Chapter 2 - Locomotion

Fernando Neira Sean Patric Anastasi Sagar Behere

Locomotion

- Why locomotion?
 - To move unboundedly throughout environment
- Modes of locomotion?
 - Walk, jump, run, slide, skate, swim, fly, roll
- Locomotion modes inspired by biology
 - Exception is the wheel
- Nature has not developed a rotating actively powered joint

Price of Motion

Biological Motion

- Biological motion systems succeed in a wide variety of harsh environments
- Hence, it is good to copy them
- However, this poses problems
 - Structural complexity
 - Miniaturization
 - Energy density
- Legs work better in unstructured terrain

Legged Motion – Key Issues

- Stability
 - Number and geometry of contact points
 - Center of gravity
 - Static/dynamic stability
 - Inclination
- Contact characteristicts
 - Geometry of contact
 - Friction
- Type of environment

Legged Motion – Pros & Cons

- Pros
 - Adaptability to rough terrain
 - Increased maneuverability
 - Possibility to manipulate objects while in motion
- Cons
 - Mechanical complexity
 - High power requirements
 - High DoF in legs Complex control needed

Legged Motion - Stability

- Depends on number of legs, DoF of a leg
- A tripod configuration is stable, when CG is within 'contact triangle'
- Hexapods always stable
- Quadropods statically stable, dynamically unstable
- Bipeds/Unipeds Not stable even when standing still
- As number of legs reduce, increasingly active control needed

Legged Motion - Gaits

- A Gait is a sequence of 'lift and release' events for each leg
- Can be though of as 'style of walking'
- Number of possible gaits increase with number of legs and DoF of each leg

Legged motion - Performance

- Insects outperform robots with same number of legs
 - This is due to use of passive structures e.g: barbs
- Actuators do not approach efficiency of muscles
- Energy storage methods do not achieve the storage density of organic cells
- A hybrid approach, combining legs with wheels outperforms purely legged locomotion

Wheel Geometry

- The choice of wheel types for a mobile robot is strongly linked to the choice of wheel arrangement
- Three factors: Maneuverability, controllability, and stability
- There is no "ideal" drive configuration that simultaneously maximizes the three

Stability

- The minimum number of wheels required for static stability is:
 - 2 wheels only if the center of mass is below the wheel axle
 - 3 wheels center of gravity is within the triangle
- Stability is improved by 4 and more wheels
 - Will require some form of flexible suspension on uneven terrain
- Bigger wheels?
 - Overcome higher obstacles, but require higher torque

Maneuverability

- Omnidirectional: can move at any time in any direction along the ground plane (x,y)
 - Swedish or spherical wheels
 - Ground clearance problem
 - 4 castor wheel configuration: each castor wheel is actively steered and actively translated
- Almost-omnidirectional design
 - May initially require a rotational motion
 - Circular chassis and an axis of rotation at the center of the robot
- Ackerman steering comparison

Controllability

- General inverse correlation between controllability and maneuverability
 - Ackerman steering vehicle: can go straight simply by locking the steerable wheels and driving the drive wheels
 - Differential-drive vehicle: the two motors attached to the two wheels must be driven along exactly the same velocity
 - Swedish wheel: accumulation of slippage, reduce accuracy

Case studies: Synchro drive

- Three driven and steered wheels, only two motors used
- "Omnidirectional"

- The chassis orientation does drin over time due to uneven tire slippage
- Causes rotational dead-reckoning error
- Posible solution: independently rotating turret that attaches to the wheel chassis

Case studies: Synchro drive

- Other dead reckoning considerations
 - Whenever the drive motor engages, the closest wheel begins spinning before the furthest wheel
 - small change in the orientation of the chassis
 - accumulative error
 - No control on the chasis: the wheel thrust can be highly asymmetric

Case studies: Omnidirectional drive

- Valuable characteristic: if ominidirectional, robots are also holonomic
- Spherical wheels:
 - The Tribolo designed at EPFL
 - One motor for each wheel
 - Excellent maneuverability
 - Simple in design
 - Limited to flat surfaces

Case studies: Omnidirectional drive

- Swedish wheels:
 - The Carnegie Mellon Uranus robot
 - 45-degree wheels, one motor for each
 - Can move and spin at the same time
 - The base can move without rotating the structure

Case studies: Omnidirectional drive

- Castor wheels:
 - Nomad XR4000 from Nomadic Technologies
 - 4 wheels with 8 motors
 - Excellent maneuverability

Case studies: Tracked slip/skid locomotion

- Spinning wheels that are facing the same direction at different speeds
- Larger ground contact patches. The track must slide against the terrain
 - Extremely good maneuverability and traction over rough and loose terrain
 - Dead reckoning is highly inaccurate
 - Power efficiency: good in rough terrain, bad otherwise

Case studies: Tracked slip/skid locomotion

Case studies: Walking wheels

- Combining the adaptability of legs with the efficiency of wheels
- Space Robotics: The Sojourner robot of NASA/ JPL
- Shrimp of EPFL
 - Six motorized wheels

- Climb objects up to 2 times its where
- Rhombus configuration: good climbing ability due to the position of the COM over the time

Case studies: Walking wheels

- Personal Rover
 - Active COM shifting to climb edges
 - A majority of the weight is borne at the top

Hybrids: Whegs

- Advantages of wheels and legs
 - Fast on glat ground
 - Can climb obstacles

Hybrids: Galileo

Advantages of wheels and tracked locomotion

