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Introduction
• Up to now focused on elements critical to robust mobility;
     - Kinematics
     - Perception
     - Localization

• Cognitive level – the decision making and execution that a 
system utilizes to achieve its end-goals.

• Navigation competence – given knowledge about its 
environment and goal position, the ability to act on knowledge 
and sensor values to reach a specific goal efficiently and 
reliably.

• Path Planning – Identifying a trajectory that will cause the 
robot reach the goal when executed.

• Obstacle Avoidance – Based on sensor readings, modulating 
the trajectory to avoid collisions.

  

Planning and Reacting
• For mobile robots, planning and reacting complementary.
• Navigation challenge involves executing a course of plan to 

reach its goal. During execution, robot must react to 
obstacles to reach the goal.

• Without any plan, reacting effort can not guide the robot.
• Information – Theory :
     Robot R with map Mi at time i and initial belief bi.

     locg(R)= p (g<n)

• The robot can sense its belief state, not physical position so 
plan is the transition from bi to bg(locg(R)=p).

• The problems;
     - bi and Mi can be different from the reality.

     - M changes over time and the model for its change may be 
imperfect

• React! The planner will also receive unanticipated 
information and update its plans, i.e. reacting. 

• Reacting – Planning merge = Integrated Planning and 
Execution

  

Completeness
• An important concept in robot architecture involves whether 

particular design decisions sacrifice system’s ability to 
achieved a desired goal whenever a solution exists.  

• Formally, the robot system is complete if and only if, for all 
possible problems(initial state, map, goals), whenever there 
exists a trajectory to goal belief state, the system will 
achieve the goal belief state.

• So, an incomplete systems fails to generate a solution 
although there is one. 

• Completeness is an ambitious goal but sometimes sacrificed 
to reduce computational complexity at representation level 
or reasoning.



  

Path Planning

• Previously was done for manipulators and industrial robots 
with up to 6 degrees of freedom. Path planning for such 
robots are much complex when compared to differential-
drive mobile robots.

• High degrees of freedom and high speeds required not only 
kinematics but also dynamics to be involved.

• In mobile robots, a “fair” number of robots move at 
comperatively slow speed so dynamics rarely considered 
during path-planning.

• Configuration Space:  A robot has k degrees of freedom. 
Every state or configuration of the robot can be described 
with k real values. The k-values can be regarded as points 
in k-dimensional space, called configuration space C of 
robot.

• Convenient, allowing complex 3D shapes with a single 
point in k-dimension.

  

Configuration Space
• Consider a robot-arm moving through workspace with 

obstacles. Path-planning aims to find a trajectory from initial 
state to final state, avoiding obstacles.

• Hard to visualize and solve, but configuration space definition 
makes it simpler.

• If O is defined as configuration space obstacle, a subset of C, 
then freespace F = C – O.

  

Configuration Space
• In mobile robotics, generally robots represented by (x, y, θ). 

For non-holonomic robots, robot’s velocity is limited by non-
holonomic constraints in each configuration.

• The most common approach for path-planning is to assume 
the robot as holonomic, simplifying the process.

• Differential drive robots can rotate in place so a holonomic 
path can easily be mimicked if rotational position of robot is 
not important.

• Further, usually a mobile robot is represented as a single 
point in 2D space, as there’s no more rotational difference.

• Enlarge the objects by the radius of robot to compensate this 
assumption.

  

Path Planning Overview

• Robot’s environment can be presented in many ways.

• First step for path planning – transform the environmental 
model into a discrete map suitable for chosen path-planning 
algorithm. 

• Three common decomposition strategies;
     - Road map : Identify a set of routes within free space.
     - Cell decomposition: Discriminate between free and 

occupied cells.
     - Potential Field : a mathematical function over the space.



  

Road Map Planning
• Captures the connectivity of robot’s free space in a 1D 

network of lines, roads. Decomposition is based on usually 
obstacle geometry.

• The challenge is to construct a set of roads that together 
enable the  robot to go anywhere in its free space, while 
minimizing the number of total roads.

• Connecting the initial and goal position to road network and 
searching the path.

• Completeness preserved.

• Two extreme approaches;
    - Visibility graph : Stay close to object, minimize the distance.
    - Voronai graph : Keep distance to objects.

  

Visibility Graph
• Nodes of the graph = Initial and goal points + vertices of the 

configuration space obstacles (polygons). 
• All nodes which are visible from each other are connected by

straight-line segments, defining the road map. This means 
there are also edges along each polygon’s.

  

Visibility Graph
• Offers minimal-length solutions due to its representation.

• Moderately popular in robotics because of simple 
implemantation, especially environment representation 
describes objects as polygons.

• Two important caveats ;
    - The number of nodes and edges, the size of 

representation increases when there are many objects. 
Fast and efficient for sparse, slow and inefficient for 
dense environments.

    - Gives optimal solution in terms of minimal length, but 
sacrifying safety. Solution is to grow the objects by more 
than robot’s radius.

  

Voronai Graphs
• Contrasting with the visibility graph approach, a Voronoi 

diagram is a complete road map method that tends to 
maximize the distance between the robot and obstacles in 
the map.

• The Voronoi diagram consists of the lines constructed from 
all points that are equidistant from two or more obstacles.

• The direction of movement on the Voronoi diagram is also 
selected so that the distance to the boundaries increases 
fastest. 



  

Voronoi Graphs
• Complete like Visibility graphs, but far from optimal in terms 

of length.

• An important important weakness in the case of limited 
range localization sensors.

• Any  short-range sensor on the robot will be in danger of 
failing to sense its surroundings , chosen path will be poor.

• But an important advantage, executability. Given planned 
path via Voronoi planning, a robot can follow a Voronoi edge 
in the physical world by simple control rules: Maximize the 
minima read from local sensors. Migitation for encoder 
inaccuracy

• Can be used in automatic mapping, by finding and moving 
on unknown edges and then constructing a consistent 
Voronoi map.   

Cell Decompositin Path Planning
• The idea is to discriminate between geometric areas or cells 

that are free or occupied. 
• Generalized idea for cell decomposition path planning;

- Divide F into simple connected regions called cells.
- Determine adjacent open cell, build a connectivity graph.
- Find the cells that contains initial and final configurations, 
search for a path in connectivity graph.
- From the sequence of cells found with an appropriate 
searching algorithm, compute a  path within each cell, for 
example, passing through the midpoints of the cell 
boundaries

• The placement of boundaries :
    - Exact Cell Decomposition : Boundaries are function of 

obstacles, decomposition is lossless.
    - Approximate Decomposition

  

Exact Cell Decomposition

• The particular position of the robot within each cell of free 
space does not matter  ;  the robot’s ability to traverse from 
each free cell to adjacent free cells is important.

• Disadvantage: The number of cells and, therefore, overall path 
planning computational efficiency depends upon the density 
and complexity of objects in the environment, just as with road 
map based systems

  

Approximate Cell Decomposition
• A popular technique for mobile robot path planning due to 

lower computational complexity.
• Cell size not dependent on objects in the environment. Narrow 

passages can be lost, but practically not a problem due to very 
small cell sizes used.



  

Approximate Cell Decomposition
• Grassfire(NF1), an efficient algorithm for finding routes.

• Wavefront expansion from the goal position outward, 
marking for each cell its distance to goal until the initial 
cell is reached.

• At this point, planner can estimate the distance to the 
goal and create a trajectory by linking adjacent cells 
that are always closer to goal.

• Each cell stored in memory so visited only once. Simply 
a breadth-first search in the space of adjacent cells. 
Complexity not dependent on density of the 
environment.

• Fundamental cost is the memory requirement, but 
migitated due to latest improvements in computers.

  

Potential Field Path Planning
• Creates a field, or gradient, across the robot’s map that 

directs robot to the goal avoiding obstacles.
• Treats the robot as a point under the influence of potential 

field U(q).
• Robot moves by following the field, like a ball rolling down 

hill. Obstacles act as peaks, repulsive forces whereas goal 
attracts the robot.

• Superposition of all forces on the point(robot) guides it to the 
goal avoiding obstacles.

  

Potential Field Path Planning

• Assuming the robot is a point, we have a potential field in 
2D(x,y). If we assume a differentiable potential field function 
U(q), resulting force F(q) acting on position q = (x,y) ;

     F(q) = - ∇U(q),  where ∇U(q) defines the gradient vector of U 
at point q.

• The potential field acting on the robot is then;
    U(q) = Uatt(q) + Urep(q)

     F(q) = - ∇ Uatt(q)  - ∇ Urep(q)

  

Potential Field Path Planning
• Attractive Potential:

                                     where pgoal(q) = |q - qgoal|

• Fatt(q) = - ∇ Uatt(q) = katt.(q-qgoal),  F tends to zero when q-
>goal.

• Repulsive Potential: A strong repulsion when close to 
obstacels, hardly an effect when far away. Example;

• p(q) is the minimal distance from q to the object and p0the 
distance of influence of the object.

• Tends to infinity if q gets closer to the object.



  

Limitations & Extensions

• Some limitations;
    - Local minima that appear dependent on object shape and 

size.
    - For Concave objects, there may be several minimal 

distances p(q),    resulting in oscillations between two closest 
points to the object, sacrifices completeness.

Extended Potential Field Approach
Proposed by Khatib and Chatila, makes use of two additional 

fields;
- Rotational potential field
- Task Potential Field

  

Extended Potential Field
• The rotation potential field assumes that the repulsive force 

is a function of the distance  from the obstacle and the 
orientation of the robot relative to the obstacle.

• A gain factor which reduces the repulsive force when an 
obstacle is parallel to the robot’s  direction of travel, since 
such an object does not pose an immediate threat to the 
robot’s trajectory.

  

Task Potential Field
• The task potential field considers the present robot velocity 

and from that it filters out those obstacles that should not 
affect the near-term potential based on robot velocity. The 
result can be smoother trajectories through space.

• Many variations and improvements made on potential 
fields( lowering oscillations and instability).  Easy to 
implement like grassfire and widely used in robotics.

Obstacle Avoidance
• Focuses on changing robot’s trajectory as informed by its 

sensors during the motion.

• Resulting motion is a function of robot’s current and recent 
sensor readings and its goal position and relative position to 
the goal.

• Obstacle avoidance algorithms, differences- similarities.

  

Bug Algorithm
• Several bug algorithm

• Bug1: 
• Fully circle the object
• Leave it at the nearest point from the goal

• Not really efficient



  

Bug Algorithm

• Bug2:
• Remember the direct line to the goal
• Follow the object’s contour until it find the direct line

• Faster than bug1
• Sometimes can be inefficiant

  

Bug Algorithm
• Tangent Bug

• Evaluates distance to object

• Choose the point Oi that minimizes d(x,Oi)+d(Oi, qgoal)

  

Vector field histogram
• Prevents problems due to a lack of information about 

objetcs
• Creating a local map of the environment
• Use occupancy grid as a map
• Generate a polar histogram

• X-axis: angle of the object (α)
• Y-axis: probabilities (P) of the 

object based on the map.

• All the direction are calculated
• The cost of each way is calculated by :

• target_direction = alignment of the robot path with the goal;
• wheel_orientation = difference between the new direction and the 

current wheel orientation;
• previous_direction = difference between the previously selected 

direction and the new
• direction.
• a, b c depends of the behavior of the robot   

Vector field histogram
• VFH+

• Takes into account the movements of the robot



  

The bubble band technique
• Bubble: the maximum local subset of the free space 

around the robot
• Require a global map or global path-planner
• Used along the trajectory of the robot

• When object, used to change the trajectory minimizing 
bubble band tension

  

Curvature velocity techniques
•The basic curvature velocity approach.

•Velocity space:
• ω : Rotational velocity
• ν : Translation velocity

•Robot only move along arc of
circle with curvature c= ω x ν 

•Best way is chosen by an
objective function

•Two types of constraints :
•Limitations in acceleration and speed
•Object blocking certain ν and ω values

•obstacles are approximated by circular objects

•The lane curvature method.

•Calculates a set of lanes (length and width)

  

Dynamic window approaches
• The local dynamic window approach.

•Velocity space:
• ω : Angular velocity
• ν : Velocity

•First, selects all the tuple(ν, ω)
reacheable = dynamic window.

•Second, keeps only safe
tuples (the robot wont hit a object)
 = admissible velocities.

•Objective function will choose the direction : 

•heading = Measure of progress toward the goal location;
•velocity = Forward velocity of the robot → encouraging fast movements;
•dist = Distance to the closest obstacle in the trajectory.

  

Dynamic window approaches
• The global dynamic window approach.

• Adds NF1 to the objective function



  

The Schlegel  approach
• Considers the shape of the robot

• Using a Cartesian grid

• Using precalculated lookup tables

• ic = curvation

• li = distance between the
robot and object for ic

  

Others approachs
• ASL:

• Path planning by NF1
• Path is converted in elastic band
• Move is chosen by dynamic window

• Nearness diagram

• Gradient method

• Adding dynamic constraints

….


