

• FN2

def= FN

It is straightforward to show that, for the so constructed NFA, L(N2) = L2, thus implying that L2 is
regular. Hence, regular languages are closed under doubling.

9. Let A ⊆ Σ∗ be a language. We define its prefix closure as:

pref A = {x ∈ Σ∗ | ∃y ∈ Σ∗. x · y ∈ A}

Prove that regular languages are closed under prefixing: if language A is regular, then so is pref A.

Solution: Let A ⊆ Σ∗ be regular. Then there must be a DFA MA = (Q,Σ, δ, s, F) such that
L(MA) = A. Now, based on MA, define another automaton M = (Q,Σ, δ, s, F ′) so that:

F ′ =
{
q ∈ Q | ∃y ∈ Σ∗. δ̂(q, y) ∈ F

}
We will show that this automaton accepts the language pref A, and hence that pref A is regular.

Claim. L(M) = pref A

Proof.

x ∈ L(M) ⇔ δ̂(s, x) ∈ F ′ {def. L(M)}
⇔ ∃y ∈ Σ∗. δ̂(δ̂(s, x), y) ∈ F {def. F ′}
⇔ ∃y ∈ Σ∗. δ̂(s, x · y) ∈ F {HW 1.3, page 301}
⇔ ∃y ∈ Σ∗. x · y ∈ A {L(MA) = A}
⇔ x ∈ pref A {def. pref A}

10. Consider the following unary operation on languages:

min(L) = {x ∈ L | no proper prefix of x is in L}

Prove that regular languages are closed under this operation; that is, prove that if language A is
regular, then so is min(A).

Solution: Assume A is regular. (For simplicity, we shall also assume ε 6∈ A.) Then there is a DFA MA

accepting A. We construct another DFA M ′
A from MA by adding two new states qF and qG, making

qF the only accepting state of M ′
A, letting δ′(qF , a) = qG and δ′(qG, a) = qG for every a ∈ Σ, and by re-

directing all edges pointing to a final state in MA to point to qF . We can then show L(M ′
A) = min(A)

as follows:

x ∈ L(M ′
A) ⇔ δ̂′(s, x) = qF {Def. acceptance and M ′

A}
⇔ δ̂(s, x) ∈ F and for no proper prefix y of x, δ̂(s, y) ∈ F {Def. M ′

A}
⇔ x ∈ A and no proper prefix of x is in A {Def. acceptance}
⇔ x ∈ min(A) {Def. min(A)}

thus proving that min(A) is regular.

1.3 DFA State Minimization

11. For the deterministic automaton given below, apply the minimization algorithm of Lecture 14 to
compute the equvalence classes of the collapsing relation ≈ defined in Lecture 13. Show clearly the
computation steps. List the equivalence classes, and apply the quotient construction to derive a
minimized automaton. Draw its graph.

a b
→ q0 q0 q1

q1 q2 q3

q2 q2 q3

q3 q2 q4 F
q4 q0 q1

Solution: (incomplete) After applying the minimization algorithm we obtain that q0 ≈ q4 and q1 ≈ q2.
Thus we obtain the following minimized automaton (given as a table).

a b
→ {q0, q4} {q0, q4} {q1, q2}

{q1, q2} {q1, q2} {q3}
{q3} {q1, q2} {q0, q4} F

12. For the deterministic automaton given below, apply the minimization algorithm of Lecture 14 to
compute the equvalence classes of the collapsing relation ≈ defined in Lecture 13. Show clearly the
computation steps. List the equivalence classes, and apply the quotient construction to derive a
minimized automaton. Draw its graph.

a b
→ q1 q3 q8

q2 F q3 q1

q3 q8 q2

q4 F q5 q6

q5 q6 q2

q6 q7 q8

q7 q6 q4

q8 q5 q8

Solution: With the minimization algorithm we establish that q1 ≈ q6 ≈ q8, q2 ≈ q4 and q3 ≈ q5 ≈ q7.
The resulting quotient automaton, presented as a table, is:

a b
→ {q1, q6, q8} {q3, q5, q7} {q1, q6, q8}

{q3, q5, q7} {q1, q6, q8} {q2, q4}
{q2, q4} F {q3, q5, q7} {q1, q6, q8}

13. For the deterministic automaton given below, apply the minimization algorithm of Lecture 14 of the
textbook to compute the equvalence classes of the collapsing relation ≈ defined in Lecture 13.

a b
→ q0 F q1 q3

q1 q2 q3

q2 F q5 q2

q3 q4 q1

q4 F q5 q4

q5 q5 q5

(a) Show clearly the computation steps (use tables).
(b) List the computed equivalence classes.
(c) Apply the quotient construction of Lecture 13 to derive the minimized automaton. Draw its

graph.

Solution: As a table:

a b
→ {q0} F {q1, q3} {q1, q3}

{q1, q3} {q2, q4} {q1, q3}
{q2, q4} F {q5} {q2, q4}
{q5} {q5} {q5}

14. For the deterministic automaton given below, apply the minimization algorithm of textbook Lecture 14
to compute the equvalence classes of the collapsing relation ≈ defined in textbook Lecture 13.

a b
→ q0 q2 q0

q1 q0 q2

q2 F q4 q3

q3 q0 q4

q4 F q4 q1

(a) Show clearly the computation steps (use tables).
(b) List the computed equivalence classes.

Solution: These are {q0}, {q1, q3} and {q2, q4}.
(c) Apply the quotient construction of textbook Lecture 13 to derive the minimized automaton.

Draw its graph.
Solution: (as a table)

a b
→ {q0} {q2, q4} {q0}

{q1, q3} {q0} {q2, q4}
{q2, q4} F {q2, q4} {q1, q3}

1.4 Myhill–Nerode Relations and Theorem

15. Consider the language L defined by the regular expression (a∗ + ba)∗. Describe the equivalence classes
of {a, b}∗ w.r.t. the Myhill–Nerode relation ≡L defined by: (cf. equation (16.1) on page 97)

x1 ≡L x2
def⇐⇒ ∀y ∈ Σ∗.(x1 · y ∈ L ⇔ x2 · y ∈ L)

Present these equivalence classes through regular expressions. Use ≡L to construct a minimal automa-
ton M≡L (cf. page 91) for the language L, and draw the graph of the automaton.

Solution: The states of the quotient automaton are:

Σ∗/≡L = {L((a + ba)∗), L((a + ba)∗b), L((a + ba)∗bb(a + b)∗)}

16. Recall the Myhill–Nerode Theorem, textbook Lecture 16, with the equivalence relation ≡A on strings
defined in equation (16.1). The latter gives rise to the following technique for proving that the minimal
DFA for a given regular language A over Σ has at least k states:

Identify k strings x1, . . . , xk over Σ, for which you can show that:
xi 6≡A xj whenever i 6= j.

Then ≡A has at least k equivalence classes, and hence the desired result.

Now, let m be an arbitrary but fixed even number. Consider the language B over {a, b} consisting of
all strings of length at least m which have an equal number of a’s and b’s in the last m positions. Use
the technique described above to show that the minimal DFA for language B has at least 2

m
2 states.

Hint: Consider the strings of length m
2 .

Solution: Consider the set X of strings of length m
2 over {a, b}. Let x, y ∈ X so that x 6= y. Let

x′, y′ be the shortest suffices of x and y respectively, such that |x′| = |y′| and x′ 6= y′. Then obviously
]a(x′) 6=]a(y′). Now let z = arbs, where r = m

2 −]a(x′) and s = m− (|x′|+ r). Then x · z ∈ B while
y · z 6∈ B, and hence x′ 6≡B y′. Since X has 2

m
2 elements, ≡B has at least 2

m
2 equivalence classes, and

therefore the minimal DFA for language B has at least 2
m
2 states.

1.5 Proving Non–regularity of a Language

17. Apply the Pumping Lemma – in contra–positive form, as a game with the Demon – to show that the
following language:

A = {an | n is a power of 2}

is not regular.

Solution: One possible solution is:

(D) Demon picks k.

(W) We pick x = ε, y = a2k
and z = a2k

. Then xyz = a2k+1
and |y| > k.

(D) Demon picks u, v and w so that uvw = y = a2k
and v 6= ε.

(W) We pick i = 2.

Then xuviwz = a2k+1+l for some 0 < l ≤ 2k. Since l < 2k+1 we have 2k+1 < 2k+1 + l < 2k+2, and
hence xuviwz 6∈ A. We have a winning strategy, and A is therefore not regular.

2 Pushdown Automata and Context-Free Languages

2.1 Combined Problems

1. Consider the language:

L
def=

{
x · y ∈ {a, b}+ | y = rev x

}
where rev x denotes the reverse string of x (cf. HW 2.2, page 302).

(a) Use the Pumping Lemma to prove that L is not regular.
Solution: As a game with the Demon (cf. Lecture 11):

• Demon picks k > 0.
• We pick for example x = ε, y = ak, z = bbak, and we have xyz = akbbak ∈ L and |y| ≥ k.
• Demon picks uvw = y = ak, v 6= ε.
• We pick for example i = 0.

Then xuviwz = uwz = ajbbak for some j < k, and hence xuviwz 6∈ A. We have a winning
strategy, and L is therefore not regular.

(b) Give a context–free grammar G for L.
Solution: S → aa | bb | aSa | bSb

(c) Prove your grammar correct (cf. Lecture 20): that is, prove L = L(G).
Solution: We have to prove:

∀x ∈ {a, b}+. (S ∗→G x ⇔ x ∈ L)
We show the two directions of the equivalence separately.

(⇒) By induction on the length of the derivation of x.
Basis Holds vacuously, since S

0→G x is false: x = S is impossible since S 6∈ {a, b}+.
Induction Step Assume x′ ∈ L for all x′ such that S

n→G x′ (induction hypothesis).

Let S
n+1→ G x. Then, we must have S

1→G γ and γ
n→G x for some γ ∈ {a, b, S}+. But then

γ can only be aa or bb or aSa or bSb. The first two cases imply n = 0 and x = γ, and then
obviously x ∈ L. In the case γ = aSa, it must be that x = ax′a and S

n→G x′ for some x′.
From the induction hypothesis, we have x′ ∈ L. But x = ax′a, and therefore also x ∈ L.
The case γ = bSb is similar.

(⇐) By induction on |x|, which is even and positive.
Basis |x| = 2, then x ∈ L implies that x is either aa or bb. In both cases S

1→G x and
therefore S

∗→G x.
Induction Step Assume S

∗→G x′ for all x′ ∈ L such that |x′| = n (induction hypothesis).
Let |x| = n + 2, and let x ∈ L. It must be that either x = ax′a or x = bx′b for some x′

such that x′ ∈ L and |x′| = n. From the induction hypothesis, S
∗→G x′. Then, in the case

x = ax′a we also have aSa
∗→G ax′a = x, and since S

1→G aSa, then S
∗→G x.

The case x = bx′b is similar.

(d) Give an NPDA for L.
Solution: One possibility is to put G in GNF:

S → aA | bB | aSA | bSB
A → a
B → b

and then construct the NPDA canonically (cf. Lecture 24):

Q
def= {q}

Σ def= {a, b}
Γ def= {S, A,B}

δ
def=

〈q, S〉 a
↪→ 〈q, SA〉

〈q, S〉 a
↪→ 〈q, A〉

〈q, S〉 b
↪→ 〈q, SB〉

〈q, S〉 b
↪→ 〈q, B〉

〈q, A〉 a
↪→ 〈q, ε〉

〈q, B〉 b
↪→ 〈q, ε〉

s
def= q

⊥ def= S

2. Consider the language:
A =

{
akblam | m = k + l

}
(a) Use the closure properties of regular languages to show that A is not regular.

Solution: The language L(b∗a∗) is regular, but A ∩ L(b∗a∗) = {bnan | n ≥ 0}, as we already
know, is not regular. Since regular languages are closed under intersection, A is not regular.

(b) Give a context–free grammar G generating A.
Solution: One possibility is:

S → aSa | B
B → ε | bBa

(c) Prove your grammar correct; that is, prove S
+→G x ⇔ x ∈ A.

Solution: The proof is standard, and is made easy by the fact that we already know that
B

+→G x ⇔ x ∈ {bnan | n ≥ 0}.
(d) Construct an NPDA accepting A− {ε} on empty stack. Explain your choice of productions.

Solution: One possibility is to build an NPDA with three states, having the following produc-
tions:

〈q0,⊥〉
a

↪→ 〈q0, C〉 〈q1, C〉
a

↪→ 〈q2, ε〉 〈q2, C〉
a

↪→ 〈q2, ε〉
〈q0,⊥〉

a
↪→ 〈q2, C〉 〈q1, C〉

b
↪→ 〈q1, CC〉

〈q0,⊥〉
b

↪→ 〈q1, C〉
〈q0, C〉

a
↪→ 〈q0, CC〉

〈q0, C〉
a

↪→ 〈q2, CC〉
〈q0, C〉

b
↪→ 〈q1, CC〉

The first state counts the initial a’s, the second state counts the b’s which follow, and the third
state checks for the sum. In addition, the first state can nondeterministically decide that no b’s
are going to come and that exactly half of the a’s have been read.

3. Consider the language:
A = {x ∈ {a, b}∗ |]a(x) <]b(x)}

(a) Give a context–free grammar G for A. Explain your choice of productions.
Solution: There are many possible solutions. One way of looking at the strings of the language
is to devide these into the ones which have exactly one occurrence of b more than occurrences of
a, and those that have more. A string is in the first group exactly when it can be represented
as a string of the shape e1 · b · e2, where e1 and e2 are strings with an equal number of a’s and
b’s. Thus, e1 and e2 can be produced by the grammar E → ε | aEb | bEa | EE. A string is in
the second group exactly when it is the concatenation of two strings of A. So we arrive at the
following grammar:

S → EbE | SS
E → ε | aEb | bEa | EE

(b) Construct an NPDA accepting A on empty stack. Explain its workings.

Solution: Again, there is a number of good solutions. One elegant solution using ε-transitions
(proposed by one of the students at the exam) is based on the observation that if we use the
”standard” productions for comparing occurrences:

〈q,⊥〉 a
↪→ 〈q, A⊥〉 〈q,⊥〉 b

↪→ 〈q, B⊥〉
〈q, A〉 a

↪→ 〈q, AA〉 〈q, B〉 b
↪→ 〈q, BB〉

〈q, B〉 a
↪→ 〈q, ε〉 〈q, A〉 b

↪→ 〈q, ε〉

then a string is in A exactly when after reading it the stack contains only B’s (on top of ⊥). Note
that there must be at least one such B. So, we can obtain the desired behaviour by adding two
more productions:

〈q,⊥〉 b
↪→ 〈q, B〉

〈q, B〉 ε
↪→ 〈q, ε〉

4. Consider the language:
A = {ambn | m ≤ n}

(a) Use the Pumping Lemma for regular languages (as a game with a Deamon) to prove that A is
not regular.

(b) Refer to the closure properties of context–free languages to argue that A is context–free. That
is, represent A as the result of some operation(s) on context–free languages (which we already
know to be context–free) under which CFLs are closed.

Solution: A = B · C for B
def= {ambm | m ≥ 0} and C

def= {bn | n ≥ 0}, both of which we know to
be context–free, and we know CFLs to be closed under language concatenation.

(c) Give a context–free grammar G generating A.
Solution: One possibility is the grammar S → ε | aSb | Sb.

(d) Prove your grammar correct. You are allowed to reuse results proved in class.

(e) Construct an NPDA accepting A− {ε} on empty stack. Explain your choice of productions.
Solution: One solution is a NPDA with one control state q and productions:

〈q, S〉 a
↪→ 〈q, SA〉

〈q, S〉 a
↪→ 〈q, A〉

〈q, A〉 b
↪→ 〈q, A〉

〈q, A〉 b
↪→ 〈q, ε〉

The automaton uses the first production for reading all initial a’s but the last, then guesses the
last a and uses the second production to get rid of the S at the top of the stack. The stack now
has as many A’s as the a’s read so far. The automaton guesses the number of b’s in excess of a’s
in the string, and uses the third production that many times. The stack now has as many A’s as
there are remaining (unread) b’s. The automaton uses production four to empty the stack upon
reading the whole string.

5. Consider the language:
A =

{
akblam | l = k + m

}
(a) Refer to the closure properties of regular languages to argue that A is not regular.

Solution: The regular lanuguages are closed under intersection, but A∩L(a∗b∗) equals {anbn | n ≥ 0}
which is not regular, hence A cannot be regular.

(b) Refer to the closure properties of context–free languages to argue that A is context–free.
Solution: The context–free languages are closed under language concatenation, and since A can
be represented as the concatenation of the context–free languages

{
akbk | k ≥ 0

}
and {bmam | m ≥ 0},

A must be context–free.

(c) Give a context–free grammar G generating A.
Solution: From the previous observation, and the construction on grammars we used to show
this closure property, we directly obtain the grammar:
S → AB
A → ε | aAb
B → ε | bBa

(d) Construct an NPDA accepting A− {ε} on empty stack. Explain your choice of productions.

6. Consider the language:

L
def= {x ∈ {a, b, c}∗ |]a(x) +]b(x) =]c(x)}

(a) Show that L is not regular.

(b) Give a context–free grammar for L. Prove your grammar correct.

(c) Construct an NPDA accepting L (on empty stack).

7. Consider the language:
L = {ambn | m 6= n}

(a) Give a simple argument for L being context–free.
(Hint: you could use the closure properties of CFLs.)

(b) Construct an NPDA (possibly with ε–transitions) accepting L on empty stack. Explain its work-
ings.

2.2 Chomsky–Schützenberger Theorem

8. Recall the Chomsky–Schützenberger Theorem, textbook Supplementary Lecture G. Show how this
Theorem applies to the context–free language PAL of even–length palindromes over {a, b}, by identi-
fying a suitable number n, a regular language R, and a homomorphism (renaming) h.

Solution: PAL is equal to the language h(PARENn ∩ R) for n = 2, R = L(([1+[2)
∗(]1+]2)

∗) and h
renaming [1 and]1 to a and [2 and]2 to b.

9. Recall the Chomsky–Schützenberger Theorem (textbook Supplementary Lecture G). Show how this
theorem applies to the context–free language

A
def= {x ∈ {a, b}∗ |]a(x) =]b(x)}

over the alphabet Σ = {a, b}, by identifying:

• a suitable natural number n,

• a regular language R over the alphabet Σn of the n–th balanced parentheses language, and

• a homomorphism h : Σn → Σ∗,

for which you argue that A = h(PARENn ∩R) holds.

Solution: Recalling that A is generated by the grammar S → ε | aSb | bSa | SS it is easy to see that
A = h(PARENn ∩R) holds for n = 2, R = (Σn)∗ and h defined by h([1) = a, h(]1) = b, h([2) = b and
h(]2) = a.

2.3 Proving Non–context–freeness of a Language

10. Apply the Pumping Lemma for context–free languages (as a game with the Demon) to show that the
language:

A =
{
anbnaj | j ≤ n

}
is not context–free.

Solution:

– Demon picks an arbitrary k ≥ 0.

+ We pick z = akbkak which is in A.

– Demon picks u, v, w, x, y such that z = uvwxy, |vx| > 0, |vwx| ≤ k.

+ If vwx = albm for some l, m ≥ 0, we pick i = 0. Otherwise we pick i = 2.

Since |vwx| ≤ k, vwx has either the shape albm or bmal for some l,m such that l + m ≤ k. In the first
case xv0wx0y must be of the shape apbqak for some p, q such that p + q < 2k, and thus is not in A.
In the second case, xv2wx2y will either not be in L(a∗b∗a∗) at all, and thus not in A, or else xv2wx2y
must be of the shape akbpaq for some p, q such that p + q > 2k, and thus not in A. Hence, we win the
game in all cases, which shows that A is not context–free.

2.4 Other Problems

11. A context–free grammar G = (N,Σ, P, S) is called strongly right–linear (or SRLG for short) if all
its productions are of shape A → aB or A → ε. Prove that SRLGs generate precisely the regular
languages.
Hint: Define appropriate transformations between SRLGs and Finite Automata – one for each direc-
tion! – and prove that these transformations are language preserving. State and prove appropriate
lemmas where needed to structure the proofs.

Solution: In two parts: the first part shows that the languages generated by SRLGs are regular,
while the second shows that every regular language is the language of some SRLG.

a) Let G = (N,Σ, P, S) be a SRLG. Define the NFA NG
def= (N,Σ,∆, {S} , F) where we define

∆(X, a) def= {Y ∈ N | (X → aY) ∈ P} and F
def= {X ∈ N | (X → ε) ∈ P}. Then:

x ∈ L(NG) ⇔ ∆̂({S} , x) ∩ F 6= ∅ {Def. L(N)}
⇔ {X ∈ N | S →∗

G xX} ∩ F 6= ∅ {Lemma A}
⇔ ∃X ∈ N. (S →∗

G xX ∧X →G ε) {Def. F}
⇔ S →+

G x {Def. →∗
G}

⇔ x ∈ L(G) {Def. L(G)}

So L(G) = L(NG) and hence L(G) is regular. In the proof, Lemma A states that

∆̂({Y } , x) = {X ∈ N | Y →∗
G xX}

which is proved by induction on the structure of x as follows.
Base case.

∆̂({Y } , ε) = {Y }
{
Def. ∆̂

}
= {X ∈ N | Y →∗

G X} {Def. SRLG}

Induction. Assume the Lemma holds for x (the ind. hyp.); we show that it then also holds for xa.

∆̂({Y } , xa) =
⋃

X∈∆̂({Y },x) ∆(X, a)
{
Def. ∆̂

}
=

⋃
X∈{X∈N |Y →∗

GxX}∆(X, a) {Ind. hyp.}
=

⋃
X∈{X∈N |Y →∗

GxX} {Z ∈ N | (X → aZ) ∈ P} {Def. ∆}
= {X ∈ N | Y →∗

G xaX} {Def. →∗
G}

b) This part is similar to the previous one and is only sketched here. Let A be a regular language.
Then there is a DFA MA = (Q,Σ, δ, s, F) such that L(MA) = A. We define the SLRG GA

def=
(Q,Σ, P, s) where P

def= {q1 → aq2 | δ(q1, a) = q2} ∪ {q → ε | q ∈ F}. We then show x ∈ L(GA) ⇔
x ∈ L(MA) = A, the proof of which is best structured by proving and using Lemma B:

q1 →∗
GA

xq2 ⇔ δ̂(q1, x) = q2

12. A context–free grammar G = (N,Σ, P, S) is called strongly right–linear (or SRLG for short) if all its
productions are of shape A → aB or A → ε. Let us call a SRLG deterministic if for each non–terminal
A ∈ N and terminal a ∈ Σ there is exactly one production of shape A → aB (while productions of
shape A → ε are optional).

Define a complement construction on deterministic SRLGs. That is, for deterministic SRLGs G define
the complement G as a deterministic SRLG for which you show that L(G) = L(G).

Solution: Recall that there is a one–to–one corespondence beween DFAs and SRLGs, and recall the
complement construction on DFAs. Let G = (N,Σ, P, S) be a deterministic SRLG. We define the
complement of G as the deterministic SRLG G

def= (N,Σ, P , S) where P
def= {A → aB | A → aB ∈ P}∪

{A → ε | A → ε 6∈ P} is the set of productions of G. Then,

x ∈ L(G) ⇔ S →+
G

x {Def. L(G)}
⇔ ∃!A ∈ N. (S →+

G
xA ∧A → ε ∈ P)

{
G a deterministic SRLG

}
⇔ ∃!A ∈ N. (S →+

G xA ∧A → ε 6∈ P)
{
Def. G

}
⇔ not S →+

G x {G a deterministic SRLG}
⇔ x 6∈ L(G) {Def. L(G)}
⇔ x ∈ L(G) {Set theory}

and therefore L(G) = L(G).

3 Turing Machines and Effective Computability

3.1 Constructing Turing Machines

1. Give a detailed description of a total Turing machine accepting the palindromes over {a, b}: that is,
all strings x ∈ {a, b}∗ such that x = rev x.

Solution: We build a machine which repeatedly scans the tape from left to right, trying to match the
first input symbol (which is directly replaced by the blank symbol) with the last input symbol (also
directly replaced by the blank symbol).

2. Give a detailed description of a Turing machine with input alphabet {a,]} that on input am]an halts
with a(m mod n) written on its tape. Explain the underlying algorithm.

Solution: Here is one possible algorithm, consisting of three phases. It implements modulo division
by repeated subtraction.

Preparatory phase: scan right to first blank symbol and replace it with a.

Main phase: repeat in rounds, in each round performing:
repeatedly scan from right to left, matching the rightmost a on the right of] with the rightmost a on
the left of]. The matching is done by replacing the corresponding a’s with ȧ’s.
A round terminates in one of two possible ways:
(a) if there are no more a’s on the right of], then delete (that is, replace with the blank symbol) all
ȧ’s on the left of], and restore all ȧ’s on the right of] to a’s. Start new round.
(b) if there is no matching a on the left of], then go to the next phase.

Finalizing phase:
- replace all ȧ’s by a’s on the left of], and
- delete all other symbols on the tape.

3. Give a detailed description (preferably as a graph) of a total Turing machine accepting the language:

A =
{

anb
n(n+1)

2 | n ≥ 0
}

Explain the underlying algorithm.

Solution (Idea) We use the well–known equation
∑n

i=1 = n(n+1)
2 . We proceed in rounds, in each

round marking an a and then marking as many b’s as there are marked a’s (which equals the number
of the current round).

4. Give a detailed description (preferably as a graph) of a Turing machine with input alphabet {a, b},
that on any input x halts with string y ∈ L(a∗b∗) written on its tape, where]a(x) =]a(y) and
]b(x) =]b(y). Explain how your Turing machine achieves its task.

Solution: (Idea) There are many possible solutions, but one simple idea is to use insertion sort:
Iteratively “swap” the left–most b with the first following a (using renaming), until there are no more
such a’s. (6 states suffice!)

5. Let M range over deterministic finite automata (DFA).

(a) Describe a uniform, injective encoding of DFAs into strings over the alphabet {0, 1}.
Solution: Such an encoding was discussed in class.

(b) Let M̂ ∈ {0, 1}∗ denote the encoding of M . As we know from Cantor’s theorem, the set

A
def=

{
M̂ ∈ {0, 1}∗ | M̂ 6∈ L(M)

}
is not regular (since it is the inverted diagonal set). Argue, however, that A is recursive by giving
a (reasonably detailed) description of a total Turing machine accepting A.
Solution: (Sketch) The Turing machine T starts by modifying the input M̂ to M̂]q̂0]M̂ where
q0 is the initial state of M . The added part q̂0]M̂ represents the initial configuration of M (where
a configuration of a DFA is understood as a pair consisting of a state and the suffix of the input

string that remains to be read). T continues by simulating M on M̂ , by iteratively computing
and updating the current state of M until the input string M̂ has been completely consumed.
This is achieved by reading (and consuming) the next symbol of the input string M̂ of M , and
looking up from M̂ (always available in the first segment of the tape) the next state of M . Finally,
T checks whether the state in the final configuration of M is an accepting state, and rejects resp.
accepts accordingly. Thus, T is a total Turing machine accepting language A.

6. Consider the language:
A =

{
albman | n = max(l, m)

}
(a) Apply the Pumping Lemma for context–free languages (as a game with the Demon) to show that

A is not context–free.

(b) Give a detailed description (preferably as a graph) of a total Turing machine accepting A.

7. Consider the language:

L
def= {ab, ababb, ababbabbb, ababbabbbabbbb, . . .}

(a) Show that L is not context–free.

(b) Describe a total Turing machine accepting L. Explain the workings of your machine/algorithm.
(If possible, provide a graph of its control automaton.)

3.2 Proving Undecidability using Reduction

8. Argue that acceptance is not decidable: that is, that there is no total Turing machine MA accepting
the language LA

def=
{
M̂]x̂ | M accepts x

}
, by reducing from the Halting problem.

Solution: A TM halts on input x if it either accepts x or otherwise rejects x. We use this observation
to show that the Halting problem (cf. Lecture 31) can be reduced to the above acceptance problem.

Assume that there is a total Turing machine MA accepting LA. We can then build a machine MR

which, on any input M̂]x̂, first swaps the values of t and r in M̂ (that is, swaps the accepting and
the rejecting states of M), and then behaves exactly like MA. Hence MR is a total Turing machine
deciding rejection. We can now combine MA and MR to produce a total Turing machine MH deciding
the Halting problem: for example, on any input M̂]x̂, let MH first run as MA and accept if MA

accepts, but continue as MR if MA rejects. MH will thus accept M̂]x̂ if M halts on x, and will reject
M̂]x̂ otherwise.

But the Halting problem is undecidable, and therefore there is no total Turing machine MA accepting
LA. The acceptance problem is therefore undecidable.

9. Show that the problem of whether a Turing machine, when started on a blank tape, ever writes a
given symbol (say a) of its input alphabet on its tape is not decidable.

Hint: You could reduce the undecidable problem of acceptance of the null string (problem (f), page 235)
to the problem above.

Solution: Assume the problem was decidable. Then there must be a total Turing machine Ma deciding
it. We shall use Ma to build a new total Turing machine Mε deciding the problem of acceptance of
ε. (Since the latter is known to be undecidable, we shall conclude that the present problem is also
undecidable.)

We construct Mε which, on input M̂ , converts M̂ to M̂ ′ such that M ′ is like M but:

• a is renamed to a new letter which is added to the alphabet of M̂ ′,

• a new state q is added, which becomes the accepting state of M̂ ′, and

• transitions δ(t, b) = (q, a, R) are added for every b ∈ Γ.

Then rewind and run as Ma on M̂ ′.

We can now deduce:

Mε accepts M̂ ⇔ Ma accepts M̂ ′
{
Def. Mε and M̂

}
⇔ M ′ reaches t starting from ε

{
Def. Ma and M̂ ′

}
⇔ M accepts ε

{
Def. M̂ ′

}
So, Mε decides the problem of acceptance of ε. Since the latter is known to be undecidable, we conclude
that the present problem is also undecidable.

10. Consider the language
VTP def=

{
M̂]x̂]q̂ | M run on x visits q twice

}
where ”M visits q” means that Turing machine M is at a configuration with control state q. Show
that language VTP is not recursive by reducing from undecidability of the Membership Problem.
That is, given a total Turing machine MVTP deciding VTP, construct a total Turing machine MMP

deciding MP, where:
MP def=

{
M̂]x̂ | M accepts x

}
Solution: Assume there is a total Turing machine MVTP accepting VTP. Then we can construct a
Turing machine MMP as follows.

On input M̂]x̂, MMP modifies the input to M̂ ′]x̂]v̂ where M ′ is like M but is modified as follows: two
new control states u and v are added, the latter of which is made the new accept state of M ′, and the
transition function δ of M is extended to δ′ so that δ′(t, a) = (u, \, R) and δ′(u, a) = (t, a, L) for all a
in the input alphabet of M , and δ′(t, \) = (v, \, R), where t is the original accept state of M and \ is a
tape symbol of MMP not used elsewhere. Notice that M ′ visits state t twice on input x exactly when
M visits t on x, that is, when M accepts x. MMP then continues as MVTP.

Then:
MMP accepts M̂]x̂ ⇔ MVTP accepts M̂ ′]x̂]v̂

⇔ M ′ run on x visits v twice
⇔ M accepts x

Since MVTP is total, so is MMP, and so MMP decides MP which we know to be undecidable. Hence
there is no total Turing machine MVTP accepting VTP.

3.3 Rice’s Theorem

11. Recall Rice’s Theorem, textbook Lecture 34. Explain why the trivial properties of the recursively
enumerable sets are decidable, by suggesting suitable total Turing machines for these properties.

Solution: There are exactly 2 trivial properties: the empty set (of r.e. sets) and the set of all r.e.
sets. Since we represent every r.e. set by some (encoding of a) Turing machine accepting this set, the
two trivial properties can be represented, by using some fixed encoding of Turing machines, as the
languages

{
M̂ | false

}
, which is the empty set, and

{
M̂ | true

}
, which is the set of all legal Turing

machine encodings.

A total Turing machine MF accepting the first language is simply one that upon reading ` immediately
enters its reject state, while a total Turing machine MT accepting the second language is one which
decides whether the input string is a legal encoding of some Turing machine according to the chosen
encoding scheme.

