
Namn:

Personnummer:

Datorarkitektur, 2007

Tentamen 2007-03-09

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points plus 3 possible bonus points.

• The aproximate limits for grades on this exam are:

– To pass (G or 3): 30 points.

– For grade 4: 43 points.

– For grade VG: 50 points.

– For grade 5: 55 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 11



Problem 1. (9 points):
Assume we are running code on a 6-bit machine using two’s complement arithmetic for signed integers. A
“short” integer is encoded using 3 bits. Fill in the empty boxes in the table below. The following definitions
are used in the table:

short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;

Note: You need not fill in entries marked with “–”.

Expression Decimal Representation Binary Representation

Zero 0

– −6

– 01 0010

ux

y

x >> 1

TMax

−TMin

TMin + TMin

Page 2 of 11



Problem 2. (8 points):
The following procedure takes a single-precision floating point number in IEEE format and prints out infor-
mation about what category of number it is. Fill in the missing code so that it performs this classification
correctly.

void classify_float(float f)
{

/* Unsigned value u has same bit pattern as f */
unsigned u = *(unsigned *) &f;

/* Split u into the different parts */
int sign = (u >> 31) & 0x1; // The sign bit

int exp = _______________; // The exponent field

int frac = _______________; // The fraction field

/* The remaining expressions can be written in terms of the
values of sign, exp, and frac */

if (______________________)
printf("Plus or minus zero\");

else if (______________________)
printf("Nonzero, denormalized\");

else if (______________________)
printf("Plus or minus infinity\");

else if (______________________)
printf("NaN\");

else if (______________________)
printf("Greater than -1.0 and less than 1.0\");

else if (______________________)
printf("Less than or equal to -1.0\");

else
printf("Greater than or equal to 1.0\");

}

Page 3 of 11



Problem 3. (8 points):
Consider the following IA32 code for a procedure foo():

foo:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%ecx
movl 16(%ebp),%edx
movl 12(%ebp),%eax
decl %eax
js .L3

.L7:
cmpl %edx,(%ecx,%eax,4)
jne .L3
decl %eax
jns .L7

.L3:
movl %ebp,%esp
popl %ebp
ret

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you
may only use symbolic variables a, n, val, and i from the source code in your expressions below—do not
use register names.)

int foo(int *a, int n, int val) {
int i;

for (i = _________; ____________________________ ; i =___________) {
;

}
return i;

}

Page 4 of 11



Problem 4. (7 points):
Consider the following code fragment containing the incomplete definition of a data type matrix entry
with 4 fields.

struct matrix_entry{

____ a;

____ b;

int c;

____ d;

};

struct matrix_entry matrix[2][5];

int return_entry(int i, int j){
return matrix[i][j].c;

}

Complete the above definition of matrix entry so that the following assembly code could be generated
from it on a Linux/x86 machine:

return_entry:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
leal (%eax,%eax,4),%eax
addl 12(%ebp),%eax
sall $4,%eax
movl matrix+4(%eax),%eax
movl %ebp,%esp
popl %ebp
ret

Notes

• Note that there are multiple correct answers.

• Choose your answers from the following types, assuming the following sizes and alignments:
Type Size (bytes) Alignment (bytes)

char 1 1
short 2 2
int 4 4

double 8 4

Page 5 of 11



Problem 5. (8 points):
The following problem concerns the following, low-quality code:

void foo(int x)
{

int a[3];
char buf[4];
a[0] = 0xF0F1F2F3;
a[1] = x;
gets(buf);
printf("a[0] = 0x%x, a[1] = 0x%x, buf = %s\n", a[0], a[1], buf);

}

In a program containing this code, procedure foo has the following disassembled form on an IA32 machine:

080485d0 <foo>:
80485d0: 55 pushl %ebp
80485d1: 89 e5 movl %esp,%ebp
80485d3: 83 ec 10 subl $0x10,%esp
80485d6: 53 pushl %ebx
80485d7: 8b 45 08 movl 0x8(%ebp),%eax
80485da: c7 45 f4 f3 f2 movl $0xf0f1f2f3,0xfffffff4(%ebp)
80485df: f1 f0
80485e1: 89 45 f8 movl %eax,0xfffffff8(%ebp)
80485e4: 8d 5d f0 leal 0xfffffff0(%ebp),%ebx
80485e7: 53 pushl %ebx
80485e8: e8 b7 fe ff ff call 80484a4 <_init+0x54> # gets
80485ed: 53 pushl %ebx
80485ee: 8b 45 f8 movl 0xfffffff8(%ebp),%eax
80485f1: 50 pushl %eax
80485f2: 8b 45 f4 movl 0xfffffff4(%ebp),%eax
80485f5: 50 pushl %eax
80485f6: 68 ec 90 04 08 pushl $0x80490ec
80485fb: e8 94 fe ff ff call 8048494 <_init+0x44> # printf
8048600: 8b 5d ec movl 0xffffffec(%ebp),%ebx
8048603: 89 ec movl %ebp,%esp
8048605: 5d popl %ebp
8048606: c3 ret
8048607: 90 nop

For the following questions, recall that:

• gets is a standard C library routine.

• IA32 machines are little-endian.

• C strings are null-terminated (i.e., terminated by a character with value 0x00).

• Characters ‘0’ through ‘9’ have ASCII codes 0x30 through 0x39.

Page 6 of 11



Consider the case where procedure foo is called with argument x equal to 0xE3E2E1E0, and we type
“123456789” in response to gets.

A. Fill in the following table indicating which program values are/are not corrupted by the response from
gets, i.e., their values were altered by some action within the call to gets.

Program Value Corrupted? (Y/N)

a[0]

a[1]

a[2]

x

Saved value of register %ebp

Saved value of register %ebx

B. What will the printf function print for the following:

• a[0] (hexadecimal): ________________________

• a[1] (hexadecimal): ________________________

• buf (ASCII): ________________________

Page 7 of 11



Problem 6. (8 points):
The following problem concerns optimizing a procedure for maximum performance on an Intel Pentium III.
Recall the following performance characteristics of the functional units for this machine:

Operation Latency Issue Time
Integer Add 1 1
Integer Multiply 4 1
Integer Divide 36 36
Floating Point Add 3 1
Floating Point Multiply 5 2
Floating Point Divide 38 38
Load or Store (Cache Hit) 1 1

You’ve just joined a programming team that is trying to develop the world’s fastest factorial routine. Starting
with recursive factorial, they’ve converted the code to use iteration:

int fact(int n)
{
int i;
int result = 1;

for (i = n; i > 0; i--)
result = result * i;

return result;
}

By doing so, they have reduced the number of cycles per element (CPE) for the function from around 63 to
around 4 (really!). Still, they would like to do better.

Page 8 of 11



One of the programmers heard about loop unrolling. He generated the following code:

int fact_u2(int n)
{
int i;
int result = 1;

for (i = n; i > 0; i-=2) {
result = (result * i) * (i-1);

}

return result;
}

Unfortunately, the team has discovered that this code returns 0 for some values of argument n.

A. For what values of n will fact_u2 and fact return different values?

B. Show how to fix fact_u2 so that its behavior is identical to fact. [Hint: there is a special trick for
this procedure that involves modifying just a single character.]

C. Benchmarking fact_u2 shows no improvement in performance. How would you explain that?

D. You modify the line inside the loop to read:

result = result * (i * (i-1));

To everyone’s astonishment, the measured performance now has a CPE of 2.5. How do you explain
this performance improvement?

Page 9 of 11



Problem 7. (12 points):
3M decides to make Post-Its by printing yellow squares on white pieces of paper. As part of the printing
process, they need to set the CMYK (cyan, magenta, yellow, black) value for every point in the square.
3M hires you to determine the efficiency of the following algorithms on a machine with a 2048-byte direct-
mapped data cache with 32 byte blocks.
You are given the following definitions:

struct point_color {
int c;
int m;
int y;
int k;

};

struct point_color square[16][16];
register int i, j;

Assume:

• sizeof(int) = 4

• square begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the array square. Variables i and j are stored in
registers.

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[i][j].c = 0;
square[i][j].m = 0;
square[i][j].y = 1;
square[i][j].k = 0;

}
}

Miss rate for writes to square: _______ %

Page 10 of 11



B. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[j][i].c = 0;
square[j][i].m = 0;
square[j][i].y = 1;
square[j][i].k = 0;

}
}

Miss rate for writes to square: _______ %

C. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

square[i][j].y = 1;
}

}
for (i=0; i<16; i++) {

for (j=0; j<16; j++) {
square[i][j].c = 0;
square[i][j].m = 0;
square[i][j].k = 0;

}
}

Miss rate for writes to square: _______ %

Page 11 of 11


