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What is Navigation?

 Where am I?
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What is Navigation?

Navigation is one of the most challenging competences required 
of a mobile robot.
Success in navigation requires success in four building blocks 
of navigation:
 Perception
           Interpret sensors to extract meaningful data
 Localization
           Determine position in the environment
 Cognition
        Decide how to act to achieve the goals
 Motion control
           Modulate motor output to achieve the designed trajectory
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Why is localization challenging?
- sensor noise

 Examples:
 In vision-based sensor systems, illumination dependence, 

picture jitter, signal gain, blooming, and blurring are all 
possible noise.



 Solution:
 Take multiple readings into account, employing temporal fusion 

or multisensor fusion to increase the overall information 
content of the robot’s inputs.

Mobile Robots Localization 6

Why is localization challenging?
- sensor aliasing

 Sensor aliasing is from the nonuniqueness of sensor readings
 Example:
 With sonar robots have difficulty in distinguishing between 

human and inanimate objects in an indoor setting.


 Solution:
 Techniques must be employed by the robot programmer that 

base the robot’s localization on a series of readings and, 
thus, sufficient information to recover the robot’s position 
over time.
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Why is localization challenging?
- effector noise



 Mobile robot effectors introduce uncertainty about future state. 
The true source of error generally lies in an incomplete 
model of environment.



 Examples:
 The robot does not model the fact that the floor may be sloped, 

the wheels may slip, and a human may push the robot.
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An Error Model for Odometric Position Estimation
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An Error Model for Odometric Position Estimation

 For a differential-drive robot the position can be estimated starting from a 
known position by integrating the movement.

 For a discrete system with a fixed sampling interval 
 The incremental travel distance
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An Error Model for Odometric Position Estimation

 The updated position:
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An Error Model for Odometric Position Estimation

 Establish an error model for the integrated position p’ to obtain 
the covariance matrix of the odometric position estimate.

 Kr and Kl are errors constants representing the 
nondeterministic parameters of the motor drive and the 
wheel-floor interaction.

 Assume the initial covariance matrix for p is known and the 
following covariance matrix:
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An Error Model for Odometric Position Estimation

 Make the following assumptions:
1.The two errors of the individually driven wheels are independent
2.The covariance of the errors (left and right wheels) are 
proportional to the absolute value of the travel distances
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An Error Model for Odometric Position Estimation
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To Localize or Not to Localize:

Explicit localization with reference to a map is not the only 
strategy that qualifies as a goal detector.

Localization-based navigation
Programmed solution
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Behaviour-Based Approach

 Advantage: when possible, it may be implemented very quickly 
for a single environment with a small number of goal 
positions.

 Disadvantages:
 The method does not directly scale to other environments
 The underlying procedures must be carefully designed to 

produce the desired behavior
 A behavior-based systems may have multiple active behaviors 

at any one time.
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Map-based approach

 Key advantages:
 The explicit, map-based concept of position makes the 

system’s belief about position transparently available to the 
human operators.

 The existence of the map itself represents a medium for 
communication between human and robot: the human can 
simply give the robot a new map if the robot goes to a new 
environment.

 The map, if created by the robot, can be used by human as 
well, achieving two uses.



 Disadvantage and Risk:
 The map-based approach will require more up-front 

development effort to create a navigating mobile robot.
 An internal representation, rather than the real world itself, is 

being constructed and trusted by the robot.
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Belief Representation

 Design questions for belief representation:

Does the robot identify a single unique position as its current 
position?
Does it describe its position in terms of a set of possible 
positions?
If multiple possible positions are expressed in a single belief, 
how are those multiple positions ranked, if at all?

Mobile Robots Localization 18

Belief Presentation

Single-belief hypothesis
Given some environmental map, the robot’s belief about 

position is expressed as a single unique point on the map.

Multiple-belief hypothesis
The robot tracks not just a single possible position but a 

possibly infinite set of positions.
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a) Continuous map with single-belief hypothesis 
b) Continuous map with multiple-belief hypothesis 
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Single Belief Hypothesis

 Advantage:
Decision-making and updating robot’s belief regarding position 

is facilitated.

 Disadvantage:
Robot motion often induces uncertainty due to effector and 

sensor noise, so forcing the position update process to 
always generate a single hypothesis of position is 
challenging, often, impossible.
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Multiple-Belief Hypothesis
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Multiple-Belief Hypothesis

Advantage:
 Robot can explicitly maintain uncertainty regarding its position.
 Around the robot’s ability to explicitly measure its own degree 

of uncertainty regarding position.

Disadvantage:
 Decision making
 Computational very expensive

  

Map Representation
 Map - visual representation of an area
 Used for the purpose of localization
 Key aspects when choosing a particular type of map 
representation:
Fidelity/Precision
Features
Complexity

  

Map Representation - Precision
 Acts as the lower bound on position representation precision
 Map must :
 be as precise as the required positioning precision
 match the precision of the positioning sensors



 Street/road maps ~ meter
 Floor plans ~ cm
 Example: parking a car with standard GPS



  

Map Representation – Features & Complexity

 The features represented in the map must match the type of 
sensors being used
 If a ground robot is using tilt/attitude sensors, it might be useful to 
use a topographical map
 The chosen type of map (cont./disc.,features, precision...) will 
impact computational complexity in terms of:
−Reasoning (e.g.: path planning)
−Localization
−Mapping
 It will also impose requisites on
−Processing power
−Storage space

  

Map Representation – Continuous Representation

Allows exact decomposition of the environment through 
continuously-valued annotation.
Advantages: high accuracy and expressiveness (fidelity to the real 
world)
Disadvantages: High memory usage, computationally costly
Solutions:
−Abstraction – capture only the relevant features.
−Closed-world assumption – represent only objects and features 
(instead of empty space).
−Simplification – approximate features using simple shapes (lines, 
polygons...)

  

Map Representation – Discrete Representation

Approximate decomposition of the environment 
Fixed/Variable Cell Occupancy grids, Topological maps...
Advantages: 
−Adjacency/connectivity properties
−Adequate for robots based on range sensors
Disadvantages: 
−High memory usage for small-sized cells(high precision)
−Incompatibility with the close world assumption (empty spaces are 
represented -continuous representations may be smaller for sparse 
environments)

  

Map Representation – Discrete Representation



  

Map Representation – Decomposition Strategies

Exact Cell/Trapezoidal Decomposition (lossless) 
Assumes that the position of the robot within each area (cell) 
doesn't matter – cells can be stored as nodes!
Compact representation, captures node adjacency
Facilitates path planning (connected graph)

  

Map Representation – Decomposition Strategies

  

Map Representation – Decomposition Strategies

Fixed Decomposition (inexact, lossy) 
Discrete grid approximation of the original map using fixed-size 
cells
Approximation may result in loss of connectivity

  

Map Representation – Decomposition Strategies

Adaptive/2^n-Tree/Approximate Variable Cell Decomposition 
(inexact, lossy) 
Discrete grid approximation of the original map using variable-size 
cells



  

Map Representation – Decomposition Strategies

2 ^n  –  tre e  (n = 2 )

  

Map Representation – Decomposition Strategies

Purely topological representations
−Graphs specifying nodes and connectivity
−Nodes capture geometric space
−Arcs represent connectivity

\

  

Map Representation – Current Challenges

Dynamic environments –
−Transient/Temporary Obstacles (boxes, shipping packages)
−Moving Obstacles (Humans)
Perception
−Errors
−Information Extraction
Open spaces
−Sparseness
−Long range finding
Sensor fusion – the only general implementation for it are neural 
networks.

Mobile Robots Localization 36

Probabilistic Map-Based 
Localization

Combination of information: 
−Aim: position estimation
−Information: map and on-board sensors
Uncertainties: error in sensor information
Refined belief state with combined information
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Combination of information

action-update:
−action model Act
−encoder measurement
perception-update:
−perception model See
−exteroceptive sensor inputs
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Markov localization

Arbitrary probabilistic density function
Finite discrete number of possible positions
Principle: prior belief state + new info = new state
Bayes formula: 
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Markov localization 
- perception update

aim p(l|i): position l given sensor inputs i
p(i|l): model needed, e.g. from the map
p(l): belief state before perception update
p(i): denominator, effectively constant, therefore 
dropped out, normalization at the end
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Markov localization – Action update

Integral over all possible ways l
Uncertain encoder measurement 
Markov assumption: 
−output = function of the previous state and its most 
recent actions and perceptions
−not true, but good simplification
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Markov localization – principle

Action update:
Perception update:
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Kalman filter

Problem: sensor fusion in localization
Knowledge: system and measuring device
Assumption: unimodal Gaussian noise
Aim: minimize error by least-squares technique
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Kalman filter - Principle
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Least-squares technique
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Kalman filter – Static estimation
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Kalman filter I
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Kalman filter II
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Kalman filter III
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Comparison: Markov localisation 
and Kalman filter

  

Other Localization Sys. - Landmark-based

Landmark - Passive object in the workspace
Provides highly accurate localization when in sight
Dead-reckoning between landmarks – careful landmark placement 
to ensure short paths
Strong formal theory for this type of navigation can guarantee 
(under certain conditions) successful localization (+)
Requires significant environmental modification (-)
Robotic soccer league
Manufacturing
Space transportation (Jules Verne ATV)

  

Other Localization Sys. - Global Unique Localization

Assume that localization is perfect and unique, no matter where.
Depends heavily on the sensing system (sensors + software)
Proposed solutions:
−Histogram-based – analysis of one or more histograms – each 
room has a different hist. ”signature”
−Mosaic-based – analysis of floor patterns (scans the whole 
environment)
−Localization is a matter of matching in both cases

  

Other Localization Sys. - Positioning Beacon

Uses geometric principles to achieve localization
Active beacons
−Radio – ground & air robots - GPS, LORAN...
−Ultrasonic – AUVs – Acoustic (sonar) beacons
−Optical – AUVs, ground robots - IR
Passive beacons
−Optical (retroreflective)
Highly accurate localization (+)
Environment modification (-)



  

Other Localization Sys. - Route-based

Localization relative to the path instead of a global frame
The route is explicitly marked
−Optical markers (e.g. UV-reflective paint)
−Magnetic markers (e.g. Magnets, inductive coils)
Highly accurate at the cost of environmental modification
Highly inflexible

  

Autonomous Map Building
Also known as the SLAM (Simultaneous Localization And 
Mapping) problem
Picks up from Kalman localization:

  

Autonomous Map Building – Stochastic Map Technique

 From ”SLAM: Part I The essential Algorithms” (Bailey, Durrant-Whyte)
 At time instant k the following quantities are defined
x(k) – state vector
u(k) – control applied at k-1 to drive to x(k)
m(i) – location of the ith landmark
z(i,k) – observation of the ith landmark
 In addition, the following sets are defined
X(0:k) = {x(0),x(1)...,x(k)} – the history of vehicle locations
U(0:k) = {u(0),u(1)...,u(k)} – the history of control inputs
m = {m1,m2,...,mn} – the set of all landmarks
Z(0:k) = {z(0),z(1)...,z(k)} – the set of all landmark observations

  

Autonomous Map Building – Stochastic Map Technique



  

Autonomous Map Building – Stochastic Map Technique

We want to compute, for every k, the joint posterior density of the 
vehicle state and landmark locations

 P( x(k),m | Z(0:k), U(0:k), x(0) )
given:
−the set of all landmark observations, Z(0:k)
−the set of all control inputs, U(0:k)
−the initial state, x(0)
We also want a recursive solution, so we calculate this estimate 
from the previous estimate P( x(k-1),m | Z(0:k-1), U(0:k-1),x(0) ) 
followed by a control input u(k), and an observation z(k)

  

Autonomous Map Building – Stochastic Map Technique

This is done using Bayes' theorem, for which we need
The observation model, describing the probability of making an 
observation z(k) when the vehicle state and landmark locations are 
known:

 P(z(k)|x(k),m)
The motion model, describing the probability of the state 
transition, from the preceding state x(k-1), which depends only on 
the control input applied at k-1, u(k):

 P(x(k)|x(k-1),u(k))
From here we can implement the SLAM algorithm in a sequential 
form!

  

Autonomous Map Building – Stochastic Map Technique

Time update




Measurement update
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Thank you for your attention!

Questions?
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