Rasdalf Purple

Gandalf Grey’s less famous cousin

Daniel Kallin
Mikael Sundberg
Jannis Tsiroyannis

Linus Wiklund

21 Augusti 2007

Abstract

A report on the mechanical and programmatical construction of a autonomous
robot designed to play soccer as part of the examination in the course 2D1426
Robotics and Autonomous Systems given at KTH in spring 2007.

Contents

1 Preface 2
1.1 Introduction. 2

2 Hardware design 3
2.1 Design philosophy o oL 3
2.2 Camera e e e 3
2.3 Ballhandling 3
2.4 Robot picture 4

3 Software design 5
3.1 Color classification 5
3.1.1 Physical color samples referencing 6

3.1.2 HSV classification 7

3.2 Object recognition 8
3.2.1 Balldetection 8

3.2.2 Goaldetection 9

3.2.3 Opponent detection 9

3.2.4 Wall detection 10

3.3 Kinematics 10
3.4 Memory 11
3.5 Fixedpointmath 0. 11
3.6 Coordinate transformation 12
3.6.1 Triangulationo L. 13

3.7 Stateengine 13
3.8 Diagnostics and utility programs 17
3.8.1 Coordinate transform calibration 17

3.8.2 Imagecapture 18

3.83 BMPoparser. 18

3.84 PPMreader. 19

3.85 Radar 19

3.86 Vision 20

3.8.7 Workstation color classifier 20

4 Conclusion 22
4.1 Advice for future course participants 22

5 Appendix - source code 23

5.1 Robot onboard software 23
5.1.1 Makefile 23
5.1.2 Main 23
51.3 AL 24
514 Camera e e 32
5.1.5 Constants 38
5.1.6 Kinematics 39
5.1.7 Memory 40
5.1.8 Fixed point math 41
5.1.9 Radar 43
5.1.10 Transform 45

5.2 Diagnostics and utility software L. 46
5.2.1 Coordinate transform calibration 46
5.2.2 Ballfinding 47
523 BMPuoparser. oo 48
5.2.4 PPMureader 49
5.2.5 Picturesaver 51
526 Vision 52

Chapter 1

Preface

1.1 Introduction

This report details the construction of the robot Rasdalf Purple. Rasdalf Purple
is a robot designed to compete in robot soccer by a variation of the RoboCup
rules. We, as authors of this report and builders of the robot have set out
to maintain a simple and spartan design philosophy. We have tried to equip
the robot with the bare essentials and as little else as possible. The report is
structured so as to make it easy to look up specific parts without having to go
through large amounts of text. This is done both in the interest of maintaining
our design philosophy and to be as useful a resource to future teams as possible.

Chapter 2

Hardware design

2.1 Design philosophy

The physical design of the robot did not follow any detailed plan. Instead it had
more of a iterative nature with components added or redesigned when needed.
This was not as inefficient as it might sound. It caused almost every part of the
robot to be constructed at least twice due to redesigns but we also maintained
a high degree of flexibility.

2.2 Camera

We decided early on to mount the camera as high up as possible and tilted
downwards to avoid seeing anything outside the field and getting an optimal
situation for distance determination. Since we barely saw the goals when situ-
ated at the far end of the field and only saw half of the ball when we possessed
it the calibration of the camera was very delicate but the excellent vision and
distance determination was clearly worth it.

far goal ball robot

Figure 2.1: Qualitative schematic of robot view frustrum

2.3 Ball handling

During the construction of the robot we came to the conclusion that the primary
issue regarding ball handling would be how to turn the robot around without

losing the ball. There is also the secondary issue of how to stop the ball when
the robot stops driving forward. The original plan for how the robot would
handle these problems was twofold. First of we decided that the best way to
turn with the ball would be to keep the ball as close as possible to the robot’s
center of rotation and turn the robot around the ball rather than with it. This is
the primary reason the robot has its two powered wheels placed in the absolute
front of the robot.

The second part of the plan involved a revolving rod placed across the front
of the robot often called a ’dribbler’. The dribbler’s job is to apply backspin to
the ball effectively keeping the ball from rolling away from the robot. At the
day of the competition the dribbler was only partially operational and therefore
disabled during the actual competition. The placement of the wheels proved an
adequate if not perfect solution to the ball handling problem.

2.4 Robot picture

Figure 2.2: The final robot hardware design

Chapter 3

Software design

3.1 Color classification

Figure 3.1: Sample camera image.

To make it easier for us Rasdalf’s world was color-coded. The colors it should
know about was:

e Blue and Yellow - Goals

e Orange - Ball

o White - Walls and lines on the playing field
e Green - Playing field

e Purple - Opponents

But as can be seen in our images below, the walls come in a rather white-yellow
color, the ball is orange and yellow and the opponents come in a multitude of col-
ors. More information about the color codes and other tournament rules can be

found in the Rules document at http://www.csc.kth.se/utbildning/kth/-
kurser/DD2426/rules/ (15/6/2007, KTH CSC 2D1426: Project competition
rules).

3.1.1 Physical color samples referencing

The color sampling method which we used during Labl was very simple and
quite unique. When we discussed and tried to analyze the problem of color
based object classification we identified the following difficulties:

e The camera’s autobrightness function caused the same physical color to
span a long range of different brightness values.

e The lighting changed during day time and night time in the laboratory and
was also expected to change when the field was moved to the tournament
hall.

Figure 3.2: Making the “LUT”

We realized that these difficulties could be alleviated by moving the color ref-
erences away from software - where it would be stored as a LUT or as threshold
values - and out into the physical world in front of the camera. We mounted arms
on the robot which held small patches colored in the same colors as the objects
in the soccer game. These samples experienced the same lighting fluctuations
and their colors were automatically processed by the camera’s autobrightness
function. Our algorith sampled these color references and used those references
in the pixel classification process. A pixel’s color to be classified was compared
with the average color within a sample by calculating a numerical ’distance’
between the two colors. If the distance was greater than a certain threshold
it was considered unclassified and otherwise it was given the class of the color
sample that was the closest. We tried different metrics to calculate the distance.

Color metrics

e Max color component deviation. d = max(|r — 79|, |9 — gol, |b — bo|).

e Euclidean distance in RGB space. d = \/(r — 10)% 4+ (9 — g0)? + (b — bo)?.

Figure 3.3: Physical color referenced classification. Left) Camera output. Right)
Image pixels classified.

We considered other variations of this reference approach. Several pixels
of the references were sampled and averaged together. But more information
could have been retained. The variations inside the reference patches would be
stored in some fashion to increase the robustness of the classifications. We also
discussed comparing the color distance between different samples as a measure
of how well the camera performed at the current conditions.

3.1.2 HSV classification

After finishing Lab1 we realised that the color classification code was not always
working as it should be. For example the robot was functioning better during
the evenings and late afternoons than during the mornings and lunch-time. So
we descided on doing some experimenting on classification in the HSV color
space with hard-coded thresholds.

HSYV color space

The HSV color model have some advantages over the RGB model. The color is
a single coordinate in the HSV model, the other two describing saturation and
brightness. Since every object on the soccer field is coded in bright colors it
should therefore be possible to differentiate between different objects by com-
paring this single coordinate. A drawbacks was that one color - white - is not
uniquely defined in HSV space.

Calibrating tresholds

Working with most of the test-pictures we had taken earlier on we started out
classifying the thresholds by hand in all the pictures that was deemed not to be
extreme cases of camera screw-up, trying to avoid overlaping ranges as much as
possible. This code was then pasted into the pixel classification function, tested
on the sample images and then fine-tuned. This procedure was then redone
a few times with new images from the robot posing different situations. This
seemed to work pretty good so we decided on using it, and we did not have to
do any recalibration while in the tournament room.

Figure 3.4: HSV color space classification. Left) Camera output. Right) Image
pixels classified.

3.2 Object recognition
3.2.1 Ball detection

Horizontal edge detection

Our first idea of how to handle ball recognition was to go through the camera
image and note the leftmost and rightmost pixels that was classified as being
ball pixels. The idea was that the coordinates of these pixels would tell us
everything we needed to know about the ball. The mean of the coordinates
could be considered the center of the ball and was used to calculate the angle
between the the robot’s bearing and the direction of the ball. The difference
between the leftmost and rightmost coordinates would also tell us the apparent
width of the ball in the image, from which we could determine the distance
to the ball. This was done using a precomputed lookup table. This approach
failed due to imperfections in the camera. Noise in the image often led to pixels
at random locations being classified as orange. Also intersections between wall
and floor showed a tendency to have a false orange tinge in the images.

Neighbourhood verification

To address the problem of noisy images we moved on to the idea that a pixel
should not be considered part of the ball unless it was surrounded by other
pixels that had similar color. We tried several implementations for this. For
example we checked a square around the pixel in question and only classified
it as ball if more than 75% of the square’s pixels also had the correct color.
This was not entirely unsuccesfull but still had problems similar to the naive
approach.

Coherent blob identification

Another idea was that to find the ball it is not enough to look at separate
orange pixels. We instead decided to look at groups of pixels. This was done
by first finding any orange pixel in the image and then recursively checking all
its neighbours. This method would for every given image return one or more
groups of orange pixels which could then be compared in size, position and
proportions to decide the most likely, if any, to be the ball.

Coordinate averaging

When we got the coordinate transformation described in section 3.6 working
we no longer needed accurate measurements of the apparent size of the ball to
localize it. But we still needed a very precise measurement of location of the
center of the ball. The solution was simply to consider the ball’s apparent center
to be the averaged coordinates of all the pixels that were classified as ball. Any
noise would only have a negliable effect on the averaged coordinate.

The U-method

One of the ball recognition algorithms we tried involved trying to find a U
of orange pixels. When finding an orange pixel it basically tried to go as far
down finding new orange pixels as it could, then started going to the right, and
afterwards it went upwards. It did not get that much of an effort getting it
to work satisfyingly though, and in the tests we did it almost never found the
ball. This might often have been because the ball-pixels was a mix of yellow and
orange pixels, and not always U-shaped in long ranges. The reason we decided
on trying an U-shape and not an O-shape was that the top of the ball often got
classified as being yellow. This algorithm could probably have worked if it had
been given enough effort and time. We did not have the time though.

3.2.2 Goal detection
Corner detection

The goal search pattern was simplified by the camera’s position. We never saw
outside the field and we always had the goal along the top edge of the camera
image whenever we faced one of the goals. The goal finding algorithm relied
on the wall-floor intersection finding algorithm. (See Figure 3.5). Our camera
placement made sure that if a goal was visible some part of it would occupy the
top edge of the screen. We therefore only searched a thin scanline at the top
of the camera image. When we had detected the leftmost and rightmost goal
pixels we identified the wall/floor edges a few pixels outside the identified goal
edges.

Largest Pixel-Class Group Method

This goal finding algoritm found the largest coherent pixel group of the same
color. It did allow for some gaps though. The gap-size was specifyable so that
there could be one or more pixels of a different color in the gap. This method was
tried when we were only using RGB-color space for classification, and therefore
there was a pretty large amount of miss-classification and camera ”errors”. It
was also rather slow since it had to go through a large amount of pixels.

3.2.3 Opponent detection

When it came to detecting the opponent, time was a problem. There simply
wasnt any time left for us to implement any of the functions we had planned
that would be using opponent detection. So when it was time for competition
our robot could see the opponents’ purple color really well. She just didnt care.

10

Figure 3.5: The goal finding process. Top Left) Goal pixel search in horizontal
scanline. Top Right) Goal edges found. Bottom Left) Floor edge search in
vertical scanlines outside goal edges. Bottom Right) Floor edge points (o) found.
Goal center (4) approximated as their centroid.

3.2.4 Wall detection

When searching for the wall-floor intersection along a vertical scanline we at first
tried a fixed brightness threshold approach. The algorithm assumed it had found
the intersection when the pixel brightness fell below a certain threshold (See
Figure 3.6 for a brightness plot). This was not robust enough in different auto
brightness compensation levels so we resorted to a brightness derivative threhold
approach. The brightness derivative was approximated with a difference with
a step length greater than one pixel. When this difference was greater than a
certain threshold the scan stopped and reported that an intersection had been
found.

3.3 Kinematics

We used the built in Vw-interface but after some testing we realized that it had
some problems. For example if the robot started a new drive-straight while
one was already running. The robot started to move really slow. We solved this
by mostly using setspeed and calculating the time it should take for the robot
to travel the wanted distance in the speed we had set. This worked really well as-
long as the batteries were charged. When the batteries started to get discharged
the robot started to move slower making our predefined calculations wrong and
therefore the distance became too short. Unfortunately we did not have time
to solve this in a satisfying way. Instead we used the not so good drive-straight
method when we wanted to be sure we traveled the correct distance. Which
became clear in the tournament where our initial move went totally wrong.

11

750 F T T T T T T ™

200

(i)
[}

pixel hrightness

=
[}

s0F B

D 1 1 1 1 1 1 1
0 20 40 60 a0 100 120 140

vertical pixel coordinate

Figure 3.6: Pixel brightness along vertical scanline.

Another disadvantage the Vw-interface is that if used, the camera can not take
pictures while the robot is moving. At least we did not get it to work in a way
that met our standards.

3.4 Memory

The RoBIOS’ Vw-interface has a built in odometric functions that (allegedly)
could keep track of the position of the robot during motion relative its initial
postion. We wrote a simple shell around these functions for use in our scoring
algoritms. The motivation being that once the goal would have been sighted its
location could be stored in memory and later retrieved. The robot would then
be able to perform much more advanced ball searches since there would be no
need to start from scratch when relocating the goal once the ball was retrieved.
The robot would be able to move into an optimal scoring pose as soon as it saw
the ball using the memorized position of the goal as a reference.

The memory was not designed to place objects in a global map but would
instead memorize only the goals position in the robots local reference frame. It
also provided a function to flush (to forget) the memory that was to be called

Unfortunately we never had time to actually use the memory functions. We
can therefore not assess the Vw-odometry’s accuracy but we can make some
(unflattering) assumptions considering the overall poor performance of the Vw-
interface.

3.5 Fixed point math

During development we fought alot with strange return values and weird results
in general. After some research we came to the conclusion that floats are evil.

12

That conclusion made it clear to us that we needed functions so we could use
integers instead of floats. So we created our millimath.c library containing
trigonometric values and some needed math functions. Doing all calculations
and return values in integers. The only problem this caused was that since we
used the built in Vw-interface that wants floats we had to compensate for that
when calling those functions. Another advantage of using integers instead of
floats is that its faster to compute integers. But as far as we know our (lack of)
programming skills made that advantage go away.

3.6 Coordinate transformation

Rasdalf works with several different two-dimensional coordinate systems; cam-
era image coordinates and local reference frame coordinates. The transform.c
module provide transformation functions from the image coordinate frame to
the local frame.

Figure 3.7: Local reference frame

Y

>
>

column

Y row

Figure 3.8: Image coordinate system

This transformation relied on the one to one correspondence between coor-
dinates in the 2D floor plane and 2D coordinates in camera images. Real world

13

objects are not points and the objects on the soccer field were not strictly con-
fined to the floor. But the assumption that they were simplified our coordinate
transformations greatly whilst contributing only minor errors. And the greatest
benefit was that with a algorithm capable of deducing distance to single points
there was no need for robust (and thus complex) object size recognition routines.
A point (z;,y;) in image coordinates is approximately translated to a point
(Zw, Yw) in the local reference frame by equations 3.1 and 3.2. The adjustment
of the six parameters in these equations are breifly described in section 3.8.1.

Tiy Yiyr Ty Y € [0, 1]
h : height of the robots camera
Br : angular width of the camera’s FOV
B, : angular height of the camera’s FOV
ayp, - angle between local y-axis and left edge of the FOV
a, : angle between horizontal plane and top edge of the FOV
~ : angular offset

B h
B tan(av + 61)%)
T = Yuw tan(ay, + Bn(y + z;)) (3.2)

Yw (3.1)

3.6.1 Triangulation

To get the robot to figure out its position we tried to use triangulation based
on the goal posts. But since we used a rather naive approach the robot could
not be further out on the sides of the field than the right- or leftmost goal post.
If this was satisfied we got a rather good location estimate of the robot in our
test cases. What we did was to estimate the distance to one of the goal posts
and the angle to both of them. Since we knew the global position of both of
the goal posts and the distance between them we could then approximate the x
and y distances in the global frame from one of the posts to the robot if above
constraints were satisfied. But since we did not have a way of knowing if above
constraints were satisfied and no time to figure it out, this was never used on
the robot.

3.7 State engine

In the state engine each state was implemented as a single function in the ai.c
module. Each state function returned the next state that the robot should enter
as its return value.

Attack

The attack state is a special initial state designed to quickly deny the opponent
the ball in the very beginning of the game. It consisted of a series of hard coded
movements that were executed blindly. No sensor readings are collected while
in the attack state since we decided we couldn’t afford to wait for the auto-
brightness level to stabilize. Driving without sensor readings requires precise
knowledge of the environment, knowledge which is only availible at the start of

14

Qualify/
Attack

—»|RecoverBall f«+———

iy

FindBall

F Y

—>={ GoToOptimalPose —

Y h T Y
|
FindGoal
h
' |
|_’ GoToBall GoToGoal |= = ScoreGoal
¥ |
| GoToOwnGoal
h 4
ReturnHome

Figure 3.9: State engine flow chart. Note that some arrows are double directed.

the game when the rules define the locations of the robot, the opponent and
the ball. At the start of the game the ball is located in between the two robot
players. Because of this the robot must move in an S-shape to avoid handing the
opponent the ball (the opposite of the desired behaviour). The attack state also
provided our robot with a comically aggressive behaviour for increased audience
appeal.

In practice this behaviour failed. It successfully aquired the ball during
tests but in the tournament it failed to hit the ball. We are baffled by this
discrepancy that might be attributed to any or several of a score of reasons.
Fluctuating battery voltage levels, encoder errors and programming errors are
possible culprits.

Hassle

This state was supposed to disturb (hassle) our opponent and possibly steal the
ball. It was not implemented in our robot because of our lack of a opponent
distance determination function. The state machine was supposed to invoke
this state whenever the ball and the opponent was seen togheter. It would then

15

aim at the opponent, drive towards her and stop a few centimeterns before col-
lision. It was then supposed to turn 90° and start to make tight laps around
the opponent at high speed. The opponents vision would thus be greatly dis-
turbed, ideally triggering any avoidance routines in its ai, and if it tried to move
hopefully knocking the ball out of its despicable grip.

Qualify

During the qualification a different inital behaviour than that offered by the
attack state was desired. This state was intended as an alternative. It only
consisted of a short drive closer to the ball before it handed control over to the
FindBall state.

FindGoal

This state does almost the same thing as the FindBall-state. Except it looks
for the opponent goal instead of the ball, and when it finds it it stops, returning
the FindBall-state. After turning a full 360° it turns back until facing the wall
furthest away and drives in that direction, then start looking for the opponent
goal again. It was never used during the competition, since the point in using
it was as an aid for the robot memory which was never used.

FindBall

This state was supposed to be invoced if the robot had lost the ball. It should
then try to find the ball as soon as possible. It tries to do so by turning step
by step until it sees the ball. While turning it also takes notice of the two goals
and the longest wall distance. It it turns a full 360° and does not see the ball,
it tries to reposition itself. The thought here was that if it can’t see the ball
it should probably try to go somewhere else, so if it had found both goals it
drives to the goal farthest away. If it did not see both goals, it instead tries to
drive one third of the distance to the most distant wall. In testing this seemed
to work well enough, but in the competition we could never really see it doing
any driving as a result of this function. Eventually it always found the ball, and
then it return the GoToBall-state.

GoToBall

The GoToBall function has the simple job to go to the ball when it is visible.
It does this by simply turning to the ball and going forward untill it has the
ball. When it has the ball it calls the apropriate state depending on if it can se
the opponents goal, its own goal or no goal at al.

GoToGoal

The GoToGoal state is called when the robot had the ball. The problem was
since our memory functions wasn’t used, the robot didn’t always know where
the goal was. And since we didn’t have a roller it was really hard to search for
the goal without dropping the ball. We tried to solve this by driving in a circle
instead of rotating. Togheter with our LostBall state it worked ok atleast.
When the goal was found the robot minimised the angle and drove closer until

16

it was close enough to call the ScoreGoal-state. The GoToGoal state was also
supposed to avoid the opponent while driving towards the goal. But since we
ran out of time we skipped that part.

GoToOptimaPose

This state represents the robot knowing where the ball and the enemy goal is,
and attempting to move into a position and orientation (pose) from where it
can score a goal . This is done by calculating the vector from the enemy goal to
the ball within the robot’s frame and then adding a short fixed distance to this
vector. The robot will then turn and move to the coordinates representing the
enemy goal’s position plus the new vector. When the robot gets to the desired
position it will turn once more to face the ball and enemy goal. This sequence
of actions is executed blindly to avoid confusion from bad camera input. This
proved an effective approach in most cases but it also had its shortcomings.
For example the algorithm tends to be tedious when the robot tries to move
to an optimal pose when it is already very close to the ball. On rare occasions
the robot also crashed into walls while perfroming this maneuver, although this
could probably have been avoided.

GoToOwnGoal

Rasdalf entered this state when he had to go towards his own goal to get the
ball. If he did not have the ball and it was not in his way, he went straight
towards the own goal, otherwise he tried to go around the ball towards his own
goal.

ScoreGoal

The ScoreGoal-state is called by GoToGoal when the robot is in possession
the ball and can see the goal straight ahead. This state has a simple behaviour.
It drives three times the distance measured to the goal in high speed. Followed
by 200mm in even higher speed. This to make sure we don’t lose the ball and
that we don’t drive too short. When done it assumes it scored a goal and calls
the ReturnHome-state.

ReturnHome

This state was one of the funniest to look at. The idea is that when the robot
thinks it had scored, it should get back to its own side of the field as soon as
possible. We tried five or six different ways of doing this, and spent lots and
lots of hours on it. Trying different ways of figuring out how the robot was
positioned on the field when scoring to get the best way of getting back home.
Well, this final way didn’t even use the camera, it just blindly relied on hitting
the walls in the right way, which it pretty much always did. What it did was
to drive out of the (supposed) goal in an arc, and then drive straight into the
wall. It then kept driving into the wall a time long enough so that it should
always have hit the wall. It then at least knew what side of the field it was on
(or it could have know that at least, but well, it’s memory-less). It then drove
backwards a few seconds, turned, drove towards the own goal and then turned
again so that it should pretty much be facing the center of the field. This turned

17

out to work pretty well, except for when it though that it had scored and wasn’t
really close to the opponent goal.

RecoverBall

The recoverball state encapsulated one of the most powerful, visually impres-
sive yet simple behaviours our robot was capable of. Designed to be called
whenever the robot didn’t see the ball when it only recently did. The ball re-
covery algorithm then drove backwards a bit with the assumption that the ball
had rolled off the edge of our ball scoop. Immediately after this it initiated the
findBall state. It is a very simple behaviour but for an audience which can
see how the ball slowly rolls closer and closer to the edge of the scoop to finally
roll off it is both relieving and humorous to see the robot suddenly stop - as if
startled - quickly back up and recover the recently lost ball.

3.8 Diagnostics and utility programs

3.8.1 Coordinate transform calibration

[X X X)
[X X X 1
r X X X 1
r X XX B

Figure 3.10: Calibration setup. Left) Calibration image with reference object
setup. Right) Known positions of calibration objects (x) in the robots (A) local
reference frame.

The image coordinate to local frame coordinate transformation was han-
dled by the equations 3.1 and 3.2. The parameters h, On, By, tp, 0y, 7y in these
equations was either measured directly of the robot (the camera height h) or
calibrated using a special MATLAB program (see Appendix 5.2.1). We placed
12 reference objects on carefully measured positions in front of the robot and
stored camera images using our image capture software (Appendix 5.2.4). We
then manually extracted the apparent positions in the image coordinate frame
and recorded these in our MATLAB calibrator. The calibration was an iterative

18

(@)
(@)

r R & 1

1 1 L 1 1

Figure 3.11: Coordinate transform. Left) Extracted object positions from image
data (o). Right) Calculated positions from image data (o) superposed on known
object positions (x) in the robots (A) local reference frame.

process with approximated initial values for the parameters. In each iteration
the values were manually adjusted, something which worked very well and was
quick thanks to the visual output of the software (see Figure 3.10 and 3.11).

3.8.2 Image capture

Our image capture software was developed a bit late into the development. We

tried some software we found in the robios archives but since it used the very use-

less colimages we realised we had to make something on our own. It is a fairly

simple program based on another program found on an old homepage for this

course (http://www.nada.kth.se/kurser/kth/2D1426/code/getAndSendBigRGBData.txt).
The program grabs ten frames and stores them in a vector to send them when

the robot is connected to the PC again. Since no one had the time to make a
program for the computer to properly and cleanly receive all ten files we had to
manually either cat it to a file or use the d1 program for each picture taken.

3.8.3 BMP parser

In the early stages of experimentation we used computer generated images to
try different image analysis algorithms. In order to read these images a 24-bit
uncompressed BMP parser was written. We chose the BMP format because it is
a fairly simple one. There is a 40 byte header from which the dimensions of the
image are decoded, followed by row after row of pixel data, starting from the
bottom of the image and moving up. Every row of data is padded with enough
empty bytes at the end to make its size evenly divisble by four. Source code for
this parser can be found near the end of this report.

19

3.8.4 PPM reader

We decided to make our own ppm-file reader to be able to actually see what
the robot ”sees” after classifying its image. One can get the ppm-file from the
robot in two different formats, one is plain text ascii, one is a binary format.
You get the ascii one by cat:ing the serial port to a file (eg cat /dev/ttySx >
filename.ppm where x is the serial port number) and the binary one by using
the dl program supplied with the eyebot (with the -u parameter). Our ppm-file
reader uses the binary format. Some things to think about while making your
own ppm-file reader:

e Don’t forget the null-char att the end of file. ;)
e Don’t put any null-chars before end of file (eg. use 0x01 or such as black).

e Remember to analyze every pixel, you do want the whole image. (Though
it might be a really good idea not to analyze the whole image on the
eyebot, see Section 3.2 for more information).

Feel free to use our ppm-file reader as a first try. It’s dead ugly but hey, it
works! Using this we were able to actually see what our program regarded as
being different objects, which helped us alot with our manual HSV-calibration
and with comparing between our cheat-sheet color classification method and the
hard-coded HSV.

3.8.5 Radar

A tool which was used during development and tuning of the perception and
environment analysis algorithms was the program radar.c. It polled our image
analysis and object recognition routines and displayed what they had deduced
about the surrounding environment in a radar-like fashion on the robots tummy-
display (Figure 3.12).

L]

Figure 3.12: Three displays of the radar.c program. The robot is the topmost
black dot and the lines are its view frustrum. A ruler is always drawn with
marks each 250th mm. Symbols shown are o (ball), Y (yellow goal) and +
(wall).

20

bal
nixels
obj mode
balT
centraid
obj mode
balT

rect

obj mode

Figure 3.13: The three display modes of the vision.c program.

3.8.6 Vision

Correctly classifying colors as object turned out to be a significant part of the
project. During the development our color classifier we made extensive use
of the wvision.c program and its required code structures inside camera.c. The
Vision program was simply a shell that instructed the Camera module to visually
display the images from the camera after they had been processed. The program
offered a simple interface where the user could choose which object the algorithm
should display and in which fashion it should present the information (Figure
3.13).

Object classes that could be visualised

e Ball

Blue goal

Yellow goal

Floor

o Wall

Opponent
Unclassified

Availible visualization modes
e Pixels: only displayed the pixels that were classified as the selected object.
e Centroid : displayed a cross at the mean pixel coordinates.

e Rect : displayed a bounding rectangle enclosing the classified pixels.

3.8.7 Workstation color classifier

In order to be able to tweak the robot’s color classification a small program was
written for the PC that would take an image (from the robot’s camera or some
other sources) and classify every pixel in the image by the exactly same criteria
that the robot used. The program would then alter the image, for example

21

changing every pixel it classified as ball to black. By looking at this image we
could then determine how well the clasification criteria for that color worked.
This method was used extensively and greatly streamlined the calibration of the
classification algorithm.

22

Chapter 4

Conclusion

4.1 Advice for future course participants

There are thing we wish someone had told us before we started on this project.
And there are things which we are really proud of having found out. Some of
these findings we graciously offer to our successors. Love your robot. It is your
mirror image.

e Use visualizing diagnostics programs.

e Implement your own drive interface. The RoBIOS Vw interface cause
grave interference with the camera.

e Place the camera at the same level as the top of the field walls and as far
back on the robot chassis as possible. Avoid looking above the field.

23

Chapter 5

Appendix - source code

5.1 Robot onboard software
5.1.1 Makefile

CC = gcc68
CP = cp -f
RM = rm -f

SOURCES = $(wildcard *.c)
TARGETS = $(SOURCES:%.c=%.hex)

all:
$(CC) $(LDFLAGS) -o bot.hex ai.c camera.c kinematics.c main.c memory.c transform.c millimath.c

radar:
$(CC) $(LDFLAGS) -o radar.hex radar.c ai.c camera.c kinematics.c memory.c transform.c millimath.c

vision:
$(CC) $(LDFLAGS) -o vision.hex vision.c ai.c camera.c kinematics.c memory.c transform.c millimath.c

clean:
$(RM) *.o
$(RM) *.hex
$(RM) *.elf
$(RM) *~

5.1.2 Main

#include "eyebot.h"
#include <stdio.h>
#include "constants.h"
//
int main(void){
MemInit();
KinInit();
CamInit();

int goal; // opponent goal
LCDPrintf ("Which Goal?\n");
LCDMenu("blue",""," ye","llow");
int k = KEYGet();
if (k==KEY1)

goal = BLUE_GOAL;
else

goal = YELLOW_GOAL;

LCDPrintf ("Which state?\n");
LCDMeDu("a.tCk“ R non) non) Ilqual ll) B
k = KEYGet();

int state;

24

if (k==KEY1)

state = ATTACK;
else

state = QUALIFY;

AISoccer(goal, state);
}
//

5.1.3 AI

#include "eyebot.h"
#include <stdio.h>
#include "constants.h"
#include "ai.h"

int goal; // the opponents goal
int ourGoal;

extern VWHandle vw;

//

void AISoccer(int opponentGoal, int initialState){

goal = opponentGoal;
int state;

if (goal == YELLOW_GOAL) {
ourGoal = BLUE_GOAL;

}

else {
ourGoal = YELLOW_GOAL;

}

printf ("Pause\n");
0SWait (100);
LCDClear();

// this is the main state machine

// each state-function performs the state-behaviour and
// returns which state the robot should enter

state = initialState;

while(1){
printf ("-------- \n");
switch(state){

case QUALIFY:
printf("Qualify\n");
state = AIQualify();
break;

case ATTACK:
printf ("Attack\n");
state = AIAttack();
break;

case HASSLE:
printf ("Hassle\n");
state = AIHassle();
break;

case GOTOBALL:
printf("GoToBALL\n");
state = AIGoToBall();
break;

case GOTOGOAL:
printf ("GoToGoal\n");
state = AIGoToGoal();
break;

case GOTOOPTIMALPOSE:
printf ("GoToOP\n") ;
state = AIGoToOptimalPose();
break;

case GOTOOWNGOAL:
printf ("GoToOwnGoal\n") ;
state = AIGoToOwnGoal();
break;

25

case FINDBALL:
printf ("FindBall\n");
state = AIFindBall();
break;
case FINDGOAL:
printf ("FindGoal\n");
state = AIFindGoal();
break;
case RETURNHOME:
printf ("ReturnHome\n") ;
state = AIReturnHome();
break;
case SCOREGOAL:
printf ("ScoreGoal\n");
state = AIScoreGoal();
break;
case RECOVERBALL:
printf ("RecoverBall\n");
state = AIRecoverBall();
break;
default:
printf ("--ERROR--\n") ;
state = GOTOBALL;
}
}
}
//
// initial ball finding improvement
int AIQualify(){
KinSetSpeed (750) ;
KinSpeedyDrive (400) ;
return FINDBALL;

}
//
// blind very quick inital move
int AIAttack(){
0SWait (100) ;
KinSetSpeed (750) ;
KinSpeedyDrive (1200) ;
KinSpeedyDrive(-300) ;
return FINDBALL;

}
//
// circulate around the opponent in tight circles
// sadly not implemented
int AIHassle(){
}
//
// search for the ball
// Vi brjar med att snurra max ett varv. p varvet s undersker vi om vi ser
// motstndarmlet, eget ml eller boll. hittar vi ngt av mlen s lagra avstnd.
// hittar vi ej boll s kr mot det ml som r lngst bort lite fint.
// vi avslutar nr vi str vnda mot bollen med ngn vinkel
int AIFindBall(){

KinSetTurn(MILLI_PI);

0SWait (50) ;
CamTakePicture();
CamAnalyze();

int distToOppGoal = 0, distToOwnGoal = 0;
int angToOppGoal = 0, angToOwnGoal = 0;
int antalSnurr = O;

int snurrVinkel = MILLI_PI/4;
int snurrTillOppG = O, snurrTillOwnG = O;

int distToWall = O;
int snurrTillWall
int distToWallTmp =

0;
0;

while(1) {
distToWallTmp = CamGetWallDistanceAtColumn(O) ;
if (distToWallTmp > distToWall) {
snurrTillWall = antalSnurr;

26

distToWall = distToWallTmp;
}

if (CamBallVisible()) {
return GOTOBALL;
}
else if (AIGoalVisible(goal)) { // the global "goal" is the opponent goa
distToOppGoal = AIGetGoalDistance(goal);
snurrTillOppG = antalSnurr;
}
else if (AIGoalVisible(ourGoal)) { // goal has been found
distToOwnGoal = AIGetGoalDistance(ourGoal);
snurrTillO0wnG = antalSnurr;
}
else if (2*MILLI_PI < antalSnurr*snurrVinkel) {
// if Rasdalf has rotated a full 360 degrees
if (distToOppGoal < distToOwnGoal && distToOppGoal != O && distToOwnGoal != 0) {
// distance to home goal was largest so turn towards it
KinSetTurn (2*MILLI_PI);
KinTurn(-(antalSnurr-snurrTill0wnG) *snurrVinkel+angToOwnGoal) ;
KinSetTurn(MILLI_PI);
KinSpeedyDrive (3*distToOwnGoal/4) ;
}
else if (distToOppGoal > distToOwnGoal && distToOppGoal != O && distToOwnGoal != 0)
// distance to opponent goal was largest so turn towards it
KinSetTurn(2+«MILLI_PI);
KinTurn(-(antalSnurr-snurrTillOppG) *snurrVinkel+angToOppGoal) ;
KinSetTurn(MILLI_PI);
KinSpeedyDrive (3*distToOwnGoal/4) ;
}
else {
int minvackravariabel = (int) (-(antalSnurr-snurrTillWall)*snurrVinkel);
KinSetTurn (2*MILLI_PI);
KinTurn(minvackravariabel) ;
KinSetTurn(MILLI_PI);
KinDrive(distToWall/3);
}
// restart search. reinitialize all variables
distToOppGoal = 0, distToOwnGoal = O;

angToOppGoal = 0, angToOwnGoal = O;
antalSnurr = 0;
snurrTillOppG = 0, snurrTillOwnG = O;

distToWall = 0;
snurrTillWall = O;
distToWallTmp 0;
}
KinSetTurn(2*MILLI_PI);
KinTurn(snurrVinkel) ;
KinSetTurn(MILLI_PI);

antalSnurr++;
0SWait (50);
CamTakePicture() ;
CamAnalyze();
}
}
//

int AIReturnHome (){
KinSpeedySetSpeed (-2000,0) ;

0SWait (20);

KinSpeedySetSpeed (-1000,3*MILLI_PI/2);
0SWait (80);

KinSpeedySetSpeed (2000,0) ;
0SWait (100) ;

KinSpeedySetSpeed (1000,0) ;
0SWait (60) ;
KinSpeedySetSpeed(500,0) ;
0SWait (80);

KinSpeedySetSpeed (-500,0) ;
0SWait (50);

KinSpeedySetSpeed (0,MILLI_PI);
0SWait (55) ;

KinSpeedySetSpeed (2000,0) ;
0SWait (80);

KinSpeedySetSpeed(0,-MILLI_PI);

27

0SWait (10);

KinSpeedySetSpeed (2000,0) ;
0SWait (80);
KinSpeedySetSpeed(1000,0) ;
0SWait (30);

KinSpeedySetSpeed (0,MILLI_PI);
0SWait (70);
KinSpeedySetSpeed(0,0) ;

// flush the robots odometric memory. Memory was sadly never used.
MemFlush() ;

return FINDBALL;
}
//
int AIScoreGoal(){
KinSetSpeed (800) ;

CamTakePicture() ;
CamAnalyze() ;

if (!CamBallVisible()){
return FINDBALL;

}

if ('AIGoalVisible(goal)){
return FINDGOAL;

}

if (abs(AIGetGoalAngle(goal))<MILLI_PI/16){
while(CamHasBall2() && AIGetGoalDistance(goal)>100){
KinSpeedyDrive(3*AIGetGoalDistance(goal));
0SWait (55) ;
CamTakePicture();
CamAnalyze () ;
}
KinSetSpeed (1500) ;
KinSpeedyDrive (200) ;
AUBeep() ;
return RETURNHOME; // RECOVERBALL
}
return GOTOGOAL;
}
//
int AIFindGoal(){
KinSetTurn(MILLI_PI);

0SWait (55);
CamTakePicture();
CamAnalyze();

int antalSnurr = 0;
int snurrVinkel = MILLI_PI/4;

int distToWall = O;
int snurrTillWall
int distToWallTmp

o~
o O

while(1) {
distToWallTmp = CamGetWallDistanceAtColumn(O) ;
if (distToWallTmp > distToWall) {
snurrTillWall = antalSnurr;
distToWall = distToWallTmp;
}

if (AIGoalVisible(goal)) { // opp goal
return FINDBALL;
}
else if (2*MILLI_PI < antalSnurr*snurrVinkel) {
// if Rasdalf has rotated a full 360 degrees
int minvackravariabel = (int) (-(antalSnurr-snurrTillWall)*snurrVinkel);
KinSetTurn(2+«MILLI_PI);
KinTurn(minvackravariabel) ;
KinSetTurn(MILLI_PI);

28

KinDrive(distToWall/3);

// restart search. reinitialize all variables
antalSnurr = 0;
distToWall = 0;
snurrTillWall 0;
distToWallTmp = O;
}
// rotate and look for ball
KinSetTurn(2+«MILLI_PI);
KinTurn(snurrVinkel) ;
KinSetTurn(MILLI_PI);

antalSnurr++;
0SWait(55) ;
CamTakePicture();
CamAnalyze();
}
}
//

// go to a goal WITH the ball
int AIGoToGoal(){

int goalAngle = 0;

int goalLocalX = 0;

int opponentVisible = 0;

int goalDistance = 0;

KinSetSpeed (1000) ;

0SWait(55);

CamTakePicture();

CamAnalyze() ;

if (!CamBallVisible()){
return FINDBALL;

}

if (!'AIGoalVisible(goal)){
CamTakePicture();
CamAnalyze();

}

KinSetSpeed(100) ;

KinSetTurn(MILLI_PI/8);

if (CamHasBall2() && !'AIGoalVisible(goal)){ //letar ml med boll
//HR SKA DEN SVNGA EFTER ML UTAN ATT TAPPA BOLL
KinSpeedySetSpeed (500, MILLI_PI/4);
0SWait (30);
KinSpeedySetSpeed (0, 0);
return GOTOBALL;
0SWait (55);
CamTakePicture();
CamAnalyze() ;

}

if (!CamHasBall2()){
0SWait (200) ;
return RECOVERBALL;
Y
KinSetSpeed (500) ;
KinSetTurn(MILLI_PI/16);
goalAngle=AIGetGoalAngle(goal);
while(AIGoalVisible(goal) && goalAngle>(MILLI_PI/36)){ //siktar mot ml
CamTakePicture();
CamAnalyze();
if (1CamHasBall2()){
0SWait (200) ;
return RECOVERBALL;
}
goalAngle=AIGetGoalAngle(goal);
KinSpeedyTurn(-goalAngle) ;
0SWait (55) ;
Y
//NU BORDE VI RRA 0SS MOT MLET, MEN TNK OM MOTSTNDAREN KOMMER!!!
while(1){
CamTakePicture();
CamAnalyze() ;
goalAngle = AIGetGoalAngle(goal);
goalDistance = AIGetGoalDistance(goal);
goalLocalX = AIGetGoalLocalX(goal);

29

opponentVisible = 0; // kr utan opponent frst

if (!CamHasBall2()){
return RECOVERBALL;

}

if (goalDistance<900 && !opponentVisible && abs(goalLocalX)<=100){
return SCOREGOAL;

}

if (abs(goallocalX)>100){ // aim at goal
KinSpeedyTurn(-goalAngle/2) ;
0SWait (50);

}

if (goalDistance>900){ // go closer to goal
KinSetSpeed (50) ;
KinSpeedyDrive (200) ;
0SWait (50);
return GOTOBALL;

}

//
// Om bollen ligger mot vrt ml k mot vrt ml litegrann!
int AIGoToOwnGoal() {

KinSetSpeed(800) ;

KinSetTurn(800) ;

0SWait(55);
CamTakePicture() ;
CamAnalyze() ;

if (AIGoalVisible(ourGoal) && !CamHasBall2()) {
KinDrive (AIGetGoalDistance (ourGoal)/2);

}

else {
KinTurn(3*AIGetGoalAngle (ourGoal)) ;
KinDrive(AIGetGoalDistance (ourGoal)/3);
KinTurn(-6*AIGetGoalAngle (ourGoal)) ;
KinDrive (AIGetGoalDistance (ourGoal)/4);
KinTurn(-6*AIGetGoalAngle (ourGoal));

}

return FINDBALL;
}

//

int AIGoToBall(){
0SWait (50) ;
CamTakePicture() ;
CamAnalyze() ;

int ballAngle = CamGetBallAngle(), goalAngle = AIGetGoalAngle(goal);

if (CamHasBall()) {
printf ("Har boll!\n");
return GOTOGOAL;
}
if (CamBallVisible() && AIGoalVisible(goal) && abs(ballAngle-goalAngle)<MILLI_PI/36) {
printf("Liten vinkel!\n");
return GOTOGOAL;
}
if (!CamBallVisible()) return FINDBALL;
if (AIGoalVisible(goal)) return GOTOOPTIMALPOSE;
if (CamBallVisible() && AIGoalVisible(ourGoal)) {
printf("Kor mot eget!\n");
return GOTOOWNGOAL;
}

// at this point the ball is visible and the goal is unknown
KinSetSpeed (500) ;

KinSetTurn(500) ;

30

ballAngle = CamGetBallAngle();
if (abs(ballAngle) > MILLI_PI/32){
KinTurn(-ballAngle);
return GOTOBALL;
}
else {
KinSetSpeed(constrain(CamGetBallDistance()/2-100 , 50, 1000));
KinDrive(CamGetBallDistance()/2);
return GOTOBALL;
}
}
//
int AIGoToOptimalPose(){
// Den kr fr mkt nr den str bra!!!!
0SWait (55);
CamTakePicture();
CamAnalyze() ;

int goalX,goalY;

if (AIGoalVisible(goal)){
goalX = AIGetGoalLocalX(goal);
goalY = AIGetGoalLocalY(goal);

}

else if(MemGoalKnown()){
goalX = MemGetGoalLocalX();
goalY = MemGetGoalLocalY();

}

else {
// this should not really occur
return FINDGOAL;

}

if (CamHasBall() && abs(AIGetGoalLocalX(goal))<130 && AIGetGoalDistance(goal)<900){
return SCOREGOAL;
}

int displace;

if (goalX<0) displace = 200;

else displace = -200;

int ballX = CamGetBallLocalX();

int ballY = CamGetBallLocalY();

int vecX = ballX-goalX;

int vecY = ballY-goalY;

if (vecY==0) vecY = 1;

int vecMag = integerSqrt(vecX*vecX + vecYxvecY);

int targetX = ballX + vecX*200/vecMag;

int targetY = ballY - abs(vecY)*200/vecMag;

int targetDist = integerSqrt(targetX*targetX + targetYxtargetY);
targetDist = min(750,min(targetDist,abs(targetX)+abs(targetY)));

int angle = -milliAtan2(targetX,targetY);
int finalAngle = -angle - milliAtan2(ballX-targetX , ballY-targetY);

KinTurn(angle);
KinDrive(targetDist - 100);
KinTurn(finalAngle);

0SWait (55);
CamTakePicture() ;
CamAnalyze();
if (CamBallVisible()){
if (CamHasBall()) {
return GOTOGOAL;
¥
else {
return GOTOBALL;
}
}

printf ("op8\n");
return RECOVERBALL;

31

// recover a very recently lost ball
int AIRecoverBall(){
KinDrive (-200) ;
return FINDBALL;
}
//
// wrap Cam Goal funcs
int AIGoalVisible(int g) {
if (g == YELLOW_GOAL) {
return CamYellowGoalVisible();
}
else if (g == BLUE_GOAL) {
return CamBlueGoalVisible();
}
else {
return -1;
}
}
//
// wrap Cam Goal funcs
int AIGetGoalAngle(int g) {
if (g == YELLOW_GOAL) {
return CamGetYellowGoalAngle();
}
else if (g == BLUE_GOAL) {
return CamGetBlueGoalAngle();
}
else {
return -1;
}
}
//
// wrap Cam Goal funcs
int AIGetGoalDistance(int g) {
if (g == YELLOW_GOAL) {
return CamGetYellowGoalDistance();
}
else if (g == BLUE_GOAL) {
return CamGetBlueGoalDistance();
}
else {
return -1;
}
}
//
// wrap Cam Goal funcs
int *AIGetGoalLeft(int g) {
if (g == YELLOW_GOAL) {
return (int#*)CamGetYellowGoalLeft();
}
else if (g == BLUE_GOAL) {
return (int*)CamGetBlueGoalLeft();
}
else {
return NULL;
}
}
//
// wrap Cam Goal funcs
int *AIGetGoalRight(int g) {
if (g == YELLOW_GOAL) {
return (int*)CamGetYellowGoalRight();

}
else if (g == BLUE_GOAL) {
return (intx)CamGetBlueGoalRight();
}
else {
return NULL;
}
}
//
// wrap Cam Goal funcs
int AIGetGoalLocalX(int g) {
if (g == YELLOW_GOAL) {

32

return CamGetYellowGoalLocalX();
}
else if (g == BLUE_GOAL) {
return CamGetBlueGoalLocalX();
}
else {
return -1;
}
}
//
// wrap Cam Goal funcs
int AIGetGoalLocalY(int g) {
if (g == YELLOW_GOAL) {
return CamGetYellowGoalLocalY();
}
else if (g == BLUE_GOAL) {
return CamGetBlueGoallLocalY();
}
else {
return -1;

}

}

5.1.4 Camera

#include <stdio.h>
#include "eyebot.h"
#include "constants.h"
#include "camera.h"

extern int goal;

int dispMode;

int dispObject;

// sample pixel distribution

int topXres, bottomXres, topYres, bottomYres;

unsigned char imgBuffer [XRES*¥YRES*3]; // eyebot

// objekt representation

/*

* The objects positions on the screen are stored as a rect defined by LEFT,TOP,RIGHT,BOTTOM;
* A mean of the x & y coordinates of all the pixels

* A counter of the number of pixels classified as the object type

*/

int ballRect[4];

int ballCentroid[2];

int ballPixelCount;

int ballColor[3];

int blueGoalRect[4];

int blueGoalCentroid[2];
int blueGoalleft[2];

int blueGoalRight[2];
int blueGoalPixelCount;
int blueGoalColor[3];

int yellowGoalRect[4];

int yellowGoalCentroid[2];
int yellowGoalLeft[2];

int yellowGoalRight[2];
int yellowGoalPixelCount;
int yellowGoalColor[3];

int opponentRect [4];

int opponentCentroid[2];
int opponentPixelCount;
int opponentColor[3];

int wallColor[3];
int floorColor[3];

void CamInit(){
CAMInit (NORMAL); // eyebot

33

CamSetDispMode (NOTHING) ;
CamSetDispObject (BALL) ;
CamSetPixelDistribution(2,2,10,5);

void CamTakePicture(){
CAMGetFrameRGB (imgBuffer); // eyebot

void CamSetPixelDistribution(int topX, int topY, int bottomX, int bottomY){
topXres = topX;
bottomXres = bottomX;
topYres = topY;
bottomYres = bottomY;

void CamSetDispMode(int mode){
dispMode = mode;

void CamSetDispObject(int obj){
dispObject = obj;

void CamCycleDispMode (){
dispMode++;
dispMode = dispMode % DISPMODE_RANGE;
if (dispMode==NOTHING) dispMode = NOTHING+1;

void CamCycleDispObject(){
dispObject++;
dispObject = dispObject % OBJECT_RANGE;

void clearObjectData(int rect[], int centroid[], int pixelCount[], int color[]){
rect [LEFT] = XRES;
rect [TOP] = YRES;
rect [RIGHT] = 0;
rect [BOTTOM] = 0;
centroid[X] = 0;
centroid[Y] = 0;
color [RED] = 0;
color [GREEN] = 0;
color[BLUE] = 0;
*pixelCount = 0;

void normalizeCentroid(int* centroid, int* pixelCount){
if (*pixelCount!=0){ // undvik division med noll
centroid[X] /= *pixelCount;
centroid[Y] /= *pixelCount;

void adaptObjectData(int x, int y, int pixelSize, int* rect, int* centroid, int* pixelCount){
*pixelCount += pixelSize;

rect[LEFT] = min(rect[LEFT],x);
rect [RIGHT] = max(rect[RIGHT],x);
rect [TOP] = min(rect[TOP],y);

rect [BOTTOM] = max(rect[BOTTOM],y);
centroid[X] += x*pixelSize;
centroid[Y] += yxpixelSize;

int xToRow(int x){
return (x*63)/XRES;

int yToCol(int y){
return 126-(63*y)/YRES;

void drawPixel(int x, int y, int color){

34

int row = xToRow(x);

int col = yToCol(y);

// do not draw outside the screen area

if (row!=0 && row!=63 && row!=64 && row!=62 && col!=yToCol(0) && col!=yToCol(175))
LCDSetPixel(row, col, color);

void drawCrosshair(int x, int y){
LCDLine(yToCol(y)-3, xToRow(x) , yToCol(y)+3,xToRow(x) , 1);
LCDLine(yToCol(y) , xToRow(x)+2, yToCol(y) ,xToRow(x)-2, 1);

void drawRect(int 1, int t, int r, int b, int color){
LCDLine(yToCol(t), xToRow(l), yToCol(b), xToRow(l), color)
LCDLine(yToCol(b), xToRow(l), yToCol(b), xToRow(r), color);
LCDLine(yToCol(b), xToRow(r), yToCol(t), xToRow(r), color)
LCDLine(yToCol(t), xToRow(r), yToCol(t), xToRow(1l), color)

void drawSilouette(int x, int y, int pixelClass){
if (dispMode==SILOUETTE) drawPixel(x,y, (dispObject==pixelClass));

void drawVisualization(){
if (dispMode!=NOTHING){
if (dispMode!=SILOUETTE) LCDArea(yToCol(143)+1,xToRow(0)+1,yToCol(0)-1,xToRow(175)-1,0);
LCDSetPos (0,0);
if (dispObject==BALL) LCDPrintf ("ball ")
if (dispObject==YELLOW_GOAL) LCDPrintf("yellow ");
if (dispObject==BLUE_GOAL) LCDPrintf("blue ");

if (dispObject==0PPONENT) LCDPrintf ("enemy ");
if (dispObject==WALL) LCDPrintf ("wall ")
if (dispObject==FLOOR) LCDPrintf ("floor ");

if (dispObject==UNCLASSIFIED) LCDPrintf ("unknown");

LCDSetPos (1,0);

if (dispMode==SILOUETTE) LCDPrintf("pixels ");
if (dispMode==CENTROID) LCDPrintf("centre ");
if (dispMode==RECT) LCDPrintf ("rect ");

if (dispMode==CENTROID){
if (dispObject==BALL) drawCrosshair(ballCentroid[X], ballCentroid[Y]);
if (dispObject==YELLOW_GOAL) drawCrosshair(yellowGoalCentroid[X], yellowGoalCentroid[Y]);
if (dispObject==BLUE_GOAL) drawCrosshair(blueGoalCentroid[X], blueGoalCentroid[Y]);
if (dispObject==0PPONENT) drawCrosshair(opponentCentroid[X], opponentCentroid[Y]);
}
else if(dispMode==RECT){
if (dispObject==BALL)
drawRect (ballRect[LEFT],ballRect [TOP],
ballRect [RIGHT] ,ballRect [BOTTOM],1);
if (dispObject==YELLOW_GOAL)
drawRect (yellowGoalRect [LEFT],yellowGoalRect [TOP],
yellowGoalRect [RIGHT] ,yellowGoalRect [BOTTOM],1);
if (dispObject==BLUE_GOAL)
drawRect (blueGoalRect [LEFT],blueGoalRect [TOP],
blueGoalRect [RIGHT] ,blueGoalRect [BOTTOM] ,1);
if (dispObject==0PPONENT)
drawRect (opponentRect [LEFT] ,opponentRect [TOP],
opponentRect [RIGHT] , opponentRect [BOTTOM] ,1);
}
// finally draw a nice border around the display
drawRect (0,0,175,143,1);

// performs a vertical scanline scan for the wall/floor intersect
int verticalWallFloorScan(int x){

int res=2, y, top=2;

int r,g,b,value, brightValue;

r = imgBuffer[(top*XRES+x)*3];

g = imgBuffer [(top*XRES+x)*3+1];
b = imgBuffer [(top*XRES+x)*3+2];
brightValue = max(r, max(g,b));

35

for (y=0; y<120; y+=res){

}

r = imgBuffer[(y*XRES+x)*3];

g = imgBuffer [(y*XRES+x)*3+1];

b = imgBuffer [(y*XRES+x)*3+2];

value = max(r, max(g,b));

if (value*175/100 < brightValue)
break;

brightValue = value;

return max(4, y);

void CamAnalyze(){

clearObjectData(ballRect, ballCentroid, &ballPixelCount, ballColor);

clearObjectData(yellowGoalRect, yellowGoalCentroid, &yellowGoalPixelCount, yellowGoalColor);
clearObjectData(blueGoalRect, blueGoalCentroid, &blueGoalPixelCount, blueGoalColor);
clearObjectData(opponentRect, opponentCentroid, &opponentPixelCount, opponentColor) ;

int xres = topXres, yres = topYres;
int x, y, pixelClass, pixelSize, c, i;
int goalStripTop = 2, goalStripBottom = 5, goalStripRes = 2;

// look for goal
for (y=goalStripTop; y<goalStripBottom; y+=goalStripRes){
for (x=4; x<XRES-4; x+=goalStripRes){
pixelClass = getPixelClass(x,y);
pixelSize = xres*yres;
if (dispObject==BLUE_GOAL || dispObject==YELLOW_GOAL) drawSilouette(x,y,pixelClass);
if (pixelClass == YELLOW_GOAL)
adaptObjectData(x, y, pixelSize, yellowGoalRect, yellowGoalCentroid, &yellowGoalPixelCount);
else if(pixelClass == BLUE_GOAL)
adaptObjectData(x, y, pixelSize, blueGoalRect, blueGoalCentroid, &blueGoalPixelCount);
}
}

// look for ball and opponent
for (y=goalStripBottom; y<YRES; y+=yres){
for (x=4; x<XRES-4; x+=xres){
// exclude corners where color samples reside
if (1(x<38 && y>115) && !(x>130 && y>118)){
pixelClass = getPixelClass(x,y);
pixelSize = xres*yres;
if (dispObject!=BLUE_GOAL && dispObject!=YELLOW_GOAL) drawSilouette(x,y,pixelClass);
if (pixelClass == BALL && y > 5 && x > 10)
adaptObjectData(x, y, pixelSize, ballRect, ballCentroid, &ballPixelCount);
else if(pixelClass == OPPONENT)
adaptObjectData(x, y, pixelSize, opponentRect, opponentCentroid, &opponentPixelCount);
}
}
xres = topXres + (bottomXres-topXres)*y/YRES;
yres = topYres + (bottomYres-topYres)*y/YRES;
¥

// centroid-vektorn r hittills bara en summa och mste

// delas med pixelantalet fr att bli ett medelvrde
normalizeCentroid(ballCentroid, &ballPixelCount);
normalizeCentroid(yellowGoalCentroid, &yellowGoalPixelCount);
normalizeCentroid(blueGoalCentroid, &blueGoalPixelCount);
normalizeCentroid(opponentCentroid, &opponentPixelCount);

// goal distance calculation

int verticalScanDisplacement = 5;
int minimumGoalWidth = 25;

blueGoalLeft[X] = max(O, blueGoalRect[LEFT]-verticalScanDisplacement) ;
blueGoalRight [X] = min(XRES-1, blueGoalRect[RIGHT]+verticalScanDisplacement);
int blueGoalWidth = blueGoalRect [RIGHT]-blueGoalRect [LEFT];
if (blueGoalWidth < minimumGoalWidth){

blueGoalLeft[Y] = blueGoalWidth/3;

blueGoalRight [Y] = blueGoalWidth/3;
¥

36

else if(blueGoalLeft[X]==0 || blueGoalRight [X]==XRES-1){
blueGoallLeft[X] = blueGoalCentroid[X];
blueGoalLeft[Y] = blueGoalWidth/3;
blueGoalRight [X] = blueGoalLeft [X];
blueGoalRight [Y] = blueGoalLeft[Y];
}
else {
blueGoalLeft[Y] = verticalWallFloorScan(blueGoalLeft[X]);
blueGoalRight[Y] = verticalWallFloorScan(blueGoalRight[X]);
}

yellowGoalLeft[X] = max(0, yellowGoalRect[LEFT]-verticalScanDisplacement) ;
yellowGoalRight [X] = min(XRES-1, yellowGoalRect[RIGHT]+verticalScanDisplacement
int yellowGoalWidth = yellowGoalRect [RIGHT]-yellowGoalRect [LEFT];
if (yellowGoalWidth < minimumGoalWidth){
yellowGoalLeft[Y] = blueGoalWidth/3;
yellowGoalRight [Y] = blueGoalWidth/3;
}
else if(yellowGoalLeft[X]==0 || yellowGoalRight [X]==XRES-1){
yellowGoalLeft[X] = yellowGoalCentroid[X];
yellowGoalLeft[Y] = verticalWallFloorScan(yellowGoalCentroid[X]);
yellowGoalRight [X] = yellowGoalLeft[X];
yellowGoalRight [Y] = yellowGoalLeft[Y];
}
else {
yellowGoalLeft[Y] = verticalWallFloorScan(yellowGoalLeft[X]);
yellowGoalRight [Y] = verticalWallFloorScan(yellowGoalRight[X]);
¥

// memory interaction

if (AIGoalVisible(goal))
MemMemorizeGoal (AIGetGoalLocalX(goal), AIGetGoalLocalY(goal));

drawVisualization();

int getPixelClass (int x, int y){
int r = imgBuffer [(y*XRES+x)*3];
int g = imgBuffer [(y*XRES+x)*3+1];
int b = imgBuffer [(y*XRES+x)*3+2];

int imax = max(r, max(g,b));
int imin = min(r, min(g,b));
int value = imax*100/255;
int hue = 0;
int sat = 0;
if (imax == imin) {
return UNCLASSIFIED;
}
if (imax == r && g >= b) {
hue = 60*(g-b)/(imax-imin);
}
else if (imax == r && g < b) {
hue = 60*(g-b)/(imax-imin)+360;

}
else if (imax == g) {

hue = 60*(b-r)/(imax-imin)+120;
}

else if (imax == b) {
hue = 60*(r-g)/(imax-imin)+240;
}
else {
return UNCLASSIFIED;
}
if (imax != 0) {
sat = 100-100*imin/imax;

}
if(hue > 0 && hue < 20 &% sat > 80) return BALL;

else if (hue > 21 && hue < 65 && sat > 86) return YELLOW_GOAL;
else if (hue > 200 && hue < 245) return BLUE_GOAL;

37

else if(((hue > 25 && hue < 85 && sat < 85) || (hue == 0 && sat == 0)) && value > 80)

return WALL; // lite specialkod ;)

else if((hue >= 0 && hue < 11 && sat < 80) || (hue > 354 && hue < 361))
return OPPONENT;

else if(hue > 60 && hue < 140 && sat < 55) return FLOOR;

}
//
//
int CamGetWallDistanceStraightAhead(){

return CamGetWallDistanceAtColumn(O) ;

}
int CamGetWallDistanceAtColumn(int x){
x += XRES/2;
x = min(XRES-1, max(0, x)); // no out of bound errors
int y = verticalWallFloorScan(x);
int xL = TransformScreenToLocalFrameX(x,y) ;
int yL = TransformScreenToLocalFrameY(x,y);
return integerSqrt (xL*xL+yL*yL);

int CamHasBall(){
int x,y=YRES-2,res=2,ballCounter=0;
// for (y=YRES-4;x<YRES-2;x+=res){
for (y=YRES-4;y<=YRES-2;y+=res){
for (x=38;x<113;x+=res){
if (getPixelClass(x,y)==BALL) ballCounter++;
}
}
return ballCounter>4;
return (abs(CamGetBallLocalX())<50) && (CamGetBallLocalY()<200);
}

int CamHasBall2(int goal) {
if (!CamBallVisible()) {
return 0;
}
if (CamGetBallLocalY()/3+abs(CamGetBallLocalX()) < 100) {
return 1;
}
else if ((CamBallVisible() && AIGoalVisible(goal)) ||
abs (CamGetBallAngle () -AIGetGoalAngle(goal))<MILLI_PI/36)
return 1;
else {
return 0;
}
}

int CamBallVisible(){
return (ballPixelCount > 1) && (ballPixelCount < 1000);

int CamGetBallAngle(){
return milliAtan(CamGetBallLocalX()*1000/CamGetBallLocalY());
}
int CamGetBallDistance(){
int x = CamGetBallLocalX();
int y = CamGetBallLocalY();
return integerSqrt (x*x+y*y);
}
int CamGetBallLocalX(){
return TransformScreenToLocalFrameX(ballCentroid[X],ballCentroid[Y]);
}
int CamGetBallLocalY(){
return TransformScreenToLocalFrameY(ballCentroid[X],ballCentroid[Y]);

int CamBlueGoalVisible(){

return blueGoalPixelCount>80;
}
int CamGetBlueGoalAngle(){

return milliAtan(CamGetBlueGoalLocalX()*1000/CamGetBlueGoalLocalY());
}
int CamGetBlueGoalDistance(){

int x = CamGetBlueGoalLocalX();

38

int y = CamGetBlueGoalLocalY();
return integerSqrt (x*x+y*y) ;
}
int CamGetBlueGoalLocalX(){
int x1 = TransformScreenToLocalFrameX(blueGoalLeft[X],blueGoalLeft[Y]);
int x2 = TransformScreenToLocalFrameX(blueGoalRight [X],blueGoalRight[Y]);
return (x1+x2)/2;

int CamGetBlueGoalLocalY(){
int y1 = TransformScreenToLocalFrameY(blueGoalLeft [X],blueGoalLeft[Y]);
int y2 = TransformScreenToLocalFrameY(blueGoalRight [X],blueGoalRight[Y]);
return (yl+y2)/2;
}
int *CamGetBlueGoalLeft (){
return blueGoallLeft;
}
int *CamGetBlueGoalRight (){
return blueGoalRight;

int CamYellowGoalVisible(){
return yellowGoalPixelCount>80;

int CamGetYellowGoalAngle(){
return milliAtan(CamGetYellowGoalLocalX()*1000/CamGetYellowGoalLocalY());

int CamGetYellowGoalDistance(){
int x = CamGetYellowGoalLocalX();
int y = CamGetYellowGoalLocalY();
return integerSqrt (x*x+y*y) ;
}
int CamGetYellowGoalLocalX(){
int x1 = TransformScreenToLocalFrameX(yellowGoalLeft[X],yellowGoalLeft[Y]);
int x2 = TransformScreenToLocalFrameX(yellowGoalRight [X],yellowGoalRight[Y]);
return (x1+x2)/2;

int CamGetYellowGoalLocalY(){
int y1 = TransformScreenToLocalFrameY(yellowGoalLeft [X],yellowGoalLeft[Y]);
int y2 = TransformScreenToLocalFrameY(yellowGoalRight [X],yellowGoalRight[Y]);
return (yl+y2)/2;
}
int *CamGetYellowGoalLeft (){
return yellowGoalLeft;
}
int *CamGetYellowGoalRight (){
return yellowGoalRight;

int CamOpponentVisible(){
return opponentPixelCount>6;

int CamGetOpponentAngle(){
return TransformScreenToLocalFrameX(opponentCentroid[X],500);

}

int CamGetOpponentDistance(){
return 500;

}

int CamGetOpponentLocalX(){
return TransformScreenToLocalFrameX(opponentCentroid[X],500);

int CamGetOpponentLocalY(){
return 500;

5.1.5 Constants

#ifndef CONSTANTS_H
#define CONSTANTS_H

#define TRUE 1
#define FALSE 0O

39

#define PI 3.14159265
#define MILLI_PI 3142

// the states

#define ATTACK O
#define HASSLE 1
#define GOTOBALL 2
#define GOTOOPTIMALPOSE 3
#define FINDGOAL 4
#define RETURNHOME 5
#define SCOREGOAL 6
#define GOTOPOSE 7
#define GOTOGOAL 8
#define RECOVERBALL 9
#define FINDBALL 10
#define QUALIFY 11
#define GOTOOWNGOAL 12

#define X O

#define Y 1

#define ANGLE 2
#define UNCERT_X 3
#define UNCERT_Y 4
#define UNCERT_ANGLE 5

#define RED 0O
#define GREEN 1
#define BLUE 2

#define LEFT O
#define TOP 1
#define RIGHT 2
#define BOTTOM 3
#define XRES 176
#define YRES 144

// vision diagnostics program constants
#define OBJECT_RANGE 7

#define UNCLASSIFIED 0
#define BALL 1

#define YELLOW_GOAL 2
#define BLUE_GOAL 3
#define WALL 4

#define FLOOR 5
#define OPPONENT 6

#define DISPMODE_RANGE 4

#define NOTHING O

#define SILOUETTE 1

#define CENTROID 2

#define RECT 3

#define FIELD_WIDTH 1186
#define FIELD_HEIGHT 2356
#define FIELD_HALF_WIDTH 593

#endif

5.1.6 Kinematics

#include <stdio.h>
#include "eyebot.h"
#include "constants.h"
#include "kinematics.h"

/*
* the Kinematics module works with integer milliRadians and milliMeters

*/
float speed;

float turn;
VWHandle vw;

40

void KinInit(){
speed = 0.5;
turn = 0.5;

vw = VWInit(VW_DRIVE,1);
VWStartControl (vw,7,0.3,7,0.1);

VWHandle KinGetVWHandle(){
return vw;

void KinSetSpeed(int speedParam){
speed = speedParam*0.001;

void KinSetTurn(int turnParam){
turn = turnParam*0.001;

void KinDrive(int distance){
int cnt = 0;
VWDriveStraight (vw, (float)distance*0.001,speed) ;
// stall detection
while(VWDriveDone(vw) == 0 && cnt < 26 && VWStalled(vw) == 0) {
0SWait (20);
cnt++;

void KinTurn(int angle){ // milliradianer pos. -> counter-clockwise
int cnt = 0;
VWDriveTurn(vw, (float)angle*0.001,turn);
// stall detection
while(VWDriveDone (vw) == 0 && cnt < 26 && VWStalled(vw) == 0) {
0SWait (20);
cnt++;

void KinSpeedyDrive(int distance){ // milli
if (distance<0)
VWSetSpeed (vw,-speed,0) ;
if (distance>=0)
VWSetSpeed (vw,speed,0) ;
0SWait (abs((float)distance*0.001/speed*100)) ;
VWSetSpeed(vw,0,0) ;

void KinSpeedyTurn(int angle){ // milliradianer pos. -> counter-clockwise
if (angle<0)
VWSetSpeed(vw,0,-turn) ;
if (angle>=0)
VWSetSpeed(vw,0,turn) ;
0SWait (abs((int) (100*(float)angle*0.001/turn)));
VWSetSpeed (vw,0,0) ;
}

void KinSpeedySetSpeed(int s, int a) {
VWSetSpeed(vw, (float)s*0.001, (float)a*0.001) ;
}

5.1.7 Memory

#include "eyebot.h"
#include <stdio.h>
#include "constants.h"
#include "memory.h"

int goalPosition[2];
int goalKnown;

41

void MemInit(){
MemFlush() ;

void MemFlush(){
goalPosition[X] = 0;
goalPosition[Y] = 0;
goalKnown = FALSE;

void MemMemorizeGoal(int x, int y){
goalPosition[X] = x;
goalPosition[Y] = y;
VWSetPosition(KinGetVWHandle(), 0.0, 0.0, 0.0);
goalKnown = TRUE;

int MemGoalKnown(){
return goalKnown;

int MemGetGoalLocalX(){
PositionType vwRobotPosition;
VWGetPosition(KinGetVWHandle(), &vwRobotPosition);

int rx = (int) (1000*vwRobotPosition.x);
int ry = (int) (1000*vwRobotPosition.y);
int rphi = (int) (1000*vwRobotPosition.phi);

int gx = goalPosition[X] - rx;
int gy = goalPosition[Y] - ry;

goalPosition[X] = (milliCos(-rphi)*gx - milliSin(-rphi)*gy) /1000;
goalPosition[Y] = (milliSin(-rphi)*gx + milliCos(-rphi)*gy) /1000;

return goalPosition[X];

int MemGetGoalLocalY(){
PositionType vwRobotPosition;
VWGetPosition(KinGetVWHandle(), &vwRobotPosition);

int rx = (int) (1000*vwRobotPosition.x);
int ry = (int) (1000*vwRobotPosition.y);
int rphi = (int) (1000*vwRobotPosition.phi);

int gx = goalPosition[X] - rx;
int gy = goalPosition[Y] - ry;

goalPosition[X] = (milliCos(-rphi)*gx - milliSin(-rphi)*gy) /1000;
goalPosition[Y] = (milliSin(-rphi)*gx + milliCos(-rphi)*gy) /1000;

return goalPosition[Y];

int MemGetGoalAngle(){
return -milliAtan2(goalPosition[Y],goalPosition[X]);

5.1.8 Fixed point math

#include <stdio.h>
#include "eyebot.h"
#include "constants.h"
#include "millimath.h"

// milliCosLUT is a maps x in centiRadians to 1000*cos(x)

int milliCosLength = 158;

int milliCosLUT[] = {1000,1000,1000,1000,999,999,998,998,997,996,995,994,993,
992,990,989,987,986,984,982,980,978,976,974,971,969,966,964,961,958,955,952,
949,946,943,939,936,932,929,925,921,917,913,909,905,900,896,892,887,882,878,
873,868,863,868,853,847,842,836,831,825,820,814,808,802,796,790,784,778,771,
765,758,752,745,738,732,725,718,711,704,697,689,682,675,667,660,652,645,637,

42

629,622,614,606,598,590,582,574,565,557,549,540,532,523,515,506,498,489,480,
471,462,454,445,436,427,418,408,399,390,381,372,362,353,344,334,325,315,306,
296,287,277,267,258,248,238,229,219,209,199,190,180,170,160,150,140,130,121,
111,101,91,81,71,61,51,41,31,21,11,1};

int milliAtanLUT[] = {0,10,20,30,40,50,60,70,80,90,100,110,119,129,139,149,159,
168,178,188,197,207,217,226,236,245,254,264,273,282,291,301,310,319, 328,337,
346,354,363,372,381,389,398,406,415,423,431,439,448,456,464,472,480,487,495,
503,510,518,526,533,540,548,555,562,569,576,583,590,597,604,611,617,624,631,
637,644,650,656,662,669,675,681,687,693,699,704,710,716,722,727,733,738,744,
749,754,760,765,770,775,780};

int milliCos(int x){
x = abs(x/10);
while(x>314)

x-=3142;

if (x<1568 && x>=0)

return milliCosLUT[x];
else if(x>=158 && x<315)

return -milliCosLUT[x-158];
else return O;

int milliSin(int x){
return milliCos (x+MILLI_PI/2);

int milliTan(int x){
return milliSin(x)*1000/milliCos (x);

int milliAtan(int x){
if (x<0)
return -milliAtan(abs(x));
else if (x<1000)
return milliAtanLUT[x/10 1;
else
return MILLI_PI/2 - milliAtanLUT[100000/x -1 1;

int milliAtan2(int y, int x){
if (y<0) return -milliAtan2(-y,x);
if (x<0) return MILLI_PI - milliAtan(-y*1000/x);
if (x>0) return milliAtan(y*1000/x);
return MILLI_PI/2;

int integerSqrt(int x){
int i;
for(i=0;1<3000;i+=300)
if(x < i*i)
for (i-=270;1i<3000;i+=30)
if (x < i*i)
return i;
return 3000;

int min(int a, int b){
if (a>b) return b;
else return a;

int max(int a, int b){
if (a<b) return b;
else return a;

int constrain(int x, int lower, int upper){
if (x<lower) return lower;
if (x>upper) return upper;
return x;

int abs(int x){

43

if (x<0) return -x;
else return x;

}

5.1.9 Radar

#include "eyebot.h"
#include <stdio.h>
#include "constants.h"

extern int goal;

int robot[6];

int ball[6];

int blueGoall[6];
int yellowGoall[6];
int opponent[6];
int optimalPose[6];
int memory[6];

int iconNone[]l = {0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,
int icomnB[] = {o0,1,1,1,0, 0,1,0,0,1, 0,1,1,1,
int iconY[] = {1,0,0,0,1, 0,1,0,1,0, 0,0,1,0,
int iconO[] = {0,1,1,1,0, 1,0,0,0,1, 1,0,0,0,
int iconCress([] = {1,0,1,0,1, 0,0,1,0,0, 1,1,1,1,
int icomBlob[] = {0,1,1,1,0, 1,1,1,1,1, 1,1,1,1,
int icomMark[] = {0,0,0,0,0, 0,0,1,0,0, 0,1,1,1,
int iconSquare[]= {1,1,1,1,1, 1,0,0,0,1, 1,0,0,0,

extern yellowGoalPixelCount,blueGoalPixelCount;

int sx(int x){
return 32-x%32/500;

int sy(int y){
return 127-y*127/1500;

}
e
void drawIcon(int* icon, int x, int y){

int i,j;

for(i=0;i<5;i++)

for(j=0;j<5;j++)
LCDSetPixel (sx(x)+i-2,sy(y)-j+2,icon[i+5*j]);

}
[/===mmmm

void clearIcon(int x, int y){
drawIcon(iconNone, x, y);

void computeOptimalPose(){
int goalX,goalY;
if (AIGoalVisible(goal)){
goalX = AIGetGoalLocalX(goal);
goalY = AIGetGoallocalY(goal);
}
else if (MemGoalKnown()){
goalX = MemGetGoalLocalX();
goalY = MemGetGoalLocalY();
}
else {
return;
}
int displace;
if (goalX<0) displace = 200;
else displace = -200;
int ballX = CamGetBallLocalX();
int ballY = CamGetBallLocalY();
int vecX = ballX-goalX;
int vecY = ballY-goalY;
int vecMag = integerSqrt(vecX*vecX + vecYxvecY);
optimalPose[X] = ballX + vecX*200/vecMag;
optimalPose[Y] = ballY - abs(vecY)*200/vecMag;

44

R ORKKROOO

o HVL = b = O O
OO Hr OOO0OO0OOo
HORrOKrORO

H O OFROOO

OO, OO0OORrO

°

°

°

H OOk, OOOOo

HFORRRERRLRLRO

e
[e T e e e)

= O = b = O = O

R OROKRORO

- Oyb =

int main(void){

LCDClear () ;
int k;

CamInit();
MemInit();
KinInit();

robot [X] = 0;
robot [Y] = 50;

int wallPointsX[10];
int wallPointsY[10];

while(1) {

k = 4711;
k = KEYRead();
if (k==KEY1){
KinDrive (200) ;
KinTurn(MILLI_PI/8);
}

CamTakePicture() ;
CamAnalyze() ;

clearIcon(robot[X], robot[Y]);

clearIcon(ball[X], ball[Y]);

clearIcon(blueGoal[X], blueGoallY]);
clearIcon(yellowGoal[X], yellowGoall[Y]);
clearIcon(optimalPose[X], optimalPose[Y]);
clearIcon(memory[X], memory[Y]);

int j;
for(j=0;j<10;j++)

clearIcon(wallPointsX[j], wallPointsY[j]);

//--update memory--
if (CamBallVisible()){
ball[X] = CamGetBallLocalX();
ball[Y] = CamGetBallLocalY();
}
if (CamBlueGoalVisible()){
blueGoal[X] = CamGetBlueGoalLocalX();
blueGoal[Y] = CamGetBlueGoalLocalY();
}
if (CamYellowGoalVisible()){
yellowGoal[X] = CamGetYellowGoalLocalX();
yellowGoal[Y] = CamGetYellowGoalLocalY();
}
if (MemGoalKnown()){
memory [X] = MemGetGoalLocalX();
memory [Y] = MemGetGoalLocalY();
¥

computeOptimalPose();

//--draw local frame map--
drawIcon(iconBlob, robot[X], robot[Y]);
if (CamBallVisible())
drawIcon(icon0, ball[X], balll[Y]);
if (CamBlueGoalVisible())
drawIcon(iconB, blueGoal[X], blueGoall[Y]);
if (MemGoalKnown())
drawIcon(iconSquare, memory[X], memory[Y]);
if (CamYellowGoalVisible()){
drawIcon(iconY, yellowGoal[X], yellowGoall[Y]);
drawIcon(iconCross, optimalPose[X], optimalPosel[Y]);

}
//--draw detected wall--

int x,y;
for (j=0;j<10;j++){

45

X = 2+17%j;

y = verticalWallFloorScan(x);

wallPointsX[j] = TransformScreenToLocalFrameX(x,y) ;

wallPointsY[j] = TransformScreenToLocalFrameY(x,y);

drawIcon(iconMark, wallPointsX[j], wallPointsY[j]l);
}

//--draw local frame grid--

LCDLine (sy(robot [Y]),sx(robot [X]),sy(600),sx(-480),1);

LCDLine (sy(robot [Y]),sx(robot [X]),sy(600),sx(480),1);

int grid[] = {1500,1250,1000,750,500,250};

int dash[] = {25,10,25,10,25,10};

int i;

for(i=0;i<6;i++)
LCDLine(sy(grid[il),sx(-dash[il),sy(grid[i]),sx(dash[i]),1);

LCDSetPos(0,0) ;
LCDPutString(" \n");
LCDPutString(" \n");

LCDSetPos(0,0);

LCDPutInt (yellowGoalPixelCount);
LCDPutString("\n");

LCDPutInt(blueGoalPixelCount);

5.1.10 Transform

#include <stdio.h>
#include "eyebot.h"
#include "constants.h"
#include "transform.h"

// localYLUT maps every other screen Y coordinate to a y-coord in the local frame
int localYLUT[] = {3163,2541,2122,1822,1595,1418,1276,1159,1061,979,907,845,791,
743,700,662,627,595,567,540,516,494,473,453,435,419,403,388,374,361,348,337,
325,315,305,295,286,277,268,260,252,245,237,230,224,217,211,205,199,193,187,
182,177,172,167,162,157,152,148,144,139,135,131,127,123,119,115,111,108,104,

100,97};

// kiloTanXLUT maps every other screen X to 1024 * the corresponding tan(angle)

int kiloTanXLUT[] = {-776,-752,-728,-705,-683,-661,-639,-618,-597,-577,-557,
-537,-518,-499,-480,-461,-443,-425,-407,-390,-372,-355,-338,-321,-305,-288,
-272,-256,-240,-224,-208,-192,-176,-161,-145,-130,-114,-99,-84,-68,-53,-38,
-23,-8,8,23,38,53,68,84,99,114,130,145,161,176,192,208,224,240,256,272,288,
305,321,338,355,372,390,407,425,443,461,480,499,518,537,557,577,597,618,639,
661,683,705,728,752,776,-794,-770,-746,-722,-699,-677,-655,-633,-612,-591,
-570,-550,-530,-511,-491,-472,-454,-435,-417,-399,-381,-364,-346,-329,-312,
-295,-278,-262,-245,-229,-213,-196,-180,-164,-149,-133,-117,-101,-86,-70,-54,
-39,-23,-8,8,23,39,54,70,86,101,117,133,149,164,180,196,213,229,245,262,278,
295,312,329,346,364,381,399,417,435,454,472,491,511,530,550,570,591,612,633,
655,677,699,722,746,770,794};

int TransformScreenToLocalFrameX(int screenX, int screenY){
int localY = localYLUT[screenY/2 1;
int localX = localY*kiloTanXLUT[screenX/2 1/1024;
return localX;

int TransformScreenToLocalFrameY(int screenX, int screenY){
return localYLUT[screenY/2];

46

5.2 Diagnostics and utility software

5.2.1 Coordinate transform calibration

function calibrate
% MATLAB coordinate transformation calibration
clf

width = 1186;
height = 2356;
rowl = height*3/4;
row2 = height/2;
row3 = height/4;
rowd = 200;

coll = 254;

col2 = width/2;
col3 = width-254;

ballPos = ones(4,12);

ballScreen = [55 80 107 43 80 119 11 81 150 34 86 141;
6 6 6 13 13 13 33 33 33 92 92 92];

%-- 1lift all balls 20mm above the field --
ballPos(3,:) = 20;

h—- position the first nine balls --
ballPos(1,1:3) = coll;
ballPos(1,4:6) = col2;
ballPos(1,7:9) = col3;

ballPos(2,[1 4 7]) = rowl;
ballPos(2,[2 5 8]) = row2;
ballPos(2,[3 6 9]) = row3;

ballPos(3,:)

0.1%*ballPos(2,:);

%-- position the three closest balls --
ballPos(1,10:12) = width/2 + [-100 0 100];
ballPos(2,10:12) = 200;

topAngle = 0.06;
bottomAngle = pix*0.35;
fovOffset = 0.045;
fovWidth = pi*0.42;
fovStart = -fovWidth/2;

%-- screen to world transform --

balls = ballScreen;

for i=1:12
balls(2,i) = 190/tan(topAngle + bottomAnglexballs(2,i)/144
angle = fovStart + fovWidth*(fovOffset + balls(1,i)/176);
balls(1l,i) = width/2 + balls(2,i)*tan(angle);

end

~

subplot (2,2, [1 3])

hold on
plot(ballPos(1,:),ballPos(2,:),’xr’)
plot(tmp(1,:),tmp(2,:),’0b’)

title ’red: true, blue: calculated’
axis([0 width O heightl);

subplot(2,2,2)

hold on
plot(ballScreen(l,:),144-ballScreen(2,:),’ob’)
title ’camera image’

axis([0 176 0 1441);

47

5.2.2 Ball finding

#include <stdlib.h>
#include <stdio.h>

#include "ballFinder.h"

#define COLORTHRESHOLD 50
#define XRES 176
#define YRES 144

unsigned char* rgbdata;
char* bitmap;

int findBall(unsigned char* data, int subLevels, int* leftBorder, int*
rightBorder, int* topBorder, int* bottomBorder)

{

// bsta vrden tills nu

int bestlb = -1;

int bestRb = -1;

int bestTb = -1;

int bestBb = -1;

rgbdata = data;
bitmap = (charx)calloc(XRES*YRES, sizeof(char));

for (int x = 0; x < XRES; x+=subLevels)
for (int y = 20; y < YRES; y+=subLevels)
examineArea(x,y, &bestLb, &bestRb, &bestTb, &bestBb);

free (bitmap);

if (bestLb == -1 || bestRb == -1 || bestTb == -1 || bestBb == -1) // om inget omrde hittades
return 0;

*leftBorder = bestLb;

*rightBorder = bestRb;

*topBorder = bestTb;

*bottomBorder = bestBb;

return 1;

}

int orangePixel (unsigned char r, unsigned char g, unsigned char b)
{

if (r - COLORTHRESHOLD > g && r - COLORTHRESHOLD > b)

return 1;

return 0;

}

void checkNext(int x, int y, char* bitmap, int* leftBorder,
int* rightBorder, int* topBorder, int* bottomBorder)
{
if (x < XRES && x >= 0 && y < YRES && y >= O && bitmap[y*XRES+x] == 0)
{
bitmap[y*XRES+x] = 1; // kom inte tillbaka
if (orangePixel(rgbdatal[(y*XRES+x)*3], rgbdatal[((y*XRES+x)*3)+1], rgbdata[((y*XRES+x)*3)+2]))
{
// kolla om punkten r mer extrem n tidigare kanter
if (x > *rightBorder)
*rightBorder = x;
if (x < *leftBorder)
*xleftBorder = x;
if (y > *bottomBorder)
*bottomBorder = y;
if (y < *topBorder)
*topBorder = y;

// kolla alla nya nrliggande punkter

checkNext (x+1, y, bitmap, leftBorder, rightBorder, topBorder, bottomBorder); // hger
checkNext (x-1, y, bitmap, leftBorder, rightBorder, topBorder, bottomBorder); // vnster
checkNext (x, y-1, bitmap, leftBorder, rightBorder, topBorder, bottomBorder); // upp
checkNext (x, y+1, bitmap, leftBorder, rightBorder, topBorder, bottomBorder); // ner

}

}

}

48

void examineArea(int x, int y, int* bestLb, int* bestRb, int* bestTb, int* bestBb)
{

int leftBorder = x;

int rightBorder = x;

int topBorder = y;

int bottomBorder = y;

checkNext (x, y, bitmap, &leftBorder, &rightBorder, &topBorder, &bottomBorder);

// ta bort vldigt sm orangea omrden
if (rightBorder - leftBorder < 3 ||
bottomBorder - topBorder < 3)
return;

// ta bort vldigt stora orangea omrden
if (rightBorder - leftBorder > 40 ||
bottomBorder - topBorder > 40)
return;

// ta bort orangea omrden med konstiga proportioner

if ((rightBorder - leftBorder) < 0.6%(bottomBorder - topBorder) ||
(bottomBorder - topBorder) < 0.6x(rightBorder - leftBorder))

return;

// om detta omrde r "bttre" (strre) n tidigare funna, s betrakta detta som bollen

if ((rightBorder - leftBorder) > (*bestRb - *bestLb) &&
(bottomBorder - topBorder) > (*bestBb - *bestTb))

{

//printf ("Area passed tests..\n");

*bestLb = leftBorder;

*bestRb = rightBorder;

*bestTb = topBorder;

*bestBb = bottomBorder;

}

}

5.2.3 BMP parser

#include "camera.h"

#include <stdio.h>
#include <windows.h>
#include <iostream>
#include <fstream>

using namespace std;

void main ()

{

// bitmap header
BITMAPFILEHEADER file_header;
BITMAPINFOHEADER info_header;
RGBTRIPLE rgb_triple;

ifstream in ("test.bmp", ios::in | ios::binary);

// kolla om filen ppnades

if (!in)

{

cout << "Kunde inte ppna filen" << endl;
system("pause") ;

return;

}

// 1ls headers

in.read((char *)&file_header, sizeof(file_header));
in.read((char *)&info_header, sizeof(info_header));
// skapa array fr bilddata

unsigned char * data;

data = new unsigned char[info_header.biHeight * info_header.biWidth * 3];

cout << "Skapar bildarray, " << info_header.biWidth << "x" << info_header.biHeight << endl;

49

for (int y = info_header.biHeight-1; y > -1; --y) // BMP lagras upp och ner
{

for (int x = 0; x < info_header.biWidth; ++x)

{

in.read((char *)&rgb_triple, sizeof(rgb_triple));
data[(y*info_header.biWidth+x)*3+0] = rgb_triple.rgbtRed;
data[(y*info_header.biWidth+x)*3+1] = rgb_triple.rgbtGreen;
data[(y*info_header.biWidth+x)*3+2] = rgb_triple.rgbtBlue;

}

in.ignore(info_header.biWidth % 4); // ignorera padding

in.close();

// Analys
CamTakePicture(data) ;
CamAnalyze(2) ;

delete [] data;
system("pause");

5.2.4 PPM reader

// Usage instructions:

// ppmread infile.ppm > outfile.ppm

// that is, it tries to read paraml as the file to be analyzed
// and writes the outfile to STDOUT

// Dont be stupid and overwrite files you want to keep! ;)

#include <stdio.h>
#define LINESIZE 100000
#define XRES 176
#define YRES 144

#define UNCLASSIFIED 0O
#define BALL 1

#define YELLOW_GOAL 2
#define BLUE_GOAL 3
#define WALL 4

#define FLOOR 5
#define OPPONENT 6

unsigned char *imgBuffer; // ppmread
void CamAnalyze(){
int x, y, r, g, b, pixelClass;

// Classify each pixel and print it
for (y=0; y<YRES; y++){
for (x=0; x<XRES; x++){
r = imgBuffer [(y*XRES+x)*3];
g = imgBuffer [(y*XRES+x)*3+1];
b = imgBuffer [(y*XRES+x)*3+2];
pixelClass = getPixelClass(r,g,b);

if (pixelClass == BALL) {
printf ("\xf£\x01\x01");

else if(pixelClass == YELLOW_GOAL) {
printf ("\xff\xff\x01");

else if(pixelClass == BLUE_GOAL) {
printf ("\x01\x01\xff");

else if(pixelClass == OPPONENT){
printf ("\x80\x01\xff");

}

else if(pixelClass == WALL) {
printf ("\xd4\xd4\xd4") ;

}

else if(pixelClass == FLOOR){
printf ("\x01\x80\x40") ;

50

else {
printf ("\xff\xff\xff");

int getPixelClass (int r, int g, int b){
int imax = max(r, max(g,b));
int imin = min(r, min(g,b));

int value = imax*100/255;

int hue = 0;

int sat = 0;

if (imax == imin) {
return UNCLASSIFIED;

}

if (imax == r && g >= b) {
hue = 60*(g-b)/(imax-imin);

}

else if (imax == r && g < b) {
hue = 60*(g-b)/(imax-imin)+360;

}
else if (imax == g) {

hue = 60*(b-r)/(imax-imin)+120;
}

else if (imax == b) {
hue = 60*(r-g)/(imax-imin)+240;
}
else {
return UNCLASSIFIED;
}
if (imax != 0) {
sat = 100-100*imin/imax;

}

if (hue > 0 &% hue < 20 && sat > 80) return BALL;
else if(hue > 21 && hue < 65 &% sat > 86) return YELLOW_GOAL;
else if (hue > 200 && hue < 245) return BLUE_GOAL;
else if (((hue > 25 && hue < 85 && sat < 85) || (hue == 0 && sat == 0)) && value > 80) return WALL;
else if((hue >= 0 && hue < 11 && sat < 80) || (hue > 354 && hue < 361)) return OPPONENT;
else if(hue > 60 && hue < 140) return FLOOR;
else {
return UNCLASSIFIED;

int min(int a, int b){
if (a>b) return b;
else return a;

int max(int a, int b){
if (a<b) return b;
else return a;

int main(int argc, char *argv[]) {
FILE *infile;
char fname[40];
unsigned char line[LINESIZE];

imgBuffer = malloc(sizeof(line));
int lcount = 1;
/* Open the file. If NULL is returned there was an error */
if ((infile = fopen(argv[1], "rb")) == NULL) {
printf ("Error Opening File.\n");
exit(1);
Y

// remove first three lines, we dont care about them

o1

fgets(line, sizeof(char)#*16, infile);
fgets(line, sizeof(char)*16, infile);
fgets(line, sizeof(char)#*16, infile);

while(fgets(line, sizeof(line), infile) != NULL) {
/* Get each line from the infile */
imgBuffer = realloc(imgBuffer, sizeof(line)*lcount);

int i = 0;
while(i < LINESIZE) {
imgBuffer [(lcount-1)*LINESIZE+i] = linel[il;
i++;
}
lcount++;
}
fclose(infile); /* Close the file */

// Print neccesary chars and then the analyzed file
printf ("P6\n");

printf("176 144\n");

printf("255\n");

CamAnalyze() ;

// ppm-files should end with null-char
printf("\0");

5.2.5 Picture saver

#include "eyebot.h"
#define PI 3.14159

int knapp;

int bildnr=0;

typedef BYTE bigcolimage[144][176] [3];
bigcolimage img[10];

int i,j;

char temp[100];

VWHandle vw;

void sendString(char* s)
{
while (*s)
{
0SSendRS232(s, SERIAL1);
s++;
}
}
void getBigRGBData()

AUBeep() ;

if (bildnr<10){
CAMGetFrameRGB((BYTE *)img[bildnr]);
bildnr++;
printf ("bildnr:%d\n",bildnr);

}

else{
sendBigRGBDatal() ;

}

}

void sendBigRGBData(){
VWSetSpeed(vw, 0, 0);
bildnr--;
0SInitRS232(SER115200, NONE, SERIAL1);
while(bildnr>0){
LCDClear();
LCDMenu("", "send","","end") ;
LCDPrintf ("bildn: %d\n", bildnr);
LCDMenu("","send","","end") ;
knapp=KEYGet () ;
if (KEY4==knapp)
exit(0);
if (KEY2){

52

printf("bildnr:%d\n", bildnr);
sprintf (temp,
n Pe\n n
"176 144\n"
"255\n") ;
sendString(temp) ;
for(i=0, j=0; i < 144%176; i++, j+=3){
BYTE r,g,b;
r=((BYTE *)img[bildnr]) [j];
g=((BYTE *)img[bildnr]) [j+1];
b=((BYTE *)img[bildnr]) [j+2];
temp [0]=r;temp [1]=g;temp [2]=b;temp [3]=0;
if ((i&0x3ff) == 0){
LCDClear();
LCDPrintf (" %4d of %4d\n", i, 144%176);
LCDPrintf ("bildnr: \n%d",bildnr);
}
sendString(temp) ;
}

bildnr--;
LCDClear();;
}
}
}

int main(){
int i = CAMInit(NORMAL);
CAMSet (FPS7_5,0,0) ;
while(1){
getBigRGBData() ;
0SWait (150);
}

5.2.6 Vision

#include "eyebot.h"
#include "constants.h"
#include <stdio.h>

int main (void){
int k;

CamInit();

LCDMenu("mode"," obj","","");
CamSetDispMode (SILOUETTE) ;

while(1) {
k = KEYRead();
if (k==KEY1) CamCycleDispMode();
if (k==KEY2) CamCycleDispObject();

CamTakePicture() ;

CamAnalyze() ;
0SWait(10);

53

