Datorarkitektur, 2010 Tentamen 2010-03-19

Instructions:

- Make sure that your exam is not missing any sheets, then write your full name on the front.
- Write your answers in the space provided below the problem. If you make a mess, clearly indicate your final answer.
- The exam has a maximum score of 60 points plus 3 possible bonus points.
- The aproximate limits for grades on this exam are:
- To pass (grade E): 35 points.
- For grade D: 40 points.
- For grade C: 45 points.
- For grade B: 50 points.
- For grade A: 55 points.
- You're allowed to bring five sheets of paper with any text to this exam but no computer, calulator, telephone etc.

Problem 1. (20 points):

Give short explanations (in Swedish or English) of the following computer systems concepts.

- Pointer (Pekare)
- ISA
- Latch
- Branch prediction
- Loop unrolling

Problem 2. (10 points):

Consider a 4-bit two's complement representation. Fill in the empty boxes in the following table:

Number	Decimal Representation	Binary Representation
Zero	0	
-	-1	
-	-5	0110
-		1010
-		
TMax		
TMin		
TMax+TMax		
TMin-1		
0-TMax		
-		

Problem 3. (12 points):

Consider the following 12-bit floating point representation based on the IEEE floating point format:

- There is a sign bit in the most significant bit.
- The next five bits are the exponent. The exponent bias is 15 .
- The last six bits are the significand.

We consider the floating point format to encode numbers in a form:

$$
(-1)^{s} \times m \times 2^{E}
$$

where m is the mantissa, E is the exponent, and s is the sign bit.
Fill in the table below for the following numbers, with the following instructions for each column:
Hex: The 3 hexadecimal digits describing the encoded form.
s : The sign bit.
E : The integer value of the exponent.
m : The fractional value of the mantissa. This should be a number of the form x or x / y, where x is an integer, and y is an integral power of 2. Examples include: $0,3 / 16$, and $1 / 64$.

As an example, to represent the number $7 / 2$, we would have $s=0, m=7 / 4$, and $E=1$. Our number would therefore have an exponent field of 0×10 (decimal value $15+1=16$) and a significand field 0×30 (binary 110000_{2}), giving a hex representation 430.

Description	Hex	s	E	m
-1				
$31 / 8$				
Smallest value >2				

Problem 4. (10 points):

Condider the following assembly code for a C for loop:

```
loop:
    pushl %ebp
    xorl %eax, %eax
    movl %esp, %ebp
    movl 8(%ebp), %ecx
    testl %ecx, %ecx
    jle.L4
    movl $1, %edx
.L5 :
    imull %edx, %eax
    incl %edx
    incl %eax
    cmpl %edx, %ecx
    jge .L5
    addl %eax, %eax
. L4 :
    popl %ebp
    ret
```

Based on the assembly code above, fill in the blanks below in its corresponding C source code. (Note: you may only use the symbolic variables x, i, and result in your expressions below - do not use register names.)

```
int loop(int x) {
    int i, result;
    result = 0;
```

\qquad
\qquad

``` ;
    }
    result =
```

\qquad

``` ;
    return result;
}
```

 for (___ _ i++) \{

Problem 5. (8 points):

Give at least two reasons why performance may start to degrade when you add more pipeline stages to a CPU.

