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AbstratThis report desribes how we built and programmed the soerplaying robot Ball Blaster.Ball Blaster is a wheel driven robot with a amera for vision andvarious extra equipment suh as IR-sensors for sensing the ball at loserange, ultrasoni-sensor to avoid driving into walls and a roller for hold-ing the ball. Ball Blaster is built around an Eye Bot miroontrollerand is programmed to sore goals by pushing an orange ball into ablue or yellow goal. Ball Blaster was entered into a roboti soerompetition and won �rst plae.
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1 IntrodutionOur strategy was to build a robust and modular robot. The robot shouldbe robust in the sense that we would not program it for speial ases thatould our.We also wanted the program we wrote to be easy to maintain and extendwhen needed. The same goes with the mehanial part of the projet. Thiswas our main onept during the projet.All software development was done in C++ and MATLAB, aided byversion ontrol.2 HardwareWhen we started to design the hardware we deided to build it out of fourbloks (Base, roller front, amera and sonar turret, and CPU board holder)that ould easily be replaed individually. The idea was that we shouldhave a working robot platform on whih we ould test the software at alltimes. The advantage of the bloks was that if one of the bloks was notgood enough, we ould build a new one and quikly replae the blok withminimal disturbane to the software testing and development.We standardized the distane between drilled holes and the diameter ofholes so that parts ould be reused and reloated easily.For propulsion we used di�erential drive whih had been suessful inprevious years and is easy to implement. To sense the environment we usedIR-sensors and a amera.2.1 The BaseThe base was the blok to whih everything else was attahed. It onsistedof an aluminium plate with the motors and wheels attahed. We knew thatthis part was important to get right the �rst time, sine we needed it at alltimes to test the software, and also beause it onsumed a lot of aluminium.We designed it as a irular disk with a diameter slightly smaller than 18m to get some margins to the maximum allowed diameter. The urvatureof the dis was ut o� at the wheel mounts and it was ut �at at the frontwere we later mounted a replaeable front.The wheels were �rst mounted in slots in the base metal sheet but wedisovered that it was time onsuming to mount the motors and wheels thatway. Therefore we ut away the slots so that the wheels ould be slid ontothe shaft of the motors without removing the motors from the base.A bolt was used as support at the stern and smaller bolt was used as a�tipping guard� in the front of the robot. The tip protetion was added toprevent the robot from tipping over too muh when breaking abruptly from3



Figure 1: The base rollerfull speed. Two M2.5 bolts were �xed to the base front and used as the rollerattahment.2.2 Roller frontTo keep the ball lose to the robot when driving, we deided to equip therobot with a roller that gave the ball bakspin. The roller was made out ofa 3mm steel rod overed by a silione rubber tube. The silion tube reatedenough frition against the ball and it worked surprisingly well.To hold the rod we used ball bearings mounted in aluminium L pro�les.The roller was propelled by a small 3.5V motor via a rubber band.We experimented with a divided rod with a V-shape to get the ballentered on the roller but it did not work as well as we had hoped. Insteadwe �nally used a straight rod with the bearing holders at the sides to stopthe ball from spinning away from the robot.The roller motor was fed with a separate 1000 mAh, 4.8V battery pak.A noise �lter, made out of a apaitor between plus and minus poles, wasadded to the motor ables to redue the risk of interferene from the motor.
4



Figure 2:2.3 Sensor turretFrom start we deided to have a amera mount that was movable aroundtwo axes, tilt and rotation. The advantage with this arrangement is that itis possible to look for the goal without turning the robot and risk losing theball.Another deision we made at the start of the projet, was to plae theamera below the violet olor marking of the robot, whih we later disoveredto be a suboptimal solution for the amera plaement.We tried several di�erent servo setups. The �rst attempt was with twostandard servos but the limited spae made it di�ult to �t the ameraholder. Therefore we bought a Hite miro servo (HS-55).We disovered by trial and error, that the amera must be mounted sothat the amera and tilt servo rotates. If the amera and rotation servo is�rst tilted and then rotated, an unwanted rotation around the optial axisis reated.The �nal solution was to mount the standard servo upside down andlet that servo ontrol the rotation. The miro servo and sonar were thenmounted so that both of them rotated. The amera was �xed to the miroservo so that it ontrolled the tilt angle.This setup worked well from a mehanial point of view but we disoveredtoo late that it plaed the amera in a shadow, ausing problems whenproessing the images. 5



2.4 CPU board holder and servo mountTo get enough spae for the rotating amera and to get a lean design ofthe robot we mounted the CPU board and the servo holder onto aluminiumL-pro�les, attahed vertially at the rear part of the base. Also the sensoreletronis were later attahed to this blok2.5 Sensors and eletronisWe used IR-sensors to detet if the ball was in the range of the roller. If theball was lose to the sensor, the roller should be started. The output from thedetetor eletronis was also fed into the proessor to detet if the robot hadthe ball or not. We hose to start the roller by hardware beause we wanteda short roller response time and redue the workload for the proessor.The sensors onsist of one IR-LED that illuminates the ball and one photodiode that detets if something is illuminated by the IR-LED. Beause theoutput from the photo diode varies less than one volt between �no ball�and �ball lose to the detetor�, an op-amp was used to detet the voltagedi�erene.We used the open olletor op-amp LM339 that gave us the opportunityto equip the robot with four detetors. Two of them were used for balldetetion so that the full length of the roller ould be monitored and theother two were used as reverse ollision detetor and lift of �eld detetor.The output from the ball detetor sensors was used to start the rollermotor using an e�et transistor. Beause the forward urrent gain of oure�et transistor was only 10-25, we ampli�ed the output from the op-ampusing a small signal transistor.The referene voltage into the op-amp was reated by a voltage dividerthat it ould be adjusted with a potentiometer. It is important to put thepotentiometer in the lower part of the voltage divider so that the referenevoltage an be adjusted down to 0 volt.The �rst IR diodes we used were too bright and aused illumination ofthe surroundings so that the pitures from the amera were a�eted. Thisproblem was solved with smaller, less luminous LEDs. The ameras of otherrobots detet the emitted infrared light but sine it appears as white in thepiture, (almost) no one omplained.The pakaging of the IR sensor eletronis was manufatured from an oldtape ase.2.6 ArmourThe robot was equipped with armor around the bakside. This armor madethe robot more resistant to ollisions with other robots and it also movedthe enter of gravity further behind the wheelbase, reduing the noddingtendenies when breaking. 6



Figure 3: Shematis for the IR-detetor ontroller board.2.7 Possible improvements on the hardwareWe disovered some minor issues on the hardware too late, whih ould haveinreased the performane of the robot if we had had the time to �x them.The amera position was the biggest issue. Better pitures ould have beenreeived from the amera if we had mounted it higher so that the amerawasn't in the shade.The seond issue was that the roller spun with a speed that reated somekind of resonane in the ball. The ball sometimes started to boune againstthe roller, sometimes far enough to esape our ontrol. This phenomenonould probably be eliminated if the roller speed was slightly inreased.3 Strategy overviewWe developed two strategies in parallel: a simple fall bak plan and a moreelaborate variant with bells and whistles aplenty.This �rst, simple strategy was implemented for and used in lab1.With the bonus points for the exam were seured, we began to thinkabout a more advaned strategy. In the end we had to abandon the advanedstrategy in favor of our fall bak due to the inevitable lak of time and a fewelusive bugs in the loalization ode. 7



3.1 The simple strategyThe basi approah behind the simple strategy was to �rst �nd our target,adjust our heading and drive in a straight line to it.Loating the target was done by turning on the spot and taking pitures.The searh was assisted by the panning amera turret whih was used asmuh as possible, being both faster and more reliable.When the robot saw the ball it drove up to it where the spinner devieaught on to it. It proeeded by �nding the goal and soring, using the basithree step proedure desribed above.Extra are had to be taken not to drop the ball while turning in searhfor the goal.This strategy was quite simple to implement, pretty robust and workedreasonably well but an ultimately not be onsidered intelligent in any way.It was implemented as a state mahine with the following states:
• START STATE - Start up state, drive forward towards the middle ofthe �eld.
• FIND BALL - Searh for the ball.
• GO TO BALL - Drive to the ball.
• ADJUST TO BALL - Adjust the heading so it won't miss the ball.
• SCAN FOR GOAL - Look for the goal.
• ADJUST TO GOAL - Adjust the heading so it won't miss the goal.
• SCORE - Drive to goal.
• GOAL GESTURE - Makes a goal gesture, and drive out of the goal.The state transitions are illustrated in �gure 4.Implementation of the state mahine was made with a state manager. Itmade the ode very easy to read, maintain and extend with new states.When a state has exeuted it returns a pointer to the next state (whihmay or may not be the same state) and the manager direts the program tothat state.3.2 The advaned strategyGiven that we ould establish our absolute position in the playing �eld awhole new exiting world of possibilities is opened up � we no longer haveto atively searh for the goal, path planning and avoiding the opponent issuddenly both feasible and quite simple.As you probably guessed already the basi ingredient of this more intelli-gent approah is robust loalization. With loalization in plae we envisioned8



Figure 4: Illustrates all the possible state transitions.path planning and obstale avoidane to be implemented using potential �eldplanning.The state mahine approah used in the simple strategy would still serveas the basis for implementing the advaned strategy.The walls and the opponent would generate positive potential. Negativepotential would be generated by the urrent target, i.e. either the ball orthe goal. The potential generating funtions would depend on the entirepose of the robot, inluding orientation. This is desirable sine not inludingorientation in mix implies obvious troubles with driving losely along walls.If the implementation of this strategy had been ompleted in time itwould probably have been very general and elegant way to navigate the �eldand sore. 9



4 Vision and image proessing4.1 Color ompensationPerhaps the hallenge we spent most time on was getting deent pituresout of the amera. Apart from reeiving the oasional strange image theissue we had was extremely poor olor onstany, muh thanks to the auto-brightness feature of the amera.Soon after labeling and training on our �rst bath of training data westarted to notie the problem at hand. It would funtion well for perhaps aday or a few hours only to totally ollapse later.Battery voltage and ambient lighting seemed to ause a signi�ant hangein olor in the image, as an be seen in �gure 5.
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Figure 5: Data obtained in two di�erent runs, taken under di�erent ambientlighting onditions. Di�erent lasses are marked using di�erent olors. Notethat for most of the lasses the data points are dispersed in two distintblobs orresponding to the two di�erent runs.At the time, it seemed like a good idea to a one-shot alibration toompensate for the illumination. Alas, so we proeeded to implement it.The basi idea was to take a piture of a blak and white objet, analyzeit and then ompensate all olors so that the blak and white appeared asblak and white respetively. I.e., given blak and white referene olors B10



and W transform a olor (r, g, b) to (r′, g′, b′) aording to:
r′ = 255

r − Br

Wr − Br
(1)

g′ = 255
g − Bg

Wg − Bg
(2)

b′ = 255
b − Bb

Wb − Bb

(3)Furthermore, eah omponent of (r′, g′, b′) is always saturated to lie inthe range [0, 255].Needless to say we ran into a lot of headahes both implementing andusing this approah. In retrospet, it's quite obvious that the alibration ispratially useless one the auto-brightness adjusts the gain settings.One we realized this we tried a seond approah � online olor alibra-tion, i.e. realibrate eah frame using information in the frame. This isan indiret way of reading the gain values applied to the respetive oloromponents.A small blak and white referene was attahed below the amera. Foreah frame, a small number of pixels were sampled from the referene'sblak and white regions. Using this sample we ould determine how blakand white were pereived this frame. As in our �rst approah, equations 1through 3 were used to ompensate all olors.4.1.1 Image rejetionWith a suessful olor ompensation sheme in plae there was but onehurdle remaining � low dynami range. This phenomenon was espeiallybad in the blue hannel, where less than 4% of the available range was oftenused.The low dynami range aused noise to have a large impat sine itsmagnitude seemed independent of dynami range. As a result, as dynamirange tended towards zero we saw more and more blue pathes in the image,often in the banded noise usually present in the image.This problem was greatly exaggerated when the robot was run with it'solor marker on, sine it made the amera's mounting loation an even dim-mer plae than before. This ould probably have been prevented by mountingthe amera in a more open spae.Although this problem remained unsolved due to time onstraints, amethod for deteting bad images was developed.The idea is very simple: if the dynami range, measured during alibra-tion using the olor referene, is below a ertain threshold for one or morehannels the piture is disarded and another is taken. As new pitures aretaken, the auto-brightness will have time to adapt to the new onditions andresult in new pitures with better dynami range.11



4.2 Camera alibrationBeing able to reliably measure angles in the image is of great value - itprovides the tool needed to trak, turn towards or approximate the distaneto an objet in sight.A brief review of the required theory is presented here along with ourresults. The theory serves as a basis for understanding how angles are al-ulated and whih amera parameters we have to reover before doing so.4.2.1 Image formation theorySuppose we have a point P = (X,Y,Z) in a three-dimensional spae thatis projeted down on the image plane of a amera with foal length f , asdepited in �gure 6. For simpliity, the point P is desribed in the refereneframe of the amera1.
Figure 6: Illustrates how points in 3D-spae are projeted down to the imageplane. The optial axis is illustrated by the dashed line and the image planeby the line perpendiular to it.We assume that the elements of our image sensor are square and theorigin of the image oordinate system is at the intersetion with the optialaxis. The image oordinate p = (x, y) orresponding to P is then easilyalulated using similarity:
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(4)It's trivial to extend this model to allow retangular sensor elements andan arbitrary image oordinate system origin. Let (cx, cy) denote the originof the image oordinate system, usually referred to as the amera's prinipalpoint, and σ the width to height ratio of the sensor elements. The equationsthen beome:
x = f

X

Z
+ cx (5)1If it's not, we have to transform P into the oordinate system of the amera beforeproeeding. This is trivial to do with one or two matrix transformations.12



y = fσ
Y

Z
+ cy (6)It's often onvenient to express this as a linear transformation using ho-mogeneous oordinates and the matrix K formed by the internal parameters:
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(8)Where γ is a skew fator that's non-zero if the sensor elements are rhom-bi rather than retangular. For our partiular amera, however, this pa-rameter turned out to be lose to zero and was thus left out entirely.4.2.2 Lens distortion theoryThe equations derived in the last setion only hold for an ideal pin holeamera. In reality, all ameras are plagued by distortion introdued in thelens. In a heavily distorted image angles annot be alulated using thesimple relations presented above, nor is the straightness of lines preserved.The severity of the lens distortion is usually inversely proportional tothe prie of the aperture and proportional to its �eld of view. Thus, it wasnot surprising that the lens used on our amera introdued learly visibledistortion (see �gure 7).

Figure 7: The �gure shows the image of a �at surfae with a grid patternbefore and after undistortion.In the distortion model we employ, eah projeted image oordinate isdistorted by an amount proportional to its distane to the prinipal point[1℄. Given the normalized image oordinate xn, the distorted oordinate xdis: 13
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6 (11)Inorporating this into equation 8 yields the omplete image formationequation:
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= Kxd (12)What we an measure in an image is limited to distorted oordinates onthe form xd, whereas what we're really interested in is their orrespondingundistorted oordinates xn. Thus, we want to �nd the inverse mapping from

xd to xn.In our ase k3 = 0, whih redues the inverse mapping problem froma pair of seventh order polynomials to a �fth order pair. From equation 9through 12 we see that the distorted image oordinate (x, y) is related to itsreal oordinate (x̃, ỹ) by:
{
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(13)






α

β

1






= K−1







x

y

1






(14)Sine no analytial solution an be found for the above equations we usedthe iterative approximation desribed in [1℄ to alulate the inverse mapping.Calulating the approximation on the robot is not feasible in real-time,instead it's stored in a pre-omputed lookup table generated in and exportedfrom MATLAB.4.2.3 Calibration proedure and resultsOur initial plan was to �rst orret lens distortion in image spae, as sug-gested in [2℄. One reti�ation is possible the internal parameters K anbe reovered using a known 3D objet, singular value deomposition andhandful of linear algebra triks [3℄, [2℄.The undistortion proess turned out to be less straightforward than itappeared, partly beause the required non-linear least squares minimization14



quite easily got stuk in loal minima. Another hurdle is that an impreiselymeasured alibration objet is likely to inur signi�ant unertainties to theparameters. Ultimately, this home brew approah was abandoned in favourof a ready-made amera alibration software.After roaming the web in searh for an apt tool we settled on the MAT-LAB amera alibration toolbox [4℄.

Figure 8: The 20 images used to alibrate the amera.It was exeptionally easy to use and produed results far better our alayman's attempt ever ould have. Only a small amount of manual labouris required and we highly reommend it to anyone looking to solve the sameproblem.
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k1 = −0.32385 ± 0.00562

k2 = 0.11651 ± 0.00893Table 1: The results obtained from alibration. The numerial errors areapproximately three times the standard deviations [4℄.The toolbox gives an estimate of tangential distortion due to imperfetlyentered lenses in addition to the sixth order radial distortion of equation 11.15



However, the obtained values were muh to unertain and thus disarded.One all parameters are known, the horizontal and vertial angles to apoint are trivial to alulate. Let (x̃, ỹ) be the oordinate after undistortion,then:
tan θx =

x̃

fx
⇔ θx = arctan

x̃

fx
(15)

tan θy =
ỹ

fy

⇔ θy = arctan
ỹ

fy

(16)4.3 Classi�ationThe �rst multi-lass lassi�er we implemented was the simple and well-knownKNN algorithm. A funtional albeit ine�ient implementation of the KNNalgorithm is trivial to do and as suh it served as a good �rst andidate.An investigation detailed enough to draw valid onlusions onsideringperformane was never done sine it was dropped in favor of the other meth-ods desribed below.Our seond attempt used a support vetor mahine. However, trainingwas so slow that only a far to small subset of the training data ould beused.All our lassi�ers were implemented in the same manner on the robot �using a 32×32×32 pre-omputed lookup indexed with the olor of the pixelbeing lassi�ed.4.3.1 Gaussian mixture modelThe lassi�ation method used in the end was a Gaussian mixture model.The basi idea of mixture model is that instead of trying to �t a singlemode distribution to a potentially diverse lass, a superposition of severaldistributions is used. The omponent distributions are adapted to separatelusters of data within the lass using some training algorithm - in our aseexpetation maximization.The motivation for taking the mixture approah is that upon examina-tion, the pixel data points show high intra-lass variations and lustering.Figure 5 illustrates this, although in that partiular ase the variations areexaggerated due to lak of alibration. One reason for these intra-lass vari-ations might be varying lighting onditions for di�erent loations on theplaying �eld. Using a mixture model, we ould for example adapt a ompo-nent distribution to a subset of the images for whih the lighting onditionsare similar.As mentioned, the training algorithm used for our mixture model wasexpetation maximization, or EM. The one parameter we needed to set be-fore using this algorithm was the number of omponents distributions to be16



used for eah lass. This parameter was set individually for eah lass afterinspeting the distribution of their pixel data points in RGB spae.After setting the number of omponents, the parameters of the ompo-nent distributions are randomized, and the algorithm proeeds iteratively intwo steps: First, the probability density funtion for eah distribution is eval-uated for eah data points, and the data points are labeled as belonging tothe distribution with the highest density. Next, the parameters of eah dis-tribution are realulated using maximum-likelihood estimation on the datapoints belonging to that distribution. This is repeated until onvergene.Using the gaussian mixture trained in this manner, we onstruted amax-imum a posteriori lassi�er. This requires alulating the prior probabilitiesfor eah lass, whih is typially done by taking their relative frequeny.Instead of doing this, however, we opted to tune these priors manually toahieve the results best suited to our needs. For example, we lowered theprior probability of deteting a ball pixel, sine the lassi�er had a high ratioof false ball positives. One possible reason for this may have been that ourtraining set had a bias towards pitures ontaining balls.4.3.2 Adaptive samplingIt's often the ase that large portions of an image are of no interest to theontrol logi � big pathes of the opponent's olor tag would be the bestexample, sine we ompletely ignore that information. Given that, reduingomputational load by not lassifying the uninteresting portions is an obviousand sound idea.One simplisti approah is to always only sample a subset of the image.However, that would break parts of our post-proessing (see setion 4.4.1).As a onsequene, we hose to implement an algorithm that initially samplesa subset of the image and then expands the searh to neighbors of interestingpixels (ball and goal pixels) � i.e. it adapts the time spent depending of thevalue of the information.For simpliity, we opted for a uniform initial sampling distribution, asillustrated by �gure 9. The main reason for rejeting the idea of samplingmore frequently at the horizon was our tiltable amera turret.4.4 Filtering and post-proessingTo battle spurious noise and other mislassi�ed pixels an array of post-proessing tehniques were invented and implemented.Noise is a big onern due to the Bayer mask used in the amera, whihauses odd olors to appear at sharp olor transitions. Another inentive todo some sanity heking on the lassi�ation is the atroiously poor oloronstany of the used amera. 17



Figure 9: The adaptive sampling in ation.4.4.1 Median �lteringIn the image proessing �eld, a standard approah to ounterat salt andpepper noise is the median �lter. Inspired by it we developed a very similar�lter to suppress spurious mislassi�ed pixels.The �lter takes a set Γ of pixel oordinates and outputs a set Γ′ ⊆ Γaording to:
Γ′ = {(x, y) ∈ Γ | |{(α, β) ∈ Λ(x, y) | h(α, β) = h(x, y)}| ≥ t} (17)

Λ(x, y) = {(α, β) ∈ Z | |x − α| ≤ 1, |y − β| ≤ 1} (18)
h(x, y) and Λ(x, y) denote the lassi�ation and neighborhood of (x, y)respetively.Put in text, a pixel passes the �lter if at least t pixels in its 3 × 3-neighborhood are of the same lass.To save valuable instrutions we only �lter pixels belonging to lassesthat we are interested in (ball and goal pixels). For example, the ost of�ltering a huge path of mostly uninteresting grass is seldom justi�ed.4.4.2 Rejetion heuristisIn addition to the median-like �ltering the following heks are applied inorder:
• If the pixel is above the amera enter and lassi�ed as a ball pixel it'srejeted. Sine the amera's height above the �oor is greater than theball's diameter this is impossible.This test ould also be applied to grass pixels. For performane rea-sons, this option was not explored � although, in retrospet, this wouldprobably have been a better approah than the one developed below.18



Figure 10: If (x, y) is a pixel lassi�ed as ball and b − a < 0 it an safelybe rejeted. a is the amera's tilt angle and b the angle to the pixel in theimage.
• Any grass pixels found above a pixel lassi�ed as goal an be rejeted,knowing that no grass pixels should be found above the �oor. Thishek was developed after it was disovered that the Bayer mask oftenintrodued a thin line of arti�ially bright green pixels at the upperedge of the blue goal.Its imperative that this test is applied after the median �ltering toredue the risk of rejeting grass pixels due to mislassi�ed goal pixels.
• All goal pixels below the grass line are disarded. This proved to bean e�etive tool for removing erroneously lassi�ed pixels due to thespeular highlight on the ball. Obviously, this isn't perfetly robustand fails when the ball is in lose proximity of a wall.4.5 Feature extrationTo enable loalization (see setion 5) we need the ability to make observationsthat an be related to the pose of the robot. Later in setion 5.2.1 we shallsee how an image oordinate of known height an be used for this purpose.An algorithm for deteting and loating goal orners in the images wasdeveloped, providing four distint features � a left and right orner featurefor eah goal.These partiular features were hosen on the merit of their relativelygood robustness and ease of implementation. The extration is independentof the robot's urrent pose, whih avoids oding for speial ases and boostsrobustness.If a large enough number of goal pixels are found the feature extration istriggered. Beginning at the midpoint oordinate of the deteted goal pixels,searh outwards horizontally until a wall pixel is found. The x-oordinate ofthe feature is alulated as the mean value of the x-oordinates of the �rstwall pixel and the last goal pixel found during this searh.19



Figure 11: Eight examples of the feature detetor in live ation � taken bythe robot during a live game. The features are marked by the blak rosses.If the wall is found, the searh proeeds downwards until the �rst grasspixel is enountered. This provides the y-oordinate of the feature, alulatedanalogously but using the last wall and �rst grass pixel instead.Although simple and straightforward, this algorithm works surprisinglywell, as an be seen in �gure 11.As a post-proessing step unfeasible features are disarded using the sametehnique used to rejet ball pixels based on angle, desribed in setion 4.4.2.4.6 Image aquisition and motor ontrolThe RoBIOS platform used on the EyeBot ships with funtionality for on-trolling veloity and angular veloity of di�erential drive robots. This typeof loomotion ontrol interfae is powerful and very simple to use, and thusalmost a prerequisite for developing the robot ontrol software.Due to a questionable hard- and software implementation the built-inontroller of RoBIOS severely limited the usable frame rate of the amera. Inour ase, the quirks and problems of it were worse, to the degree of being fatal� when any wheel was turning the output from the amera got srambled.Alas, we didn't even have the option of using the built-in ontroller.Instead, we developed our on home brew PID-ontroller for ontrollingthe motors in a similar fashion.This had the side e�et of allowing a higher amera frame rate. We usedit with no problems at 7.5 Hz only got a few bad frames at 15 Hz. Foromparison, other groups reported that they were limited to frame rates ofroughly 2 Hz.
20



5 LoalizationUnless a soer bot is ontent with simply following the largest blob of olorin its �eld of vision, like a moth �ying blindly towards the nearest soureof light, it has to be able to keep trak of its position on the playing �eld.This is alled loalization, and is typially aomplished by analyzing sensordata, possibly ombining several di�erent soures through sensor fusion.Needless to say, loalization is also a prerequisite for most planning meth-ods, sine they typially boil down to �nding some path from the urrentposition to the most desirable goal position.Our group aimed to implement loalization by using a kalman �lter tofuse odometri data with feature measurements extrated from the amera.Unfortunately, due to a few elusive bugs and lak of time, loalization hadto be dropped before the tournament. However, these bugs have sine beeneliminated, and the following setions desribe the system we had intendedto use in detail.5.1 Odometri error model
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Figure 12: The position unertainty of the odometri measurements grow intime as a result of error propagation.An initial approah to loalization might be to simply use wheel enodersto alulate the robot's movements relative to some initial position. As weshall soon see, it is rather naive to trust wheel odometry ompletely, and onequikly realizes the need for sensor fusion.21



Our robot uses a di�erential drive on�guration, and thus uses the fol-lowing rule to update its pose[5℄:
p′ = f(x, y, θ,∆sr,∆sl) =







x

y

θ






=







∆s cos(θ + ∆θ
2 )

∆s sin(θ + ∆θ
2 )

∆θ





Where ∆s = ∆sr+∆sl

2 is the distane travelled by the robot, ∆θ =
∆sr−∆sl

b
is the hange in rotation, ∆sr and ∆sl are the distanes travelledby the left and right wheels respetively, and b is the distane between thetwo wheels.Examining this expression, it is easy to see that even a slight error inmeasurement of the starting angle will ause a drift in position that inreaseswith time.We assume that the initial pose is a three-dimensional, normally dis-tributed stohasti variables with ovariane matrix:

Σp =







σ2
x 0 0
0 σ2

y 0

0 0 σ2
θ





And that the wheel updates ∆sr and ∆sl are normally distributed with thefollowing ovariane matrix:
Σ∆ =

(

k|∆sr| 0
0 k|∆sl|

)Then the propagation of error in position an be approximated using theerror propagation law:
Σp′ = ∇pf · Σp · ∇pf

T + ∇∆f · Σ∆ · ∇∆fTWhere ∇pf and ∇∆f are the Jaobians of f with respet to x, y, θ and
∆sr,∆sl respetively.The parameter k used in the ovariane matrix of the position updates,
Σ∆ is a measurement of the unertainty of the odometry. The wheel enoderstypially have very high preision, but there are many other fators weighingin, suh as wheel slippage. After some experimentation in a MATLAB-simulation (see 5.3), a value of k = 0.05 was hosen. Sine we never got totesting our loalization system on the soer �eld, the validity of this valueis unertain.In order to have the most reent odometry information available at alltimes, the odometry update proedure was arried out in the vω-ontroller,at the same rate as the PID-ontroller updates.22



5.2 Kalman loalizationTo ombat the ever-inreasing unertainty of the odometri model, we de-ided to loalize using features whose oordinates in the world frame wereknown. The features of hoie for this were the goal orners, whih provedto be easily detetable(see 4.5).The Kalman loalization proedure an be divided into the the followingsteps[5℄: position predition, observation, measurement predition, mathingand estimation. The �rst of these, position predition, orresponds to up-dating the position using the odometry error model and has already beendisussed in 5.1. The remaining steps are disussed in the following setions.It's worth noting that it's not neessary to go through all steps for eahposition update. Typially, odometry information arrives at a muh higherfrequeny than amera observations. This means that there are usually sev-eral predition steps between eah observation.5.2.1 ObservationThe observation step onsists of deteting a feature and transforming themeasurements of this feature to oordinates in the amera referene frame.Thanks to amera alibration (see 4.2), we are able to aurately measurethe x- and y-angles to a oordinate on the amera's image plane. Usingthese angles, and the known height h = 75 mm of the amera above thegoal orner, we are able to triangulate the relative loation of the orner (see�gure 13) in the amera frame.The relative loation of the feature is alulated using the following for-mula:
pf =

(

xf

yf

)

= ff (α, β, h) =





h cos(α)
tan(β)

h sin(α)
tan(β)



Errors in the measurements of α, β and h are desribed by
Σαβh =







σ2
α 0 0
0 σ2

β 0

0 0 σ2
h





These varianes should be estimated experimentally, but unfortunately wehad no time to do so. The error in (α, β, h) propagates to (xf , yf ) aordingto the following approximation:
Σf = ∇ff · Σαβh · ∇fT

fwhere ∇ff is the jaobian:
∇ff =







−h sin(α)
tan(β) −

h cos(α)(1+tan 2(β))
tan 2(β)

cos(α)
tan(β)

h cos(α)
tan(β) −

h sin(α)(1+tan 2(β))
tan 2(β)

sin(α)
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Figure 13: Knowing the angles α and β, and the height h, we an triangulatethe relative position of a goal orner feature.5.2.2 Measurement preditionThis step onsists of prediting what the feature oordinates would be in theamera referene frame, given the urrent estimation of the robot pose andthe known feature oordinates in the world frame. We de�ne the followingtransition funtion:
pC = fpred(p̂, pW ) =

(

(xW − x̂) cos(θ̂) + (yW − ŷ) sin(θ̂)

−(xW − x̂) sin(θ̂) + (yW − ŷ) cos(θ̂)

)Where pC is the feature loation in the amera frame, p̂ = (x̂, ŷ, θ̂)T is theurrent estimation of robot pose and pW =
(

xW

yW

) is the loation of thefeature in world oordinates. As before, to propagate the measurement errorof the robot pose estimation to the relative feature oordinates, we use theerror propagation law:
Σpred = ∇fpred · Σp · ∇fT

pred
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∂ŷ
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)
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=

(

− cos(θ̂) − sin(θ̂) −(xW − x̂) sin(θ̂) + (yW − ŷ) cos(θ̂)

sin(θ̂) − cos(θ̂) −(xW − x̂) cos(θ̂) − (yW − ŷ) sin(θ̂)

)5.2.3 MathingIn this step we math the observed features against the predited ones, alu-lating the �innovation� of a feature as the di�erene between the observationand predition. In the general ase, we would not neessarily know whihpredition orresponded with whih observation. In suh ases one usuallypiks the loses math, provided that it is loser than some hosen threshold.If it isn't, then the observation is disarded.In our ase, we hose to have omplete on�dene in our ability to as-ertain the identity of a feature. We are limited to a mere four features andeah of them are learly distinguishable from the others. For this reason, wewere able to skip the mathing step. We still alulate the innovation foreah observation, however, sine it is needed in the �nal step.
v = pf − pC

Σv = Σpred + Σf5.2.4 EstimationIn the �nal step we update our estimation of the robot pose based on theobservations we have made. This is done by alulating the Kalman gainand applying it to the innovation:
K = Σp · ∇fT

pred · Σ
−1
v

p̂′ = p̂ + K · vThe ovariane matrix is updated aording to:
Σp′ = Σp − K · Σv · K

T5.3 SimulationAs mentioned earlier, Kalman loalization was not �nished in time for thetournament. However, some simulations were run in MATLAB using themodel presented in the previous setions. In this simulation the robot movedwithout obstales and was presented with angular observations of the fea-tures every third time step, provided that the features were loated in a90-degree �eld of vision in front of the robot. Noise was added to both theodometri measurements and the feature observations. Figure 14 shows themovement and believed poses of the robot during a run of this simulation.25
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Figure 14: A simulation of kalman loalization on the soer �eld. A generousamount of noise has been added to the angle measurements.5.4 Ball loalizationSome early experimentation was done on ball loalization using the sametriangulation method desribed in 5.2.1. The auray of this model wasevaluated using a simple test: a set of images, eah showing the ball loatedon the playing �eld was taken with the robot's amera. In eah image, thelassi�ation and feature extration algorithms would estimate the loationof the ball in the image, and alulate the angles to it's enter. Theseestimations were then ompared against a human user's verdit on the ballloation, whih we onsider to be orret within reasonable preision. Thedi�erene was then used to alulate the mean and ovariane of the errorin angle measurement.It was found that the omputer typially shot low - a fat that an mostlikely be attributed to the speular highlight from the lighting on top of theball, whih was usually mislassi�ed. After ompensation for this systematierror, the error propagation from angles into relative x,y-oordinates wasalulated. The results of ball loalization on the image shown in �gure 16is shown in �gure 17. 26



0 50 100 150
0

100

200

300

400

500

600

700

800

900

Figure 15: The distane error for the simulation illustrated in �gure 14. Theerror dereases in time as more measurements are inorporated.The positional unertainty of ball loalization was judged too great forthe method to be used e�etively. Kalman �ltering the ball loation may beable to redue the unertainty, but would depend on ontinuously trakingthe ball with the amera. We deided that this would not be feasible giventhe quik movement of the ball, and opted instead to go for the �blind moth�approah.6 The ompetitionThe ompetition started out badly for us. One of the other groups hadomplaints regarding front mounted IR-detetors. Beause of the emittedlight they saw blue goal pixels in the grass diretly below our IR-detetors.Thus we had to put some tape underneath the detetors so it would notlight up the grass. Beause of this our roller did not work properly in theseeding round.We still managed to sore one goal and aompanied by �ve other teamswe made it through to the atual tournament.In our group were Clas Ohlson, Zidane and Ball Blaster (us).Our �rst game against Zidane ended 1-0 to our favor.In our seond game we played against Clas Ohlson. Clas Ohlson sored27



10 20 30 40 50 60 70 80

10

20

30

40

50

60Figure 16: The blue irle shows the feature extration algorithm's estima-tion of ball loation in the image.�rst � this was the only time in the whole tournament that we were not inthe lead. But we managed to even the sore and then in the very last seondwe sored the �nal goal, whih made us the wining team with 2-1.In the semi�nal we met Rasdalf. This game was won with the sore 2-1and our hane to partake in the grand �nale was seured.In the �nal we met RAAS, who had an impressive trak reord from thegroup play and semi-�nals. We felt that we were underdogs from the startso we had to do a real good math in order to beat RAAS.We deided to make one last hange in our program before the �nal. Theprogram was tuned to inlude an initial berserk mode that should initiatethe game with a quik thrust and a well aimed shot diretly at the goal.This should be done blindly and with speed none had ever dared trybefore. Sadly, due to an unknown but quite viious bug the berserk mode�zzled, transforming the breath taking speeds we programmed it for into amodest rawl.Even with this bug present, this tati turned out to work well. We hitthe ball (whih was not at all lear that we should be able to do) and eventhough we did not sore we got the ball down to the left orner next to ouropponents goal.With this position of the ball RAAS was not able to get a grip of theball and we got the ball loser and loser to their goal.When one minute remained of the game we sored. Then something veryunfortunate happened � during a wild maneuver to get away from a wall weslammed into a wall so hard that we lost power. This aused our programto be lost and sine it was to big to store in the EyeBot ROM memory weouldn't reload quikly but rather had to take the robot out of the �eld toreload the program from our omputer.This proess takes well over a minute and during this time RAAS was28
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Figure 17: The estimated map loation of the ball deteted in �gure 16.all alone in the playing �eld, leaving our goal fully unguarded.Lukily RAAS did not manage to sore during this time and we were thewinners of the ompetition.
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