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Projection 1

Orthographic projection

Recall that computer vision is about discovering from
images what is present in the scene and where it is.
If we are going to successfully invert the imaging
process, we need to understand the imaging process
itself.

In mechanical drawing, we have already seen how to
construct images of 3D scenes using orthographic
projection: we project the scene onto an image
plane using parallel rays.
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Orthographic projection

Some of the images which we take with CCD cam-
eras do, indeed, look as if they have been formed
by orthographic projection. The image on the left
resembles an orthographic projection. Parallel lines
in the scene appear as parallel lines in the image,
and length ratios along parallel lines are preserved.

Orthographic? Certainly not orthographic

However, some CCD images are not explained by
orthographic projection. In the image on the right,
parallel lines in the scene appear to converge in the
image. We clearly need a more general model of pro-
jection to explain what is happening in CCD cam-
eras.

Projection 3

Perspective projection

The projection model we adopt is inspired by the
pin-hole camera. The figure below illustrates the
operation of the pin-hole camera in two dimensions

(Y. =0).
%o World point
Zc / (XC ’0’ ZC)
Optical centre X

f N (2/ Image

- f - Optical axis
' !
Focal length

Real image in a Image plane
pin-hole camera

This type of projection is called planar perspec-
tive projection. By analysing the similar trian-
gles, we find that
/,
v _ X _TX
[ Z Ze
For the three-dimensional case, we also have
_fY
y= Z.
The notation we adopt is X, = (X, Y., Z.) for
world points, and x = (z, y) for image plane points,
both measured in the camera-centered coordinate
system (Z. along the optical axis).
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Projection examples

(a) Circle in space, radius a, orthogonal to the op-
tical axis and centered on the optical axis.

z C
Xgﬂ—‘ Image Circle
Ye f
Optical
centre &y F[\ ”””””””””””””””””” ®

X. = (acosf,asinb, Z)
(fa cosf fasin 9)
Zy T Zy
So the image is a circle of radius fa/Zy. The scaling

is inversely proportional to the distance of the circle
from the optical centre.

X =

(b) Move the circle in the X, direction.
4,
X. = (acosf + Xy, asinb, Zy)
. — (facosﬁ + fXo fasin@)
Zy A

So the image is still a circle of radius fa/Zy, though
the centre of the circle has moved in the image plane.

Projection 5

Vanishing points

As we shall shortly see, a circle does not always
project to a circle. An important property of per-
spective projection is the existence of vanishing
points. These are points in the image where par-
allel lines appear to meet.

Vanishing
point

o [ v
E ::::— .

Parallel

lines Ground

plane

Each set of parallel lines in the world will have a
different vanishing point in the image.

vpl horizon vp2
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Vanishing points

Similarly, parallel planes in the world meet in a line
in the image, often called a horizon line. Any
set of parallel lines lying on these planes will have a
vanishing point on the horizon line.

Renaissance painters used perspective constructions
to introduce a new realism into art.

R T e R -

Projection 7

Properties of perspective projection

Armed with the concept of vanishing points, we can
now construct the projection of a circle which is not
parallel to the image plane.

Center of Projected
Circle

Plan View of Circle Circle Under Perspective

The circle example reveals that ratios of lengths and
areas are not preserved under perspective projec-
tion. Neither is symmetry.

¥p

Reflection
About ¢
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Plan View Perspective Yiew ™
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Vanishing points Vanishing points

Example. Derive the image location x,, of the
vanishing point for a line in the world.

4,

Here’s an example of an image with converging ver-
tical lines.

X. =a+Xb

_ a; + Aby a, + Ab,
- X = f(az+)\bz’az+)\bz)

As A — 00, we move further down the line, and x
converges to the vanishing point:

w013y

z z

As expected, the vanishing point depends only on
the line’s orientation and not its position. When
b, = 0, the line is parallel to the image plane and
the vanishing point is at infinity.

Note that the axes we have defined are relative to the
camera, so when b, = 0, the line has no component
along the camera’s z-axis (the optical axis). With
a horizontal camera, the image plane is vertical and
so vertical lines in the world have a vanishing point
at infinity. If the camera is not horizontal, vertical

lines in the world will have a vanishing point in the
image, The Tower of Babel, by Maurits Escher
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Full camera model

A full camera model describes the mapping from
world to pixel coordinates. It must account for the
following transformations:

e The rigid body motion (an isometry) be-
tween the camera and the scene;

e Perspective projection onto the image plane;

e CCD imaging — the geometry of the CCD
array (the size and shape of the pixels) and its
position with respect to the optical axis.

Array centered on optical axis Array not centered on optical axis
Square pixels Rectangular pixels

Projection 11

Full camera model

To model the rigid body motion, we attach a co-
ordinate system X = (X,Y, Z) to the world, and
another coordinate system X, = (X, Y., Z.) to the
camera.

R rotation
(3 dof) 7
s’ e Y
ZC
-7 -7 ad X
I World
T translation coordinates

(3 dof)

X

¢

y  Camera-centered
¢ coordinates

The rigid body motion can be described by a rota-
tion matrix R and a translation vector T

/,

Xc 11 T12 T3 X T,
Yo | = |rorroras|| Y |+
Z. T31 T32 T33 || £ T,

X, =RX+T
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Full camera model

As introduced before, planar perspective projection
onto the imaging surface is modelled by:

fX

Tr =
Ze
_ Y.

Optical
axis

World
coordinates

Optical
centre

y  Camera-centered
¢ coordinates

Projection 13

Full camera model

To model CCD imaging, we define pixel coordinates
w = (u,v) in addition to the image plane coordi-
nates x = (z,y).

00 —» (511,0)

x ¥

v A\

CCD array

(0,511) (511,511)
\ Optical axis
(Ug: V)

Image plane

w and x are related as follows:

£,

The overall mapping from world coordinates X to
pixel coordinates w = (u,v) is

u=uy+ k,x, v=vy+kyy

kufXe o+ kuf (ruX +rpY +ri32+ T,

u = ug+
0 Zc 0 7’31X+7°32Y+7“33Z+TZ

4 kva; S kvf(T21X+T22Y+T23Z+Ty)
Zc 0 7“31X+7°32Y—|—7"33Z—|—TZ
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Homogeneous coordinates

The expressions at the foot of page 13 are messy!
Homogeneous coordinates offer a more natu-
ral framework for the study of projective geometry.
The imaging process can be expressed as a linear
matrix operation in homogeneous coordinates. Fur-
thermore, a series of projections can be expressed as
a single matrix operation.

We usually express the location of a point in Carte-
sian coordinates. In 2D space, for example, we would
use coordinates x = (z,y). Cartesian coordinates
become cumbersome when dealing with points at in-
finity, a crucial ingredient in the projection process.
The Cartesian coordinates of a point at infinity are
in general both infinite but have a definite ratio z /y,
depending on the direction of the point from the ori-
gin. Calculation with infinite quantities of this kind
is confusing, and it is convenient to represent each
point not by two numbers x = (z,y) but by three
numbers X = (1, 2, z3) such that

/,

x
Y

5131/!1?3
£B2/£l?3

Projection 15

Homogeneous coordinates

If X\ is any non-zero number, then (Axi, Azy, Az3)
denotes the same point as (z1,xs,3): it is only
the ratios of the elements of X that matter. If now
zg = 0, then x = x1/x3 and y = xo/x3 are infinite
but have the definite ratio z/y = x1/x9; the num-
bers (x1,x2,0) denote points at infinity, obviating
calculation with infinite coordinates.

Such a method of representing a point is called a
homogeneous coordinate system, because any equa-
tion in (z,y) is equivalent to a homogeneous equa-
tion (ie. one in which all the terms are of the same
degree) in (x1, z9, x3). For instance, any line has an
equation of the form

a1z + asy +az =0

On substituting z1/x3 and x2/x3 for x and y, this
becomes

/,

I T2
ar— +ay—+a3 =0
I3 I3
& a1x1 + asxy +asrs = 0

The line at infinity, incidentally, also has an equation
of this form, namely x3 = 0.
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Homogeneous coordinates

Here are some further examples of homogeneous rep-
resentations, this time using points in 3D space. To
convert from homogeneous to Cartesian coordinates,
we take ratios:

& L1 T2 X3
($1,$2,$3,£B4) — |\
5 Ty T4 X4
X X
If x4 is zero, then X represents a point at infinity.
X = 0 has no meaning and is undefined.

To convert from Cartesian to homogeneous coordi-
nates, we add an extra dimension and introduce an
arbitrary scaling:

A

(X,Y,Z) — (AX,\Y,\Z,)\)
X X
By convention, A is set to 1 (where possible).

To appreciate the power of homogeneous coordi-
nates, we need to study some examples, starting
with the perspective projection of the point X, =
(Xe, Y, Z,) onto the image plane x = (z,y). In ho-

mogeneous coordinates we have X, = (A X, AY,, AZ., \)

and X = (sx, sy, s).

Projection 17

Perspective projection revisited

Perspective projection can be expressed as

ST f000 AX

Y,
sy|=10 f00 \Z
S 0010 )\C

or, equivalently,

fo
X = Pch , where P, =0 f
0010
X is the homogeneous representation of the image
point X. Notice how perspective projection is a sim-
ple matrix multiplication by P, in homogeneous co-
ordinates.

00
00

To check that the homogeneous representation of
perspective projection works, we can convert X into
its Cartesian equivalent x:

L

x st/s fX./Z.
y sy/s fYe/Z,
Notice how the value of A has no effect on the pro-
jection (we would conventionally set A to 1). Equiv-
alently, the same projection is achieved by multiply-

ing by P, (1 # 0).

X =
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Exercise — horizon lines

As an exercise in the use of homogeneous coordi-
nates, let’s consider the two parallel planes

nyXc+nyYe+n.Z. = d
na:Xc + nyY;: + nch = dy ) ds 7é dq

and find the equation of their horizon line in the im-
age. Converting to homogeneous coordinates, points
X, = (X.,Y., Z,) become X, = (X1, Xs, X3, X4),
where

Xc Xl/X4
Yo | = | Xo/ Xy
Zo| | X3/ Xy

The homogeneous equations of the planes are

4,

X1 Xo X3
T~ ~ 2~ d
nX4+nyX4+nX4 1

< n, X+ ’I'LyXQ +n, X3 = d1Xy
and ’I'LJCXl + ’I'LyXQ + an3 = d2X4

Notice that the planes intersect along a line at in-
finity, which has a well-defined equation in homoge-
neous coordinates:

nxXl + nsz + TLZX3 = X4 =0 (1)

Projection 19

Exercise — horizon lines

The image of a point X, is given by

Z1 . X
X = Io | = Pp XC = fX2 (2)
T3 X3

Combining (1) and (2) we obtain
n,.T1 nyT9

f f

& Ngxy + nyxs + fn,xs = 0 (3)

This is the homogeneous equation of the horizon line
in the image.

+n,r3 = 0

To convert back to Cartesian image coordinates, we
take ratios:

T x1/x3
y To/ T3
Combining (3) and (4) we obtain

X =

(4)

s NgTx3+nyyx3+ fn.zz3 =0

& ngx +nyy + fn, = 0
This is the Cartesian equation of the horizon line
in the image. The horizon of the ground plane can
be found by setting n, = 0, n, =1, n, = 0, which
gives y = 0, as expected.
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Camera projection matrix

Let’s look again at the full camera model, this time
in homogeneous coordinates. We can construct a
camera projection matrix in three stages.

1. Rigid body transformation

There is a rigid body transformation between the
world coordinates X and the camera-centered co-
ordinates X,. This accounts for rigid body motion
between the camera and the scene:

X ri1 T2 T3 Iy || X
Y. _ | T21 T22 T23 Ty Y
Ze T31 T3z T33 1. || Z
1 0 0 0 1 1
or, equivalently,
X.=P, X , where P, = RT
0001

X is the homogeneous representation of the world
point X, and likewise for X.. P, is the rigid body
transformation matrix (rotation and translation).

Projection 21

Camera projection matrix

2. Perspective projection

The next stage is perspective projection of X, onto
X in the image plane. We have already seen this on
page 17:

ST f000 )éc
sy|l=10 f00 ZC
S 0010 lc

or, equivalently,

fo
)’E:pr(c, where P, = |0 f
0010
X = (sz,sy,s) is the homogeneous representation
of the image point x = (z,y). P, is the perspective
projection matrix.

00
00

3. CCD imaging
Finally, we have to convert to pixel coordinates w =

(u,v):

£,

Su k, 0 ug||sx
sv|=|0 Kk, vol|]|sy
S 0 0 1 s
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Camera projection matrix

Equivalently,
ku 0 Ug
w =P.x, where P.=| 0 k, vg
0 0 1

w = (su, sv, s) is the homogeneous representation
of the pixel coordinates w = (u,v). P, is the CCD
calibration matrix.

We can now express the overall imaging process,
from X to w, as a single matrix multiplication in
homogeneous coordinates:

W = P,X
where P, = P.P,P,

k. 0 ug]l[f 000
0k owl|lofooll BT
00 1][0010]|5505

P,s is the camera projection matrix for a perspec-
tive camera. It is a 3 X 4 matrix with 10 degrees
of freedom®. The product P.P, accounts for all the
intrinsic (or internal) camera parameters. P, ac-

counts for the extrinsic parameters.

1At first sight, it appears to have 11 degrees of freedom: 3 for R, 3
for T, and one each for f, k,, ky, ug and vy. However, these parameters

Projection 23

The projection matrix

The projection matrix, P,y is not a general 3 x 4
matrix, but has a special structure composed of P,
P, and P.. It can be conveniently decomposed into
the following two matrices — a 3 X 3 upper triangular
matrix called the camera calibration matrix K
and a matrix representing the rigid-body motion:

Pps = K[R‘T]
ay 0 ug| |71 T12 113 Iy
= |0 ay, vo||r2 T2 T23 Ty
0 0 1 31 T32 T33 Tz

where the image scaling factors are o, = fk, and
a, = fky,. The ratio o,/ is known as the aspect
ratio.

are not all independent in their effect on the projection. If you refer
back to the equations at the foot of page 13, you should be able to see
that f, ky, k, provide only 2 degrees of freedom between them.
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The projective camera

We could also consider another camera model, the
projective camera, which is described by the
general 3 x 4 matrix P:

3 P11 P12 P13 P4
w = PX, where P = | pa1 p22 p2s pu

D31 P32 P33 P34

The projective camera has 11 degrees of freedom
(since the overall scale of P does not matter). It
is often far more convenient to deal with a projec-
tive camera than a perspective one, since we do not
have to worry about any nonlinear constraints on
the elements of P.

Since the perspective camera is a special case of the
projective camera, any results we derive for the pro-
jective camera will also hold for the perspective cam-
era.

Projection 25

Viewing a plane

Camera models can be simplified under restrictive
viewing conditions. Suppose, for example, we are
viewing a planar scene (a tabletop, for instance).
The geometry of the scenario is illustrated below.

R rotation
3 dof
,(, - ;)\ z World plane
) Z=0

""" T translation
(3 dof)

Without loss of generality, assume that the plane
we are viewing has equation Z = 0. The rigid body
displacement between the camera and the plane can
be expressed in homogeneous coordinates as

X, ri T2 T3 Iy || X
Y. 921 T99 T93 Ty Y

Ze T31 T32 733 1. || 4
1 0 0 0 1 1

o
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Viewing a plane

However, we know that Z = 0, so we can reduce
this to

/,

Xc r11 T12 Tx

X

Y. _ | T21 T22 Ty 1%

Ze r31 T32 1. 1

1 0 0 1
or, equivalently,

i1 T2 Ty
X, =P?XP | where P? = ra T Iy
r31 T3z T,
0 0 1

X? is the homogeneous representation of a point
X? = (X,Y) on the world plane. P? is the pla-
nar rigid body transformation matrix (rotation and
translation).

The rest of the imaging process can be achieved us-
ing the same perspective projection (P,) and CCD
imaging (P.) matrices as before.

Projection 27

Viewing a plane

The overall imaging process is:
w = PL.X?

where PP = P.P,PL

k, 0 ugl[f 000 :11 77:12 g
— 10 K w||0 fOO 7~217~22Ty
31 132 z

0 0 1][oo01of|’ ™"

PP is the camera projection matrix for a perspective
camera viewing a plane. It is a 3 x 3 matrix with a
special structure composed of P2, P, and P..

As with the 3D case, we can relax the constraints
on the elements of PP to obtain a more tractable
camera model described by the general 3 x 3 matrix:

~ P11 P12 P13
w = PPX? where PP = | ps; pa2 p23

D31 D32 P33

The transformation between w and XP” is known
as a planar projective transformation or a
homography or collineation. It has 8 degrees of
freedom (the scale of PP does not matter).
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Viewing a line

Finally, we can consider the special case of viewing a
world line. Without loss of generality, assume we are
interested in the line defined by the world X-axis.
The overall imaging process is:

w = PLX
k, 0 ugl[f 000 :“;x
where Pl = | 0 ko v |0 fO O] ™ 7
00 1//0010 81 N

Pés is the camera projection matrix for a perspective
camera viewing a line. It is a 3 X 2 matrix with a
special structure composed of P!, P, and P..

As with the 3D and 2D cases, we can relax the con-
straints on the elements of Pi,s to obtain a more
tractable camera model described by the general
3 X 2 matrix:

- P11 P12
W = PIXZ, where Pl = | P21 P22

P31 P32

This projective camera model has 5 degrees of free-
dom (since the overall scale of P! does not matter).

Projection 29

Camera calibration: 3D — 2D

Camera calibration is the name given to the pro-
cess of discovering the projection matrix (and its
decomposition into camera matrix and the position
and orientation of the camera) from an image of a
controlled scene. For example, we might set up the
camera to view a calibrated grid of some sort.

a

aEEEEEEEEEEER
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Oo0ooooooooon
Oooooooooooo
ooooodooodnog
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Camera Calibration

P?

zZ, i J'//Y ;

Controlled 3D scene

For a projective camera we have:

SU | = | P21 P22 P23 P24

X
Su P11 P12 P13 Pu4 %
A
S P31 P32 P33 P34 1

There are 11 parameters to estimate (since the over-
all scale of P does not matter, we could, for example,
set p3q to 1).

Projection 31

Camera Calibration

Each point we observe gives us a pair of equations.
Setting p34 to 1 we obtain:

/,

u;, =

sui _ puX; + p12Yi + p13Z; + pua

s puXi+pnYi+psZi+1
Sv;i P21.X; + pa2Yi + p23Zi + pas

s puX; +ppYitpsZ+1
Since we are observing a calibrated scene, we know
X;, Y;, and Z;, and we observe the pixel coordinates
u; and v; in the image. The equations above can

be rearrange to give two linear equations in the un-
known projection matrix parameters.

V; =

Since there are 11 unknowns, we need to observe
at least 6 points to calibrate the camera. The equa-
tions can be solved using linear least squares. Note
how the use of the projective camera has linearized
the problem.
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Camera Calibration

The linear solution is, however, only approximate
and should ideally be used as the starting point for
non-linear minimisation: i.e. finding the parameters
of the projection matrix that minimise the errors be-
tween measured image points, (u;, v;) and projected
(or modelled) image positions, ((u;, v;):

min S((u; — 45)° + (vi — 9)%)

Having obtained the projection matrix it is possible
to decompose it into the camera calibration matrix
and the orientation and position of the camera (if
necessary):

Pps - K[R‘T]

Standard matrix techniques exist for decomposing
the 3 x 3 sub-matrix into the product of an upper
triangular matrix, K, and a rotation (orthogonal)
matrix R (known as QR decompositon).

The translation vector or position of the camera can
then be obtained by:

T = K '(p14, p2a, p34)”

Projection 33

Camera calibration: 2D — 2D

To calibrate the camera for viewing planar scenes,
we could set up the camera to view some sort of
calibrated planar grid.

pP2?

A'Z/; T //1

X
Controlled 2D scene

[

For a plane to plane projectivity, we have

su P11 P12 P13 | | X
SV | = |p2 P22 P3| | Y
s D31 P32 P33z || 1

There are 8 parameters to estimate (if we set, for
example, ps3 to 1), and each observed point gives us
a pair of linear equations, so we need to observe at
least 4 points. Again, we use linear least squares to
solve for the elements of P?.
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Camera calibration: 1D — 1D

Finally, we consider the calibration of a camera view-
ing a line. This is accomplished by viewing a line
with some markings at known positions.

p'2

¢ X

Controlled 1D scene

Y

C

For a projective camera we have

Su P11 P12 X
SV | = | P21 D22 1 ]
S P31 P32

There are 5 parameters to estimate (if we set, for
example, p3s to 1), and each observed point gives us
a pair of linear equations, so we need to observe at
least 3 points. Again, we use linear least squares to
solve for the elements of P’.
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Recovery of world position

With a calibrated camera, we can attempt to recover
the world position of image features.

1D case (line to line): given u, we can uniquely
determine the position of the point on the line.

£,

su| _ | pu piz| | X
s p31 1 1
su X
oy = su _ pu + P12
S p31X + 1
—u
o X — D12
P31t — P11

2D case (plane to plane): given u and v, we
can uniquely determine the position of the point on
the world plane. For a plane to plane projectivity,
we have

| p11 P12 i3 | [ AX ]

v| = | pa pa2 P23 || AY

1] P31 P32 1 || A

AX ] P11 P12 ]313-_1 u |

& | AY | = | pa1 p22 P23 %
A D31 p32 1 | 1

_ Phiu+ plov + pls V- Phyt + Phov + Phs

s X . . . : : :
D51U + PhoU + Dig Ds1U + DhoU + Dig
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Recovery of world position

3D case (3D world to image plane): given
u and v, we cannot uniquely determine the position
of the point in the world.

X
su P11 P12 P13 P14 %
SV | = | P21 P22 P23 P24 7
S D31 P32 P33 P34 1

su  pnuX + p2Y +p13Z + pia
Sy = =
s p31X +p3Y + p3zZ + pss

sv pnX +pnY + p3Z + pu
=p = =
s puX +p32Y + p3sZ + psa

Each observed image point (u, v) gives us two equa-
tions in three unknowns (XY, Z). These equations
define a line (ie. a ray) in space, on which the world
point must lie.

For general 3D scene interpretation, we need to use
more than one view. Later in the course we will take
a detailed look at stereo vision and structure from
motion.
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Case study — Image mosaicing

Any two images of a general scene with the same
camera centre are related by a planar projective
transformation given by:

w = KRK 'w

where K represents the camera calibration matrix
and R is the rotation between the views.

This projective transformation is also known as the
homography induced by the plane at infinity. A min-
imum of four image correspondences can be used to
estimate the homography and to warp the images
onto a common image plane. This is known as mo-
saicing.
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Case study — Photobuilder Parallel projection
Vanishing points corresponding to three orthogonal Recall that we have seen plenty of CCD images
directions can be used to recover the projection ma- which appear to have been formed by orthographic
trix of the viewpoint. projection. For example:

1. Original uncalibrated photographs

Orthographic? Certainly not orthographic

It might be useful to analyse what is special about
the image on the left. This will allow us to identify a
simpler, more tractable camera model for use under
certain viewing conditions.

4. Computation of projection matrices and camera motion

h ‘ It appears that parallel projection is a good approx-
% S RAT o | X imation when the depth of the objects in the scene
5. Triangulation, 3D reconstruction and texture mapping is small compared with the distance of the camera

from the scene. On the left all the objects are within
a narrow depth band, so AZ, is small compared to
Z.. On the right there is a large depth variation
AZ, in the image.
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Parallel projection

Recall that perspective projection is

ST f000 igc
sy|=10 f 00 Zc
S 0010 ¢
or, equivalently,
) f 000
x =P,X., where P,=10 f 00
0010

The only component of X that depends on Z, is the
scaling term, s. If we consider Z, as approximately
constant for all objects in the scene, so that Z, =
Z% we can rewrite the projection as

A

ST f00 O ifc
sy|=10f0 0 Zc
S 0002Z» ¢

o

or, equivalently,
3 fo
X = Ppll XC , where Pp” =10 f
000 Z»

This is called weak perspective projection.

0 0
0 0
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Weak perspective

We can now derive the form of the overall weak per-
spective projection matrix from world coordinates
X to pixel coordinates w.

Following an identical derivation to the one we used
in the perspective case on page 22, but inserting
the parallel projection matrix P,; in place of the
perspective matrix P,, we obtain

W = P,,X
where Py, = P.PpuP,

ky

U

Tk 0 wl[f 00 0
ok wllofo ol BT
00 1000z ool

] fku’f'n fku’l"lz fku'rl?, fkuTq; + ’U/[)Zéw
— fkv’l“zl fvagz fkvr23 fvay + ’U()ng
0 0 0 Zéw

Pp 1s the projection matrix for a weak perspective
camera. It is a 3 X 4 matrix with a special structure
composed of P,, Pp; and P..
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The affine camera

As usual, we prefer to discard the nonlinear con-
straints on the elements and consider the general
3 X 4 matrix of this form:

P11 P12 P13 P14
Porr = | P21 P22 P23 D24
0 0 0 P34
P.sy is the projection matrix for the affine cam-
era. [t has 8 degrees of freedom (since the overall
scale of P,y does not matter). If we set psq to 1,
we can write the projection as

4,

YT
su P11 P12 P13 P14 %
SU | = | P21 P22 P23 P24 7
S 0O 0 0 1

L 1 d

YT
u _ [pn P12 P13 p14] Y
v D21 D22 P23 P || Z

1

We therefore need only 4 points to calibrate an affine
camera (compare with 6 points for the full projective
camera). This is one of the principle attractions of
using an affine camera where appropriate. Note that
the affine camera is linear.
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Planar weak perspective

We can also consider a weak perspective camera
viewing a plane. This would be a good model to
use when the plane in the image has little depth
variation compared with the viewing distance.

Following an identical derivation to the one we used
in the perspective case on page 27, but inserting
the parallel projection matrix P,; in place of the
perspective matrix P, we obtain

W = Py X?

where P} = PPy PP

Tk 0 ugl[f 00 0|2l
0 kow|l0fo o ||l
. av T31T32TZ
00 1/[000zm]|"H S

- fkurll fku'r12 fkuTx + UOZgC
= | fkoror fkoraa fEST, 4+ voZi€
0 0 Zaw

PZ., is the projection matrix for a weak perspective
camera viewing a plane. It is a 3 X 4 matrix with a
special structure composed of P2, P,; and P..
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Planar affine imaging

As usual, we prefer to discard the nonlinear con-
straints on the elements and consider the general
3 x 3 matrix of this form:

P11 P12 P13
ngf = | P21 P22 P23
0 0 ps3

Pt ;s is the projection matrix for the affine camera
viewing a plane. It has 6 degrees of freedom (since
the overall scale of P} ;; does not matter). If we set
p33 to 1, we can write the projection as

X
u\ _ | P11 P12 plS] '
v P21 P22 P23 1

We need 3 points to calibrate this camera.

Finally, 1D affine imaging (viewing collinear features
which have little depth variation compared with the
viewing distance) can be described as

X
1

u
(%

D21 D22

Two points are required for calibration.

P11 p12]
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Planar affine imaging

Rotation
Scaling
Stretch
—>
World \ Shear
square
_Plangr affine Translation (2 DOF)
imaging

Here are the six degrees of freedom of planar affine
imaging. Fanning is not possible: when perspective
effects are significant in the image (converging par-
allel lines), an affine camera is not appropriate and
a projectivity (8 degrees of freedom) should be used
instead.
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Planar object recognition

Planar object recognition is of significant in-
dustrial importance. Given an uncalibrated cam-
era’s view of a cluttered scene containing many, pos-
sibly occluded, planar objects, we wish to identify
which objects are present in the scene and where
they are. We assume that we hold geometric mod-
els of the objects in a library.

Cluttered scene Spanner identified

To appreciate the difficulty of the task, let’s consider
a naive approach. Suppose we're trying to recognise
any instances of the spanner in the left hand image.
The desired output of the system is shown on the
right. We know the shape of the spanner (it’s in our
model library), so we could project it into the image
and use Canny’s algorithm to look for evidence of
edges around the projected outline.
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Invariants

The problem with this simple approach is that we
have to consider all possible poses (positions and
orientations) of the spanner. The search space is in-
feasibly large! The problem is compounded when we
consider that there may be several hundred objects
in our model library, and we want to look for all of
them.

What we require is some way of taking measure-
ments directly in the image to identify the presence
of known objects. This leads us on to the theory of
invariants.

An invariant is a measurement we make in an image:
let’s call it f(image). The invariant does not change
across different viewpoints of the same object. It
should, however, change across different objects. We
could use such measurements to directly infer the
presence of known objects in the scene.

Invariants depend on the type of camera: for in-
stance, an affine camera will have different invariants
to a projective camera.
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Invariants

> bracket

f(image)

= Spanner

In the next few slides we’ll investigate the invariants
of several different cameras viewing planar scenes.
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Euclidean invariants

Let’s start by considering the simplest camera model
we can imagine, a Euclidean camera. This would be
an appropriate model when the image plane is par-
allel to, and a fixed distance from, the world plane.

Typical images (of a bracket) acquired by this cam-
era might look like this:

What are the invariants of this transformation? The
most obvious ones are length and area. That is,
L1 =1y, Ly = Iy etc. In the context of object
recognition, and assuming a Euclidean camera, we
could extract all circles ¢ in an image and calculate
their areas: any circle which has the same area as
C provides direct evidence for the presence of the
bracket in the image.
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Similarity invariants

The next simplest camera we can imagine is the sim-
ilarity camera. The image plane is still parallel to
the world plane, but the camera is now allowed to
move towards or away from the plane.

Typical images of the bracket acquired by this cam-
era might look like this:

Length and area are no longer invariant. However,
ratios of lengths and angles are. That is Ly/Ly =
[1/l5, etc. Assuming a similarity camera, we could
extract all pairs of connected lines {/;,[;} in an im-
age and measure the ratio of their lengths: any pair
for which [;/l; = L1/ L4 provides direct evidence for
the presence of the bracket in the image.
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Affine invariants

The first really useful camera is the affine camera.
Recall that this is an appropriate camera model
when there is little depth variation in the scene com-
pared with the viewing distance.

Typical images of the bracket acquired by this cam-
era might look like this:

Ratios of lengths and angles are no longer invari-
ant. However, parallelism, ratios of lengths along
collinear or parallel lines (eg. midpoints) and ratios
of areas are. For example, Li/Ls = [;/l5. Assum-
ing an affine camera, we could extract all sets of five
connected lines {l;...l5} in an image: any set for
which 1;/ls = L1/Ls provides direct evidence for
the presence of the bracket in the image.
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Projective invariants

If the viewing conditions are completely unrestricted,
we will have to use the most general camera model,
the projective camera.

Typical images of the bracket acquired by this cam-
era might look like this:

[nvariants are getting hard to find! Parallelism, for
instance, is no longer invariant. Some obvious in-
variants include concurrency, collinearity, tangent
discontinuities and cusps. There is also order of
contact between two lines or curves: intersection
(1 point of contact), tangency (2 points of contact
between a curve and a line) and inflections (three
points of contact between a curve and a line).
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The cross-ratio

To find a numerical invariant, we start with the sim-
plest projective case, that of viewing a line. Recall
that the image u-coordinate of a point X on the line
is given by

sSu
S

_ {pn p12] [X]
p31 1 1

The figure shows the image of four world points A,
B, Cand D, and the world origin O. Distances [ mea-
sured along the image line from o are linear functions
of u and can therefore be expressed as

X
1

sl
S

P q
r 1
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The cross-ratio

Hence we obtain

pXi+q

TXZ' +1

Let’s investigate whether the ratios of lengths along
the line are invariant.

I =

(Xe — Xo)(p —qr)

=l =1 x +1)(rX, +1)
L~ Xe=Xp)(p—qgr)
T X+ D)(r X, + 1)

le. — 1, (X, (rX,+1

Sl Rem XD
le — Uy (X, — Xb)(fr’X +1)

So the ratios of lengths are not invariant (compare

with the affine case, where they are).

Similarly,
li—1l, (Xg—X)(rXp+1)
-1 (Xg—Xp)(rX,+1)
Dividing (6) by (5) we obtain
4,
(la —la)(le = Iy) _ (X — Xo)(Xe — Xp)
(la =)l = la) — (Xa= X0)(Xe = Xo)

This is the cross-ratio, which is invariant.
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The cross-ratio: example

Let’s check the cross-ratio by constructing a line to
line perspective projection and measuring lengths.

/,

Lengths measured with a ruler are:

/,

AD = 77.5mm, BC = 15.0mm, BD = 38.5mm, AC = 54.0mm
ad = 48.5mm, bc = 7.0mm, bd = 14.5mm, ac = 41.0mm
Forming the cross-ratios gives:
AD x BC 0.56 ad X bc
BD x AC 7 bd x ac

So the cross-ratios agree to within experimental ac-
curacy.

= 0.57
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Five point invariants on the plane

Even though we have developed the cross-ratio for
four points on a line, we can also use it in planar
imaging situations. We need 5 distinguished points
to form invariants on the plane.

o

Clever
constructions

e

e
(=)
a¥)

Given the image of the 5 points a ...e, we can use
the invariant property of intersection to find 4 more
distinguished points: f, the intersection of the ex-
trapolated lines a-b and d-c; g, similarly; ey, the
intersection of the line joining f and e with the side
a-d, and e similarly. We can now form two cross-
ratios:

d; = cross-ratio of {a, ey, b, f}
dy = cross-ratio of {a,e1,d, g}

These will be the same measured in any view of the
5 points.
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Five point invariants on the plane

Here’s an example of how we could use the five point
invariants for object recognition.

\ cr(a,b,ez,f)

/ orfa.g.d.9)

We identify five distinguished points a ...e at the
corners of the bracket and construct intersections
to find four more distinguished points f, g, e; and
es. We now have two sets of four collinear points,
{a,b,es, f} and {a, ey, d, g}, for which we can cal-
culate cross-ratios. These will be the same in any
view, and can be used to identify the bracket. Other
configurations of five planar points will yield differ-
ent cross-ratios.
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Canonical views

Another way to form projective invariants for 5 copla-
nar points uses a calibration-like procedure. For a
plane to plane projectivity, we have

W = PrPX?
where P? is a 3 x 3 matrix. It follows that any two

views of the plane are related by a projectivity. If
w’ is another view, then

W' = PP'XP = PY'[PP] 'y = PP'w

So the two views w and W' are related by a projec-
tivity PP".

We can exploit this to construct a canonical view
of the plane from any image. In the canonical view,
four of the points lie at fixed, pre-determined loca-
tions, usually the corners of the unit square.

o>
c

e

Image Canonical view
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Canonical views

a ...d are the four distinguished points, and we use
their coordinates in the image to find the 3 x 3 pro-
jectivity PP which maps them onto the corners of the
unit square in the canonical view. This is simply a
calibration process. If we then apply the projectiv-
ity P? to the 5th point e, its coordinates v and v
in the canonical view provide us with two projective
invariants.

Canonical views have proved very successful for recog-
nition of planar objects. Four distinguished points
are used to map the structure in the image into a
canonical view. In the canonical view, the structure
is compared with a model library to spot any match.

But how do we identify four distinguished points on
curved outlines?

canonical frame curve —

(@) (b)
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Canonical views

There is a nice construction which works for curve
segments with concavities (many industrial parts).
The bitangent across the concavity gives us two dis-
tinguished points A and D, then the tangents cast
from A and D into the concavity give us another
two, B and C.

Next we find the projectivity P? which maps A, B,
C and D onto the corners of the unit square in the
canonical view, and the rest of the curve is mapped
into the canonical view using PP. What we end up
with is an invariant signature of the curve in the
canonical view.
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Canonical views

As expected, the construction produces the same
signature for 3 different views of the spanner ...
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Planar object recognition

Invariants, then, are extremely useful for planar ob-
ject recognition:

e We identify structures in the image (groups of
points, curves with concavities, etc.) and calcu-
late projective invariants for them.

e An invariant which matches an entry in our model
library suggests the presence of the object in the
image.

e The hypothesis can be verified by “back-projecting”

the library model from the canonical view into
the image (using the projectivity [P?]™') and
checking for edges around the projected outline.

We are still left with a large search problem: a typ-
ical image (like the one on page 46) might contain
many curves and many distinguished points. Sup-
pose we are using 5-point invariants in our recogni-
tion scheme. To make sure we don’t miss an object,
we need to check every set of 5 distinguished points.
This leads to a rapid combinatorial explosion in the
size of the search space.
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Perceptual grouping

The search space can be reduced using bottom-up
segmentation; we try to segment the image into
likely objects before we've recognised them. Then,
given this segmentation, we need only calculate in-
variants for features within the same putative object,
greatly reducing the search space.

Segmentation can be attempted using perceptual
grouping: the process of inferring structure in an
image without exploiting any prior high-level knowl-
edge of its content.

In perceptual grouping, features (edges, corners, curves,

etc.) are grouped together on the basis of the Gestalt
principles of proximity, similarity, closure, contin-
uation and symmetry.

So, for example, if two distinguished points are close
to each other, they are more likely to belong to the
same object than two points which are distant. Us-
ing such principles, perceptual grouping can perform
a coarse bottom-up segmentation of the image be-
fore invariants are calculated within groups.
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Gestalt principles

(a) o0 o060 00 00 00 00 o060 Proximity

(b) L4 . . e O . . o © . . ° Similarity

LI L L] o

(d) JC D C Continuation

(e) 2 g Symmetry
(f) Symmetry
vs. Continuity

The Gestalt principles were expounded by a group
of German psychologists in the 1920’s and 30’s (the
Gestalt psychologists). They were investigating the
way humans subjectively group simple line and dot
patterns.

(

o
~
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Perceptual grouping

As an example, suppose we are trying to recognise
rotationally symmetric objects. A Canny edge de-
tector extracts many edges. Assuming we are using
canonical view invariants, we have to search all these
edges for concave curves and calculate a lot of invari-
ants! Object recognition would be very slow.

Grouped edges . .. ... superimposed on image

Using the Gestalt principle of symmetry, however,
we can quickly extract those curves which have match-
ing, symmetric partners. We now only need to cal-
culate invariants for a few curves, resulting in fast
and efficient recognition.
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Summary

3D — 2D camera models

Perspective

w = PCPPPTX = Ppsf(. Tricky to calibrate.

su ko 0 ugl[f 0 00]|™ ™23 Lol X
_ ro1 To2 Tez Iy | | Y
sv | =10 k, v 0 f00O0
s 000 1|[o01of|m e liZ
0 0 0 1 1
Projective

w = PX. 11 degrees of freedom (psa = 1). 6 points to calibrate.

X
su P11 p12 P13 DPiu4 %
SU | = | P21 P22 P23 P2 7
§ D31 P32 P33 P34 1

‘Weak perspective
W = P.P,P,X = P,,X. Tricky to calibrate.

su ko 0 wll[f 00 o™ el X
u
s =] 0 k wl||0 fo o7 LY
a | | 731 132 133 T, Z
s 00 1]|000 Z NS I
Affine

W = P,;sX. 8 degrees of freedom (p34 = 1). 4 points to calibrate.

X
su P11 P12 P13 Pu4 %
SU | = | P21 P22 P23 P24 7
S 0 0 0 P34 1
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Summary

2D — 2D camera models

Perspective

W= PCPpP’r’Xp = Pgs)ip . Tricky to calibrate.

su k. 0 || f 00O :11 :12 g} X
sv =10 k, v 0 f00 7"21 7"22 Ty Y
31 132 z
s 0 0 1 0010 0 0 1 1
Projective

W = PPXP. 8 degrees of freedom (ps3 = 1). 4 points to calibrate.

su pu1 p12 pi3 || X
sv | =|pan p2 pa||Y
s P31 P32 P33 1

Weak perspective
W = PP, PEXp, = P5, XP. Tricky to calibrate.

su ke 0 w|[f 00 0 :“ :“ ; X
sv | =0 k w 0 f0 O 7"21 r22 Ty Y
av 31 32 z
s 0 0 1 0 00 Z 0 0 1 1
Affine

w = ngfxp. 6 degrees of freedom (p33 = 1). 3 points to calibrate.

su puu pr2 pi3 || X
sv | = | pa1 P2 pa3 || Y
S 0 0 P33 1
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Summary

1D — 1D camera models

Perspective

W= PCPpPlr)il = Pés)il. Tricky to calibrate.

su ky 0 wug f 000
sv|=]0 k wl||0foo0 :21? {)ﬂ
31 z
s 0 0 1 0010 01
Projective

w=PX. 5 degrees of freedom (p3s = 1). 3 points to calibrate.

su P11 P12 X
SU | = | P21 P22 [ 1 }
S D31 P32

‘Weak perspective

W = PP, PLX! = Pl_X!. Tricky to calibrate.

T
su ke 0 wl[f 00 0 :“T’” ¥
so|l=|0 k v ||0 fFO0 0 21?’[]
s 00 1||loo0ozw||™ |1

e 0 1

Affine

W= Pflff)il. 4 degrees of freedom (psy = 1). 2 points to calibrate.

su P11 P12 X
SU | = | P21 P22 [ }
s 0 p3
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Summary

The geometric strata: planar geometry

Group Matrix Distortion | Invariants
concurrency and
collinearity, order of
contact, tangent

projective put pr2 P13 discontinuities and

8 DOF Pa1 pa2 P23 ¢ cusps, cross-ratio of

Ps1 P32 P33 four collinear points,
measurements in
canonical view
all the above, plus

P11 P12 P13 parallelism, ratio of

affine .

P21 P22 P23 | areas, ratio of lengths

6 DOF .

0 0 ps3 on collinear or parallel
lines (eg. midpoints)
T,

similarity mT e all the above, plus

ro1 T2 Ty | )

4 DOF 0 0 s ratio of lengths, angle

T,

Euclidean T e | all the above, plus

ro1 roa Ty

3 DOF 0 0 1 : length, area

Note how invariants of the more general transformations are inherited
by the more restricted transformations.
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