
Namn:

Personnummer:

Datorarkitektur, 2006

Tentamen 2006-06-02

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points.

• The aproximate limits for grades on this exam are:

– To pass (G or 3): 30 points.

– For grade 4: 43 points.

– For grade VG: 50 points.

– For grade 5: 55 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 11

Problem 1. (12 points):
Consider the following 5-bit floating point representation based on the IEEE floating point format.
There is a sign bit in the most significant bit.
The next three bits are the exponent, with an exponent bias 3.
The last bit is the fraction.
The rules are like those in the IEEE standard (normalized, denormalized, representation of 0, infinity, and
NAN).
The floating point format encode numbers in a form:

V = (−1)s × M × 2E

where M is the significand and E is the exponent.
Fill in missing entries in the table below with the following instructions for each column:

Description: Some unique property of this number, such as, “The largest denormalized value.”

Binary: The 5 bit representation.

M : The value of the Mantissa written in decimal format.

E: The integer value of the exponent.

Value: The numeric value represented, written in decimal format.

You need not fill in entries marked “—”. For the arithmetic expressions, recall that the rule with IEEE
format is to round to the number nearest the exact result. Use “round-to-even” rounding.

Description Binary M E Value

Minus Zero −0.0

Positive Infinity — — +∞
01101

Smallest number > 0

One 1.0

4.0 − 0.75

2.0 + 3.0

Page 2 of 11

Problem 2. (9 points):
Consider the following C declarations:

typedef struct {
short code;
long start;
char raw[3];
double data;

} OldSensorData;

typedef struct {
short code;
short start;
char raw[5];
short sense;
short ext;
double data;

} NewSensorData;

A. Using the templates below (allowing a maximum of 24 bytes), indicate the allocation of data for
structs of type OldSensorData NewSensorData. Mark off and label the areas for each individ-
ual element (arrays may be labeled as a single element). Cross hatch the parts that are allocated,
but not used (to satisfy alignment).

Assume the Linux alignment rules described in book and discussed in lectures. Clearly indicate the
right hand boundary of the data structure with a vertical line.

OldSensorData:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+
| |
+--+

NewSensorData:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+
| |
+--+

Page 3 of 11

B. Now consider the following C code fragment:

void foo(OldSensorData *oldData)
{

NewSensorData *newData;

/* this zeros out all the space allocated for oldData */
bzero((void *)oldData, sizeof(oldData));

oldData->code = 0x104f;
oldData->start = 0x80501ab8;
oldData->raw[0] = 0xe1;
oldData->raw[1] = 0xe2;
oldData->raw[2] = 0x8f;
oldData->raw[-5] = 0xff;
oldData->data = 1.5;

newData = (NewSensorData *) oldData;

...

Once this code has run, we begin to access the elements of newData. Below, give the value of each
element of newData that is listed. Assume that this code is run on a Little-Endian machine such
as a Linux/x86 machine. You must give your answer in hexadecimal format. Be careful about byte
ordering!.

(a) newData->start = 0x________________

(b) newData->raw[0] = 0x________________

(c) newData->raw[2] = 0x________________

(d) newData->raw[4] = 0x________________

(e) newData->sense = 0x________________

Page 4 of 11

Problem 3. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

void copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%eax
leal 0(,%eax,4),%ebx
leal 0(,%ecx,8),%edx
subl %ecx,%edx
addl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%ebx,%edx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

Page 5 of 11

Problem 4. (12 points):
In this problem, you are given the task of reconstructing C code based on some declarations of C structures
and unions, and the IA32 assembly code generated when compiling the C code.
Below are the data structure declarations. (Note that these declarations are shown horizontally rather than
vertically simply so that they fit on one page.)
struct s1 {
char a[3];
union u1 b;
int c;

};

struct s2 {
struct s1 *d;
char e;
int f[4];
struct s2 *g;

};

union u1 {
struct s1 *h;
struct s2 *i;
char j;

};

You may find it helpful to diagram these data structures.
For each IA32 assembly code sequence below on the left, fill in the missing portion of corresponding C
source line on the right.

A. proc1:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 12(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

int proc1(struct s2 *x)
{
return x->___________________ ;

}

B. proc2:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 4(%eax),%eax
movl 20(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

int proc2(struct s1 *x)
{
return x->___________________ ;

}

C. proc3:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movsbl 4(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

char proc3(union u1 *x)
{
return x->___________________ ;

}

D. proc4:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%eax
movl 24(%eax),%eax
movl (%eax),%eax
movsbl 1(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

char proc4(union u1 *x)
{
return x->___________________ ;

}

Page 6 of 11

Problem 5. (7 points):
Match each of the assembler routines on the left with the equivalent C function on the right.

foo1:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
sall $4,%eax
subl 8(%ebp),%eax
movl %ebp,%esp
popl %ebp
ret

foo2:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
testl %eax,%eax
jge .L4
addl $15,%eax

.L4:
sarl $4,%eax
movl %ebp,%esp
popl %ebp
ret

foo3:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
shrl $31,%eax
movl %ebp,%esp
popl %ebp
ret

int choice1(int x)
{

return (x < 0);
}

int choice2(int x)
{

return (x << 31) & 1;
}

int choice3(int x)
{

return 15 * x;
}

int choice4(int x)
{

return (x + 15) /4
}

int choice5(int x)
{

return x / 16;
}

int choice6(int x)
{

return (x >> 31);
}

Fill in your answers here:
foo1 corresponds to choice .
foo2 corresponds to choice .
foo3 corresponds to choice .

Page 7 of 11

Problem 6. (3 points):
Consider the following C functions and assembly code:

int fun7(int a)
{

return a * 30;
}

int fun8(int a)
{

return a * 34;
}

int fun9(int a)
{

return a * 18;
}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
sall $4,%eax
addl 8(%ebp),%eax
addl %eax,%eax
movl %ebp,%esp
popl %ebp
ret

Which of the functions compiled into the assembly code shown?

Page 8 of 11

Problem 7. (4 points):
Consider the following fragment of IA32 code from the C standard library:

0x400446e3 <malloc+7>: call 0x400446e8 <malloc+12>
0x400446e8 <malloc+12>: popl %eax

After the popl instruction completes, what hex value does register %eax contain?

Page 9 of 11

Problem 8. (5 points):
The following problem concerns basic cache lookups.

• The memory is byte addressable.

• Memory accesses are to 1-byte words (not 4-byte words).

• Physical addresses are 12 bits wide.

• The cache is 4-way set associative, with a 2-byte block size and 32 total lines.

In the following tables, all numbers are given in hexadecimal. The contents of the cache are as follows:

4-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1 Tag Valid Byte 0 Byte 1

0 29 0 34 29 87 0 39 AE 7D 1 68 F2 8B 1 64 38
1 F3 1 0D 8F 3D 1 0C 3A 4A 1 A4 DB D9 1 A5 3C
2 A7 1 E2 04 AB 1 D2 04 E3 0 3C A4 01 0 EE 05
3 3B 0 AC 1F E0 0 B5 70 3B 1 66 95 37 1 49 F3
4 80 1 60 35 2B 0 19 57 49 1 8D 0E 00 0 70 AB
5 EA 1 B4 17 CC 1 67 DB 8A 0 DE AA 18 1 2C D3
6 1C 0 3F A4 01 0 3A C1 F0 0 20 13 7F 1 DF 05
7 0F 0 00 FF AF 1 B1 5F 99 0 AC 96 3A 1 22 79

Part 1

The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields that
would be used to determine the following:

CO The block offset within the cache line
CI The cache index
CT The cache tag

11 10 9 8 7 6 5 4 3 2 1 0

Page 10 of 11

Part 2

For the given physical address, indicate the cache entry accessed and the cache byte value returned in hex.
Indicate whether a cache miss occurs.

If there is a cache miss, enter “-” for “Cache Byte returned”.

Physical address: 3B6

A. Physical address format (one bit per box)
11 10 9 8 7 6 5 4 3 2 1 0

B. Physical memory reference

Parameter Value

Cache Offset (CO) 0x
Cache Index (CI) 0x
Cache Tag (CT) 0x
Cache Hit? (Y/N)
Cache Byte returned 0x

Page 11 of 11

