
Full Name:

Datorarkitektur, 2006

Test Exam 2
2006-02-28

Instructions:

• Make sure that your exam is not missing any sheets, then write your full name on the front.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 60 points.

• The aproximate limits for grades on this exam are:

– To pass (G or 3): 30 points.

– For grade 4: 43 points.

– For grade VG: 50 points.

– For grade 5: 55 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

• This exam is OPEN BOOK. You may use any books or notes you like. Good luck!

Page 1 of 10

Problem 1. (6 points):
Consider the following datatype definitions on an SPARC machine.

typedef struct {
char c;
double *p;
int i;
double d;
short s;

} struct1;

typedef union {
char c;
double *p;
int i;
double d;
short s;

} union1;

A. Using the template below (allowing a maximum of 32 bytes), indicate the allocation of data for a structure
of type struct1. Mark off and label the areas for each individual element (there are 5 of them). Cross
hatch the parts that are allocated, but not used (to satisfy alignment).

Assume the alignment rules discussed in lecture: data types of size x must be aligned on x-byte boundaries.
Clearly indicate the right hand boundary of the data structure with a vertical line.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
+---+
| |
+---+

B. How many bytes are allocated for an object of type struct1?

C. What alignment is required for an object of type struct1? (If an object must be aligned on an x-byte
boundary, then your answer should be x.)

D. If we define the fields of struct1 in a different order, we can reduce the number of bytes wasted by
each variable of type struct1. What is the number of unused, allocated bytes in the best case?

E. How many bytes are allocated for an object of type union1?

F. What alignment is required for an object of type union1? (If an object must be aligned on an x-byte
boundary, then your answer should be x.)

Page 2 of 10

Problem 2. (12 points):
In the following questions assume the variables a and b are signed integers and that the machine uses two’s
complement representation. Also assume that MAX INT is the maximum integer, MIN INT is the minimum
integer, and W is one less than the word length (e.g., W = 31 for 32-bit integers).
Match each of the descriptions on the left with a line of code on the right (write in the letter). You will be
given 2 points for each correct match.

1. One’s complement of a

2. a.

3. a & b.

4. a * 7.

5. a / 4 .

6. (a < 0) ? 1 : -1 .

a. ˜(˜a | (b ˆ (MIN_INT + MAX_INT)))

b. ((a ˆ b) & ˜b) | (˜(a ˆ b) & b)

c. 1 + (a << 3) + ˜a

d. (a << 4) + (a << 2) + (a << 1)

e. ((a < 0) ? (a + 3) : a) >> 2

f. a ˆ (MIN_INT + MAX_INT)

g. ˜((a | (˜a + 1)) >> W) & 1

h. ˜((a >> W) << 1)

i. a >> 2

Page 3 of 10

Problem 3. (12 points):
Consider the following 8-bit floating point representation based on the IEEE floating point format:

• There is a sign bit in the most significant bit.

• The next 3 bits are the exponent. The exponent bias is 23−1 − 1 = 3.

• The last 4 bits are the fraction.

• The representation encodes numbers of the form: V = (−1)s ×M × 2E , where M is the significand
and E is the biased exponent.

The rules are like those in the IEEE standard(normalized, denormalized, representation of 0, infinity, and
NAN). FILL in the table below. Here are the instructions for each field:

• Binary: The 8 bit binary representation.

• M: The value of the significand. This should be a number of the form x or x
y , where x is an integer,

and y is an integral power of 2. Examples include 0, 3
4 .

• E: The integer value of the exponent.

• Value:The numeric value represented.

Note: you need not fill in entries marked with ”—”.

Description Binary M E Value

Minus zero −0.0

— 0 100 0101

Smallest denormalized (negative)

Largest normalized (positive)

One 1.0

— 5.5

Positive infinity — — +∞

Page 4 of 10

Problem 4. (8 points):
Consider the source code below, where M and N are constants declared with #define.

int array1[M][N];
int array2[N][M];

int copy(int i, int j)
{

array1[i][j] = array2[j][i];
}

Suppose the above code generates the following assembly code:

copy:
pushl %ebp
movl %esp,%ebp
pushl %ebx
movl 8(%ebp),%ecx
movl 12(%ebp),%ebx
leal (%ecx,%ecx,8),%edx
sall $2,%edx
movl %ebx,%eax
sall $4,%eax
subl %ebx,%eax
sall $2,%eax
movl array2(%eax,%ecx,4),%eax
movl %eax,array1(%edx,%ebx,4)
popl %ebx
movl %ebp,%esp
popl %ebp
ret

What are the values of M and N?

M =

N =

Page 5 of 10

Problem 5. (3 points):
Consider the following C functions and assembly code:

int fun1(int a, int b)
{

if (a < b)
return a;

else
return b;

}

int fun2(int a, int b)
{

if (b < a)
return b;

else
return a;

}

int fun3(int a, int b)
{

unsigned ua = (unsigned) a;
if (ua < b)

return b;
else

return ua;
}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
movl 12(%ebp),%eax
cmpl %eax,%edx
jge .L9
movl %edx,%eax

.L9:
movl %ebp,%esp
popl %ebp
ret

Which of the functions compiled into the assembly code shown?

Page 6 of 10

This next problem will test your understanding of stack frames. It is based on the following recursive C
function:

int silly(int n, int *p)
{

int val, val2;

if (n > 0)
val2 = silly(n << 1, &val);

else
val = val2 = 0;

*p = val + val2 + n;

return val + val2;
}

This yields the following machine code:

silly:
pushl %ebp
movl %esp,%ebp
subl $20,%esp
pushl %ebx
movl 8(%ebp),%ebx
testl %ebx,%ebx
jle .L3
addl $-8,%esp
leal -4(%ebp),%eax
pushl %eax
leal (%ebx,%ebx),%eax
pushl %eax
call silly
jmp .L4
.p2align 4,,7

.L3:
xorl %eax,%eax
movl %eax,-4(%ebp)

.L4:
movl -4(%ebp),%edx
addl %eax,%edx
movl 12(%ebp),%eax
addl %edx,%ebx
movl %ebx,(%eax)
movl -24(%ebp),%ebx
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

Page 7 of 10

Problem 6. (6 points):

A. Is the variable val stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

B. Is the variable val2 stored on the stack? If so, at what byte offset (relative to %ebp) is it stored, and
why is it necessary to store it on the stack?

C. What (if anything) is stored at -24(%ebp)? If something is stored there, why is it necessary to store
it?

D. What (if anything) is stored at -8(%ebp)? If something is stored there, why is it necessary to store
it?

Page 8 of 10

M

F

D

Instruction
memory

Instruction
memory

PC
increment

PC
increment

Register
file

Register
file

CCCC ALUALU

Data
memory

Data
memory

Select
PC

rB

dstE dstM

ALU
A

ALU
B

Mem.
control

Addr

srcA srcB

read

write

ALU
fun.

Fetch

Decode

Execute

Memory

Write back

data out

data in

A B
M

E

M_valA

W_valE

W_valM

W_valE

M_valA

W_valM

f_PC

Predict
PC

Bchicode valE valA dstE dstM

E icode ifun valC valA valB dstE dstM srcA srcBE icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcBd_srcA

e_Bch

M_Bch

Sel+Fwd
A

Fwd
B

W icode valE valM dstE dstM

m_valM

W_valM

M_valE

e_valE

Page 9 of 10

Problem 7. (13 points):
Modern pipelined machines often have conditionally executed instructions. We want to modify y86 to
have the following conditional register to register move instructions: rrmovl, rrmovlle, rrmovll,
rrmovle, rrmovlne, rrmovlge and rrmovlg that move data from regA to regB on condition respec-
tively: allways (the old rrmovl), less or equal, less, equal, not equal, greater or equal and greater.
Example of their use is replacing

andl %eax, %eax
jle LL2
rrmovl %ebx, %edx

LL2:

with

andl %eax, %eax
rrmovlg %ebx, %edx

LL2:

A. In the example above, how many cykles would we gain on our SEQ implementation of Y86 if %eax≤
0? If %eax> 0? Why?

B. How many cykles would we gain on our PIPE implementation of Y86 if %eax≤ 0? If %eax> 0?
Why?

C. How would you implement these new instructions in PIPE. Draw on the picture of PIPE and describe
in words.

D. There may be a data hazard with these new instructions in our PIPE implementation. What is the
problem? What can you do about it. Draw on the picture of PIPE and describe in words.

Page 10 of 10

