

Robotics and Autonomous System

Chapter 6: Planning and Navigation

Görkem Şafak
Quentin Bernigaud

Sánchez Álvarez Juan Héctor

27th November 2008

Introduction
• Up to now focused on elements critical to robust mobility;
 - Kinematics
 - Perception
 - Localization

• Cognitive level – the decision making and execution that a
system utilizes to achieve its end-goals.

• Navigation competence – given knowledge about its
environment and goal position, the ability to act on knowledge
and sensor values to reach a specific goal efficiently and
reliably.

• Path Planning – Identifying a trajectory that will cause the
robot reach the goal when executed.

• Obstacle Avoidance – Based on sensor readings, modulating
the trajectory to avoid collisions.

Planning and Reacting
• For mobile robots, planning and reacting complementary.
• Navigation challenge involves executing a course of plan to

reach its goal. During execution, robot must react to
obstacles to reach the goal.

• Without any plan, reacting effort can not guide the robot.
• Information – Theory :
 Robot R with map Mi at time i and initial belief bi.

 locg(R)= p (g<n)

• The robot can sense its belief state, not physical position so
plan is the transition from bi to bg(locg(R)=p).

• The problems;
 - bi and Mi can be different from the reality.

 - M changes over time and the model for its change may be
imperfect

• React! The planner will also receive unanticipated
information and update its plans, i.e. reacting.

• Reacting – Planning merge = Integrated Planning and
Execution

Completeness
• An important concept in robot architecture involves whether

particular design decisions sacrifice system’s ability to
achieved a desired goal whenever a solution exists.

• Formally, the robot system is complete if and only if, for all
possible problems(initial state, map, goals), whenever there
exists a trajectory to goal belief state, the system will
achieve the goal belief state.

• So, an incomplete systems fails to generate a solution
although there is one.

• Completeness is an ambitious goal but sometimes sacrificed
to reduce computational complexity at representation level
or reasoning.

Path Planning

• Previously was done for manipulators and industrial robots
with up to 6 degrees of freedom. Path planning for such
robots are much complex when compared to differential-
drive mobile robots.

• High degrees of freedom and high speeds required not only
kinematics but also dynamics to be involved.

• In mobile robots, a “fair” number of robots move at
comperatively slow speed so dynamics rarely considered
during path-planning.

• Configuration Space: A robot has k degrees of freedom.
Every state or configuration of the robot can be described
with k real values. The k-values can be regarded as points
in k-dimensional space, called configuration space C of
robot.

• Convenient, allowing complex 3D shapes with a single
point in k-dimension.

Configuration Space
• Consider a robot-arm moving through workspace with

obstacles. Path-planning aims to find a trajectory from initial
state to final state, avoiding obstacles.

• Hard to visualize and solve, but configuration space definition
makes it simpler.

• If O is defined as configuration space obstacle, a subset of C,
then freespace F = C – O.

Configuration Space
• In mobile robotics, generally robots represented by (x, y, θ).

For non-holonomic robots, robot’s velocity is limited by non-
holonomic constraints in each configuration.

• The most common approach for path-planning is to assume
the robot as holonomic, simplifying the process.

• Differential drive robots can rotate in place so a holonomic
path can easily be mimicked if rotational position of robot is
not important.

• Further, usually a mobile robot is represented as a single
point in 2D space, as there’s no more rotational difference.

• Enlarge the objects by the radius of robot to compensate this
assumption.

Path Planning Overview

• Robot’s environment can be presented in many ways.

• First step for path planning – transform the environmental
model into a discrete map suitable for chosen path-planning
algorithm.

• Three common decomposition strategies;
 - Road map : Identify a set of routes within free space.
 - Cell decomposition: Discriminate between free and

occupied cells.
 - Potential Field : a mathematical function over the space.

Road Map Planning
• Captures the connectivity of robot’s free space in a 1D

network of lines, roads. Decomposition is based on usually
obstacle geometry.

• The challenge is to construct a set of roads that together
enable the robot to go anywhere in its free space, while
minimizing the number of total roads.

• Connecting the initial and goal position to road network and
searching the path.

• Completeness preserved.

• Two extreme approaches;
 - Visibility graph : Stay close to object, minimize the distance.
 - Voronai graph : Keep distance to objects.

Visibility Graph
• Nodes of the graph = Initial and goal points + vertices of the

configuration space obstacles (polygons).
• All nodes which are visible from each other are connected by

straight-line segments, defining the road map. This means
there are also edges along each polygon’s.

Visibility Graph
• Offers minimal-length solutions due to its representation.

• Moderately popular in robotics because of simple
implemantation, especially environment representation
describes objects as polygons.

• Two important caveats ;
 - The number of nodes and edges, the size of

representation increases when there are many objects.
Fast and efficient for sparse, slow and inefficient for
dense environments.

 - Gives optimal solution in terms of minimal length, but
sacrifying safety. Solution is to grow the objects by more
than robot’s radius.

Voronai Graphs
• Contrasting with the visibility graph approach, a Voronoi

diagram is a complete road map method that tends to
maximize the distance between the robot and obstacles in
the map.

• The Voronoi diagram consists of the lines constructed from
all points that are equidistant from two or more obstacles.

• The direction of movement on the Voronoi diagram is also
selected so that the distance to the boundaries increases
fastest.

Voronoi Graphs
• Complete like Visibility graphs, but far from optimal in terms

of length.

• An important important weakness in the case of limited
range localization sensors.

• Any short-range sensor on the robot will be in danger of
failing to sense its surroundings , chosen path will be poor.

• But an important advantage, executability. Given planned
path via Voronoi planning, a robot can follow a Voronoi edge
in the physical world by simple control rules: Maximize the
minima read from local sensors. Migitation for encoder
inaccuracy

• Can be used in automatic mapping, by finding and moving
on unknown edges and then constructing a consistent
Voronoi map.

Cell Decompositin Path Planning
• The idea is to discriminate between geometric areas or cells

that are free or occupied.
• Generalized idea for cell decomposition path planning;

- Divide F into simple connected regions called cells.
- Determine adjacent open cell, build a connectivity graph.
- Find the cells that contains initial and final configurations,
search for a path in connectivity graph.
- From the sequence of cells found with an appropriate
searching algorithm, compute a path within each cell, for
example, passing through the midpoints of the cell
boundaries

• The placement of boundaries :
 - Exact Cell Decomposition : Boundaries are function of

obstacles, decomposition is lossless.
 - Approximate Decomposition

Exact Cell Decomposition

• The particular position of the robot within each cell of free
space does not matter ; the robot’s ability to traverse from
each free cell to adjacent free cells is important.

• Disadvantage: The number of cells and, therefore, overall path
planning computational efficiency depends upon the density
and complexity of objects in the environment, just as with road
map based systems

Approximate Cell Decomposition
• A popular technique for mobile robot path planning due to

lower computational complexity.
• Cell size not dependent on objects in the environment. Narrow

passages can be lost, but practically not a problem due to very
small cell sizes used.

Approximate Cell Decomposition
• Grassfire(NF1), an efficient algorithm for finding routes.

• Wavefront expansion from the goal position outward,
marking for each cell its distance to goal until the initial
cell is reached.

• At this point, planner can estimate the distance to the
goal and create a trajectory by linking adjacent cells
that are always closer to goal.

• Each cell stored in memory so visited only once. Simply
a breadth-first search in the space of adjacent cells.
Complexity not dependent on density of the
environment.

• Fundamental cost is the memory requirement, but
migitated due to latest improvements in computers.

Potential Field Path Planning
• Creates a field, or gradient, across the robot’s map that

directs robot to the goal avoiding obstacles.
• Treats the robot as a point under the influence of potential

field U(q).
• Robot moves by following the field, like a ball rolling down

hill. Obstacles act as peaks, repulsive forces whereas goal
attracts the robot.

• Superposition of all forces on the point(robot) guides it to the
goal avoiding obstacles.

Potential Field Path Planning

• Assuming the robot is a point, we have a potential field in
2D(x,y). If we assume a differentiable potential field function
U(q), resulting force F(q) acting on position q = (x,y) ;

 F(q) = - ∇U(q), where ∇U(q) defines the gradient vector of U
at point q.

• The potential field acting on the robot is then;
 U(q) = Uatt(q) + Urep(q)

 F(q) = - ∇ Uatt(q) - ∇ Urep(q)

Potential Field Path Planning
• Attractive Potential:

 where pgoal(q) = |q - qgoal|

• Fatt(q) = - ∇ Uatt(q) = katt.(q-qgoal), F tends to zero when q-
>goal.

• Repulsive Potential: A strong repulsion when close to
obstacels, hardly an effect when far away. Example;

• p(q) is the minimal distance from q to the object and p0the
distance of influence of the object.

• Tends to infinity if q gets closer to the object.

Limitations & Extensions

• Some limitations;
 - Local minima that appear dependent on object shape and

size.
 - For Concave objects, there may be several minimal

distances p(q), resulting in oscillations between two closest
points to the object, sacrifices completeness.

Extended Potential Field Approach
Proposed by Khatib and Chatila, makes use of two additional

fields;
- Rotational potential field
- Task Potential Field

Extended Potential Field
• The rotation potential field assumes that the repulsive force

is a function of the distance from the obstacle and the
orientation of the robot relative to the obstacle.

• A gain factor which reduces the repulsive force when an
obstacle is parallel to the robot’s direction of travel, since
such an object does not pose an immediate threat to the
robot’s trajectory.

Task Potential Field
• The task potential field considers the present robot velocity

and from that it filters out those obstacles that should not
affect the near-term potential based on robot velocity. The
result can be smoother trajectories through space.

• Many variations and improvements made on potential
fields(lowering oscillations and instability). Easy to
implement like grassfire and widely used in robotics.

Obstacle Avoidance
• Focuses on changing robot’s trajectory as informed by its

sensors during the motion.

• Resulting motion is a function of robot’s current and recent
sensor readings and its goal position and relative position to
the goal.

• Obstacle avoidance algorithms, differences- similarities.

Bug Algorithm
• Several bug algorithm

• Bug1:
• Fully circle the object
• Leave it at the nearest point from the goal

• Not really efficient

Bug Algorithm

• Bug2:
• Remember the direct line to the goal
• Follow the object’s contour until it find the direct line

• Faster than bug1
• Sometimes can be inefficiant

Bug Algorithm
• Tangent Bug

• Evaluates distance to object

• Choose the point Oi that minimizes d(x,Oi)+d(Oi, qgoal)

Vector field histogram
• Prevents problems due to a lack of information about

objetcs
• Creating a local map of the environment
• Use occupancy grid as a map
• Generate a polar histogram

• X-axis: angle of the object (α)
• Y-axis: probabilities (P) of the

object based on the map.

• All the direction are calculated
• The cost of each way is calculated by :

• target_direction = alignment of the robot path with the goal;
• wheel_orientation = difference between the new direction and the

current wheel orientation;
• previous_direction = difference between the previously selected

direction and the new
• direction.
• a, b c depends of the behavior of the robot

Vector field histogram
• VFH+

• Takes into account the movements of the robot

The bubble band technique
• Bubble: the maximum local subset of the free space

around the robot
• Require a global map or global path-planner
• Used along the trajectory of the robot

• When object, used to change the trajectory minimizing
bubble band tension

Curvature velocity techniques
•The basic curvature velocity approach.

•Velocity space:
• ω : Rotational velocity
• ν : Translation velocity

•Robot only move along arc of
circle with curvature c= ω x ν

•Best way is chosen by an
objective function

•Two types of constraints :
•Limitations in acceleration and speed
•Object blocking certain ν and ω values

•obstacles are approximated by circular objects

•The lane curvature method.

•Calculates a set of lanes (length and width)

Dynamic window approaches
• The local dynamic window approach.

•Velocity space:
• ω : Angular velocity
• ν : Velocity

•First, selects all the tuple(ν, ω)
reacheable = dynamic window.

•Second, keeps only safe
tuples (the robot wont hit a object)
 = admissible velocities.

•Objective function will choose the direction :

•heading = Measure of progress toward the goal location;
•velocity = Forward velocity of the robot → encouraging fast movements;
•dist = Distance to the closest obstacle in the trajectory.

Dynamic window approaches
• The global dynamic window approach.

• Adds NF1 to the objective function

The Schlegel approach
• Considers the shape of the robot

• Using a Cartesian grid

• Using precalculated lookup tables

• ic = curvation

• li = distance between the
robot and object for ic

Others approachs
• ASL:

• Path planning by NF1
• Path is converted in elastic band
• Move is chosen by dynamic window

• Nearness diagram

• Gradient method

• Adding dynamic constraints

….

