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Abstra
tThis report des
ribes how we built and programmed the so

erplaying robot Ball Blaster.Ball Blaster is a wheel driven robot with a 
amera for vision andvarious extra equipment su
h as IR-sensors for sensing the ball at 
loserange, ultrasoni
-sensor to avoid driving into walls and a roller for hold-ing the ball. Ball Blaster is built around an Eye Bot mi
ro
ontrollerand is programmed to s
ore goals by pushing an orange ball into ablue or yellow goal. Ball Blaster was entered into a roboti
 so

er
ompetition and won �rst pla
e.
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1 Introdu
tionOur strategy was to build a robust and modular robot. The robot shouldbe robust in the sense that we would not program it for spe
ial 
ases that
ould o

ur.We also wanted the program we wrote to be easy to maintain and extendwhen needed. The same goes with the me
hani
al part of the proje
t. Thiswas our main 
on
ept during the proje
t.All software development was done in C++ and MATLAB, aided byversion 
ontrol.2 HardwareWhen we started to design the hardware we de
ided to build it out of fourblo
ks (Base, roller front, 
amera and sonar turret, and CPU board holder)that 
ould easily be repla
ed individually. The idea was that we shouldhave a working robot platform on whi
h we 
ould test the software at alltimes. The advantage of the blo
ks was that if one of the blo
ks was notgood enough, we 
ould build a new one and qui
kly repla
e the blo
k withminimal disturban
e to the software testing and development.We standardized the distan
e between drilled holes and the diameter ofholes so that parts 
ould be reused and relo
ated easily.For propulsion we used di�erential drive whi
h had been su

essful inprevious years and is easy to implement. To sense the environment we usedIR-sensors and a 
amera.2.1 The BaseThe base was the blo
k to whi
h everything else was atta
hed. It 
onsistedof an aluminium plate with the motors and wheels atta
hed. We knew thatthis part was important to get right the �rst time, sin
e we needed it at alltimes to test the software, and also be
ause it 
onsumed a lot of aluminium.We designed it as a 
ir
ular disk with a diameter slightly smaller than 18
m to get some margins to the maximum allowed diameter. The 
urvatureof the dis
 was 
ut o� at the wheel mounts and it was 
ut �at at the frontwere we later mounted a repla
eable front.The wheels were �rst mounted in slots in the base metal sheet but wedis
overed that it was time 
onsuming to mount the motors and wheels thatway. Therefore we 
ut away the slots so that the wheels 
ould be slid ontothe shaft of the motors without removing the motors from the base.A bolt was used as support at the stern and smaller bolt was used as a�tipping guard� in the front of the robot. The tip prote
tion was added toprevent the robot from tipping over too mu
h when breaking abruptly from3



Figure 1: The base rollerfull speed. Two M2.5 bolts were �xed to the base front and used as the rolleratta
hment.2.2 Roller frontTo keep the ball 
lose to the robot when driving, we de
ided to equip therobot with a roller that gave the ball ba
kspin. The roller was made out ofa 3mm steel rod 
overed by a sili
one rubber tube. The sili
on tube 
reatedenough fri
tion against the ball and it worked surprisingly well.To hold the rod we used ball bearings mounted in aluminium L pro�les.The roller was propelled by a small 3.5V motor via a rubber band.We experimented with a divided rod with a V-shape to get the ball
entered on the roller but it did not work as well as we had hoped. Insteadwe �nally used a straight rod with the bearing holders at the sides to stopthe ball from spinning away from the robot.The roller motor was fed with a separate 1000 mAh, 4.8V battery pa
k.A noise �lter, made out of a 
apa
itor between plus and minus poles, wasadded to the motor 
ables to redu
e the risk of interferen
e from the motor.
4



Figure 2:2.3 Sensor turretFrom start we de
ided to have a 
amera mount that was movable aroundtwo axes, tilt and rotation. The advantage with this arrangement is that itis possible to look for the goal without turning the robot and risk losing theball.Another de
ision we made at the start of the proje
t, was to pla
e the
amera below the violet 
olor marking of the robot, whi
h we later dis
overedto be a suboptimal solution for the 
amera pla
ement.We tried several di�erent servo setups. The �rst attempt was with twostandard servos but the limited spa
e made it di�
ult to �t the 
ameraholder. Therefore we bought a Hite
 mi
ro servo (HS-55).We dis
overed by trial and error, that the 
amera must be mounted sothat the 
amera and tilt servo rotates. If the 
amera and rotation servo is�rst tilted and then rotated, an unwanted rotation around the opti
al axisis 
reated.The �nal solution was to mount the standard servo upside down andlet that servo 
ontrol the rotation. The mi
ro servo and sonar were thenmounted so that both of them rotated. The 
amera was �xed to the mi
roservo so that it 
ontrolled the tilt angle.This setup worked well from a me
hani
al point of view but we dis
overedtoo late that it pla
ed the 
amera in a shadow, 
ausing problems whenpro
essing the images. 5



2.4 CPU board holder and servo mountTo get enough spa
e for the rotating 
amera and to get a 
lean design ofthe robot we mounted the CPU board and the servo holder onto aluminiumL-pro�les, atta
hed verti
ally at the rear part of the base. Also the sensorele
troni
s were later atta
hed to this blo
k2.5 Sensors and ele
troni
sWe used IR-sensors to dete
t if the ball was in the range of the roller. If theball was 
lose to the sensor, the roller should be started. The output from thedete
tor ele
troni
s was also fed into the pro
essor to dete
t if the robot hadthe ball or not. We 
hose to start the roller by hardware be
ause we wanteda short roller response time and redu
e the workload for the pro
essor.The sensors 
onsist of one IR-LED that illuminates the ball and one photodiode that dete
ts if something is illuminated by the IR-LED. Be
ause theoutput from the photo diode varies less than one volt between �no ball�and �ball 
lose to the dete
tor�, an op-amp was used to dete
t the voltagedi�eren
e.We used the open 
olle
tor op-amp LM339 that gave us the opportunityto equip the robot with four dete
tors. Two of them were used for balldete
tion so that the full length of the roller 
ould be monitored and theother two were used as reverse 
ollision dete
tor and lift of �eld dete
tor.The output from the ball dete
tor sensors was used to start the rollermotor using an e�e
t transistor. Be
ause the forward 
urrent gain of oure�e
t transistor was only 10-25, we ampli�ed the output from the op-ampusing a small signal transistor.The referen
e voltage into the op-amp was 
reated by a voltage dividerthat it 
ould be adjusted with a potentiometer. It is important to put thepotentiometer in the lower part of the voltage divider so that the referen
evoltage 
an be adjusted down to 0 volt.The �rst IR diodes we used were too bright and 
aused illumination ofthe surroundings so that the pi
tures from the 
amera were a�e
ted. Thisproblem was solved with smaller, less luminous LEDs. The 
ameras of otherrobots dete
t the emitted infrared light but sin
e it appears as white in thepi
ture, (almost) no one 
omplained.The pa
kaging of the IR sensor ele
troni
s was manufa
tured from an oldtape 
ase.2.6 ArmourThe robot was equipped with armor around the ba
kside. This armor madethe robot more resistant to 
ollisions with other robots and it also movedthe 
enter of gravity further behind the wheelbase, redu
ing the noddingtenden
ies when breaking. 6



Figure 3: S
hemati
s for the IR-dete
tor 
ontroller board.2.7 Possible improvements on the hardwareWe dis
overed some minor issues on the hardware too late, whi
h 
ould havein
reased the performan
e of the robot if we had had the time to �x them.The 
amera position was the biggest issue. Better pi
tures 
ould have beenre
eived from the 
amera if we had mounted it higher so that the 
amerawasn't in the shade.The se
ond issue was that the roller spun with a speed that 
reated somekind of resonan
e in the ball. The ball sometimes started to boun
e againstthe roller, sometimes far enough to es
ape our 
ontrol. This phenomenon
ould probably be eliminated if the roller speed was slightly in
reased.3 Strategy overviewWe developed two strategies in parallel: a simple fall ba
k plan and a moreelaborate variant with bells and whistles aplenty.This �rst, simple strategy was implemented for and used in lab1.With the bonus points for the exam were se
ured, we began to thinkabout a more advan
ed strategy. In the end we had to abandon the advan
edstrategy in favor of our fall ba
k due to the inevitable la
k of time and a fewelusive bugs in the lo
alization 
ode. 7



3.1 The simple strategyThe basi
 approa
h behind the simple strategy was to �rst �nd our target,adjust our heading and drive in a straight line to it.Lo
ating the target was done by turning on the spot and taking pi
tures.The sear
h was assisted by the panning 
amera turret whi
h was used asmu
h as possible, being both faster and more reliable.When the robot saw the ball it drove up to it where the spinner devi
e
aught on to it. It pro
eeded by �nding the goal and s
oring, using the basi
three step pro
edure des
ribed above.Extra 
are had to be taken not to drop the ball while turning in sear
hfor the goal.This strategy was quite simple to implement, pretty robust and workedreasonably well but 
an ultimately not be 
onsidered intelligent in any way.It was implemented as a state ma
hine with the following states:
• START STATE - Start up state, drive forward towards the middle ofthe �eld.
• FIND BALL - Sear
h for the ball.
• GO TO BALL - Drive to the ball.
• ADJUST TO BALL - Adjust the heading so it won't miss the ball.
• SCAN FOR GOAL - Look for the goal.
• ADJUST TO GOAL - Adjust the heading so it won't miss the goal.
• SCORE - Drive to goal.
• GOAL GESTURE - Makes a goal gesture, and drive out of the goal.The state transitions are illustrated in �gure 4.Implementation of the state ma
hine was made with a state manager. Itmade the 
ode very easy to read, maintain and extend with new states.When a state has exe
uted it returns a pointer to the next state (whi
hmay or may not be the same state) and the manager dire
ts the program tothat state.3.2 The advan
ed strategyGiven that we 
ould establish our absolute position in the playing �eld awhole new ex
iting world of possibilities is opened up � we no longer haveto a
tively sear
h for the goal, path planning and avoiding the opponent issuddenly both feasible and quite simple.As you probably guessed already the basi
 ingredient of this more intelli-gent approa
h is robust lo
alization. With lo
alization in pla
e we envisioned8



Figure 4: Illustrates all the possible state transitions.path planning and obsta
le avoidan
e to be implemented using potential �eldplanning.The state ma
hine approa
h used in the simple strategy would still serveas the basis for implementing the advan
ed strategy.The walls and the opponent would generate positive potential. Negativepotential would be generated by the 
urrent target, i.e. either the ball orthe goal. The potential generating fun
tions would depend on the entirepose of the robot, in
luding orientation. This is desirable sin
e not in
ludingorientation in mix implies obvious troubles with driving 
losely along walls.If the implementation of this strategy had been 
ompleted in time itwould probably have been very general and elegant way to navigate the �eldand s
ore. 9



4 Vision and image pro
essing4.1 Color 
ompensationPerhaps the 
hallenge we spent most time on was getting de
ent pi
turesout of the 
amera. Apart from re
eiving the o

asional strange image theissue we had was extremely poor 
olor 
onstan
y, mu
h thanks to the auto-brightness feature of the 
amera.Soon after labeling and training on our �rst bat
h of training data westarted to noti
e the problem at hand. It would fun
tion well for perhaps aday or a few hours only to totally 
ollapse later.Battery voltage and ambient lighting seemed to 
ause a signi�
ant 
hangein 
olor in the image, as 
an be seen in �gure 5.
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Figure 5: Data obtained in two di�erent runs, taken under di�erent ambientlighting 
onditions. Di�erent 
lasses are marked using di�erent 
olors. Notethat for most of the 
lasses the data points are dispersed in two distin
tblobs 
orresponding to the two di�erent runs.At the time, it seemed like a good idea to a one-shot 
alibration to
ompensate for the illumination. Alas, so we pro
eeded to implement it.The basi
 idea was to take a pi
ture of a bla
k and white obje
t, analyzeit and then 
ompensate all 
olors so that the bla
k and white appeared asbla
k and white respe
tively. I.e., given bla
k and white referen
e 
olors B10



and W transform a 
olor (r, g, b) to (r′, g′, b′) a

ording to:
r′ = 255

r − Br

Wr − Br
(1)

g′ = 255
g − Bg

Wg − Bg
(2)

b′ = 255
b − Bb

Wb − Bb

(3)Furthermore, ea
h 
omponent of (r′, g′, b′) is always saturated to lie inthe range [0, 255].Needless to say we ran into a lot of heada
hes both implementing andusing this approa
h. In retrospe
t, it's quite obvious that the 
alibration ispra
ti
ally useless on
e the auto-brightness adjusts the gain settings.On
e we realized this we tried a se
ond approa
h � online 
olor 
alibra-tion, i.e. re
alibrate ea
h frame using information in the frame. This isan indire
t way of reading the gain values applied to the respe
tive 
olor
omponents.A small bla
k and white referen
e was atta
hed below the 
amera. Forea
h frame, a small number of pixels were sampled from the referen
e'sbla
k and white regions. Using this sample we 
ould determine how bla
kand white were per
eived this frame. As in our �rst approa
h, equations 1through 3 were used to 
ompensate all 
olors.4.1.1 Image reje
tionWith a su

essful 
olor 
ompensation s
heme in pla
e there was but onehurdle remaining � low dynami
 range. This phenomenon was espe
iallybad in the blue 
hannel, where less than 4% of the available range was oftenused.The low dynami
 range 
aused noise to have a large impa
t sin
e itsmagnitude seemed independent of dynami
 range. As a result, as dynami
range tended towards zero we saw more and more blue pat
hes in the image,often in the banded noise usually present in the image.This problem was greatly exaggerated when the robot was run with it's
olor marker on, sin
e it made the 
amera's mounting lo
ation an even dim-mer pla
e than before. This 
ould probably have been prevented by mountingthe 
amera in a more open spa
e.Although this problem remained unsolved due to time 
onstraints, amethod for dete
ting bad images was developed.The idea is very simple: if the dynami
 range, measured during 
alibra-tion using the 
olor referen
e, is below a 
ertain threshold for one or more
hannels the pi
ture is dis
arded and another is taken. As new pi
tures aretaken, the auto-brightness will have time to adapt to the new 
onditions andresult in new pi
tures with better dynami
 range.11



4.2 Camera 
alibrationBeing able to reliably measure angles in the image is of great value - itprovides the tool needed to tra
k, turn towards or approximate the distan
eto an obje
t in sight.A brief review of the required theory is presented here along with ourresults. The theory serves as a basis for understanding how angles are 
al-
ulated and whi
h 
amera parameters we have to re
over before doing so.4.2.1 Image formation theorySuppose we have a point P = (X,Y,Z) in a three-dimensional spa
e thatis proje
ted down on the image plane of a 
amera with fo
al length f , asdepi
ted in �gure 6. For simpli
ity, the point P is des
ribed in the referen
eframe of the 
amera1.
Figure 6: Illustrates how points in 3D-spa
e are proje
ted down to the imageplane. The opti
al axis is illustrated by the dashed line and the image planeby the line perpendi
ular to it.We assume that the elements of our image sensor are square and theorigin of the image 
oordinate system is at the interse
tion with the opti
alaxis. The image 
oordinate p = (x, y) 
orresponding to P is then easily
al
ulated using similarity:

X
x

= Z
f

Y
y

= Z
f

⇔
x = f X

Z

y = f Y
Z

(4)It's trivial to extend this model to allow re
tangular sensor elements andan arbitrary image 
oordinate system origin. Let (cx, cy) denote the originof the image 
oordinate system, usually referred to as the 
amera's prin
ipalpoint, and σ the width to height ratio of the sensor elements. The equationsthen be
ome:
x = f

X

Z
+ cx (5)1If it's not, we have to transform P into the 
oordinate system of the 
amera beforepro
eeding. This is trivial to do with one or two matrix transformations.12



y = fσ
Y

Z
+ cy (6)It's often 
onvenient to express this as a linear transformation using ho-mogeneous 
oordinates and the matrix K formed by the internal parameters:

K =







f γ cx

0 fσ cy

0 0 1






=







fx γ cx

0 fy cy

0 0 1






(7)







x

y

1






=

1

Z
K







X

Y

Z






(8)Where γ is a skew fa
tor that's non-zero if the sensor elements are rhom-bi
 rather than re
tangular. For our parti
ular 
amera, however, this pa-rameter turned out to be 
lose to zero and was thus left out entirely.4.2.2 Lens distortion theoryThe equations derived in the last se
tion only hold for an ideal pin hole
amera. In reality, all 
ameras are plagued by distortion introdu
ed in thelens. In a heavily distorted image angles 
annot be 
al
ulated using thesimple relations presented above, nor is the straightness of lines preserved.The severity of the lens distortion is usually inversely proportional tothe pri
e of the aperture and proportional to its �eld of view. Thus, it wasnot surprising that the lens used on our 
amera introdu
ed 
learly visibledistortion (see �gure 7).

Figure 7: The �gure shows the image of a �at surfa
e with a grid patternbefore and after undistortion.In the distortion model we employ, ea
h proje
ted image 
oordinate isdistorted by an amount proportional to its distan
e to the prin
ipal point[1℄. Given the normalized image 
oordinate xn, the distorted 
oordinate xdis: 13



xn = (x̃, ỹ, 1)T =

(

X

Z
,
Y

Z
, 1

)T (9)
xd = L (r̃)







x̃

ỹ

0






+







0
0
1






, r̃ =

√

(x̃, ỹ)T (x̃, ỹ) (10)
L(r̃) = k1r̃

2 + k2r̃
4 + k3r̃

6 (11)In
orporating this into equation 8 yields the 
omplete image formationequation:






x

y

1






= Kxd (12)What we 
an measure in an image is limited to distorted 
oordinates onthe form xd, whereas what we're really interested in is their 
orrespondingundistorted 
oordinates xn. Thus, we want to �nd the inverse mapping from

xd to xn.In our 
ase k3 = 0, whi
h redu
es the inverse mapping problem froma pair of seventh order polynomials to a �fth order pair. From equation 9through 12 we see that the distorted image 
oordinate (x, y) is related to itsreal 
oordinate (x̃, ỹ) by:
{

α = k1(x̃
3 + x̃ỹ2) + k2(x̃

5 + 2x̃3ỹ2 + x̃ỹ4)

β = k1(x̃
2ỹ + ỹ3) + k2(ỹx̃4 + 2x̃2ỹ3 + ỹ5)

(13)






α

β

1






= K−1







x

y

1






(14)Sin
e no analyti
al solution 
an be found for the above equations we usedthe iterative approximation des
ribed in [1℄ to 
al
ulate the inverse mapping.Cal
ulating the approximation on the robot is not feasible in real-time,instead it's stored in a pre-
omputed lookup table generated in and exportedfrom MATLAB.4.2.3 Calibration pro
edure and resultsOur initial plan was to �rst 
orre
t lens distortion in image spa
e, as sug-gested in [2℄. On
e re
ti�
ation is possible the internal parameters K 
anbe re
overed using a known 3D obje
t, singular value de
omposition andhandful of linear algebra tri
ks [3℄, [2℄.The undistortion pro
ess turned out to be less straightforward than itappeared, partly be
ause the required non-linear least squares minimization14



quite easily got stu
k in lo
al minima. Another hurdle is that an impre
iselymeasured 
alibration obje
t is likely to in
ur signi�
ant un
ertainties to theparameters. Ultimately, this home brew approa
h was abandoned in favourof a ready-made 
amera 
alibration software.After roaming the web in sear
h for an apt tool we settled on the MAT-LAB 
amera 
alibration toolbox [4℄.

Figure 8: The 20 images used to 
alibrate the 
amera.It was ex
eptionally easy to use and produ
ed results far better our alayman's attempt ever 
ould have. Only a small amount of manual labouris required and we highly re
ommend it to anyone looking to solve the sameproblem.
K =







fx 0 cx

0 fy cy

0 0 1






=







140.47 0 78.64
0 154.75 70.70
0 0 1






±







0.39 0 0.78
0 0.44 0.58
0 0 1







k1 = −0.32385 ± 0.00562

k2 = 0.11651 ± 0.00893Table 1: The results obtained from 
alibration. The numeri
al errors areapproximately three times the standard deviations [4℄.The toolbox gives an estimate of tangential distortion due to imperfe
tly
entered lenses in addition to the sixth order radial distortion of equation 11.15



However, the obtained values were mu
h to un
ertain and thus dis
arded.On
e all parameters are known, the horizontal and verti
al angles to apoint are trivial to 
al
ulate. Let (x̃, ỹ) be the 
oordinate after undistortion,then:
tan θx =

x̃

fx
⇔ θx = arctan

x̃

fx
(15)

tan θy =
ỹ

fy

⇔ θy = arctan
ỹ

fy

(16)4.3 Classi�
ationThe �rst multi-
lass 
lassi�er we implemented was the simple and well-knownKNN algorithm. A fun
tional albeit ine�
ient implementation of the KNNalgorithm is trivial to do and as su
h it served as a good �rst 
andidate.An investigation detailed enough to draw valid 
on
lusions 
onsideringperforman
e was never done sin
e it was dropped in favor of the other meth-ods des
ribed below.Our se
ond attempt used a support ve
tor ma
hine. However, trainingwas so slow that only a far to small subset of the training data 
ould beused.All our 
lassi�ers were implemented in the same manner on the robot �using a 32×32×32 pre-
omputed lookup indexed with the 
olor of the pixelbeing 
lassi�ed.4.3.1 Gaussian mixture modelThe 
lassi�
ation method used in the end was a Gaussian mixture model.The basi
 idea of mixture model is that instead of trying to �t a singlemode distribution to a potentially diverse 
lass, a superposition of severaldistributions is used. The 
omponent distributions are adapted to separate
lusters of data within the 
lass using some training algorithm - in our 
aseexpe
tation maximization.The motivation for taking the mixture approa
h is that upon examina-tion, the pixel data points show high intra-
lass variations and 
lustering.Figure 5 illustrates this, although in that parti
ular 
ase the variations areexaggerated due to la
k of 
alibration. One reason for these intra-
lass vari-ations might be varying lighting 
onditions for di�erent lo
ations on theplaying �eld. Using a mixture model, we 
ould for example adapt a 
ompo-nent distribution to a subset of the images for whi
h the lighting 
onditionsare similar.As mentioned, the training algorithm used for our mixture model wasexpe
tation maximization, or EM. The one parameter we needed to set be-fore using this algorithm was the number of 
omponents distributions to be16



used for ea
h 
lass. This parameter was set individually for ea
h 
lass afterinspe
ting the distribution of their pixel data points in RGB spa
e.After setting the number of 
omponents, the parameters of the 
ompo-nent distributions are randomized, and the algorithm pro
eeds iteratively intwo steps: First, the probability density fun
tion for ea
h distribution is eval-uated for ea
h data points, and the data points are labeled as belonging tothe distribution with the highest density. Next, the parameters of ea
h dis-tribution are re
al
ulated using maximum-likelihood estimation on the datapoints belonging to that distribution. This is repeated until 
onvergen
e.Using the gaussian mixture trained in this manner, we 
onstru
ted amax-imum a posteriori 
lassi�er. This requires 
al
ulating the prior probabilitiesfor ea
h 
lass, whi
h is typi
ally done by taking their relative frequen
y.Instead of doing this, however, we opted to tune these priors manually toa
hieve the results best suited to our needs. For example, we lowered theprior probability of dete
ting a ball pixel, sin
e the 
lassi�er had a high ratioof false ball positives. One possible reason for this may have been that ourtraining set had a bias towards pi
tures 
ontaining balls.4.3.2 Adaptive samplingIt's often the 
ase that large portions of an image are of no interest to the
ontrol logi
 � big pat
hes of the opponent's 
olor tag would be the bestexample, sin
e we 
ompletely ignore that information. Given that, redu
ing
omputational load by not 
lassifying the uninteresting portions is an obviousand sound idea.One simplisti
 approa
h is to always only sample a subset of the image.However, that would break parts of our post-pro
essing (see se
tion 4.4.1).As a 
onsequen
e, we 
hose to implement an algorithm that initially samplesa subset of the image and then expands the sear
h to neighbors of interestingpixels (ball and goal pixels) � i.e. it adapts the time spent depending of thevalue of the information.For simpli
ity, we opted for a uniform initial sampling distribution, asillustrated by �gure 9. The main reason for reje
ting the idea of samplingmore frequently at the horizon was our tiltable 
amera turret.4.4 Filtering and post-pro
essingTo battle spurious noise and other mis
lassi�ed pixels an array of post-pro
essing te
hniques were invented and implemented.Noise is a big 
on
ern due to the Bayer mask used in the 
amera, whi
h
auses odd 
olors to appear at sharp 
olor transitions. Another in
entive todo some sanity 
he
king on the 
lassi�
ation is the atro
iously poor 
olor
onstan
y of the used 
amera. 17



Figure 9: The adaptive sampling in a
tion.4.4.1 Median �lteringIn the image pro
essing �eld, a standard approa
h to 
ountera
t salt andpepper noise is the median �lter. Inspired by it we developed a very similar�lter to suppress spurious mis
lassi�ed pixels.The �lter takes a set Γ of pixel 
oordinates and outputs a set Γ′ ⊆ Γa

ording to:
Γ′ = {(x, y) ∈ Γ | |{(α, β) ∈ Λ(x, y) | h(α, β) = h(x, y)}| ≥ t} (17)

Λ(x, y) = {(α, β) ∈ Z | |x − α| ≤ 1, |y − β| ≤ 1} (18)
h(x, y) and Λ(x, y) denote the 
lassi�
ation and neighborhood of (x, y)respe
tively.Put in text, a pixel passes the �lter if at least t pixels in its 3 × 3-neighborhood are of the same 
lass.To save valuable instru
tions we only �lter pixels belonging to 
lassesthat we are interested in (ball and goal pixels). For example, the 
ost of�ltering a huge pat
h of mostly uninteresting grass is seldom justi�ed.4.4.2 Reje
tion heuristi
sIn addition to the median-like �ltering the following 
he
ks are applied inorder:
• If the pixel is above the 
amera 
enter and 
lassi�ed as a ball pixel it'sreje
ted. Sin
e the 
amera's height above the �oor is greater than theball's diameter this is impossible.This test 
ould also be applied to grass pixels. For performan
e rea-sons, this option was not explored � although, in retrospe
t, this wouldprobably have been a better approa
h than the one developed below.18



Figure 10: If (x, y) is a pixel 
lassi�ed as ball and b − a < 0 it 
an safelybe reje
ted. a is the 
amera's tilt angle and b the angle to the pixel in theimage.
• Any grass pixels found above a pixel 
lassi�ed as goal 
an be reje
ted,knowing that no grass pixels should be found above the �oor. This
he
k was developed after it was dis
overed that the Bayer mask oftenintrodu
ed a thin line of arti�
ially bright green pixels at the upperedge of the blue goal.Its imperative that this test is applied after the median �ltering toredu
e the risk of reje
ting grass pixels due to mis
lassi�ed goal pixels.
• All goal pixels below the grass line are dis
arded. This proved to bean e�e
tive tool for removing erroneously 
lassi�ed pixels due to thespe
ular highlight on the ball. Obviously, this isn't perfe
tly robustand fails when the ball is in 
lose proximity of a wall.4.5 Feature extra
tionTo enable lo
alization (see se
tion 5) we need the ability to make observationsthat 
an be related to the pose of the robot. Later in se
tion 5.2.1 we shallsee how an image 
oordinate of known height 
an be used for this purpose.An algorithm for dete
ting and lo
ating goal 
orners in the images wasdeveloped, providing four distin
t features � a left and right 
orner featurefor ea
h goal.These parti
ular features were 
hosen on the merit of their relativelygood robustness and ease of implementation. The extra
tion is independentof the robot's 
urrent pose, whi
h avoids 
oding for spe
ial 
ases and boostsrobustness.If a large enough number of goal pixels are found the feature extra
tion istriggered. Beginning at the midpoint 
oordinate of the dete
ted goal pixels,sear
h outwards horizontally until a wall pixel is found. The x-
oordinate ofthe feature is 
al
ulated as the mean value of the x-
oordinates of the �rstwall pixel and the last goal pixel found during this sear
h.19



Figure 11: Eight examples of the feature dete
tor in live a
tion � taken bythe robot during a live game. The features are marked by the bla
k 
rosses.If the wall is found, the sear
h pro
eeds downwards until the �rst grasspixel is en
ountered. This provides the y-
oordinate of the feature, 
al
ulatedanalogously but using the last wall and �rst grass pixel instead.Although simple and straightforward, this algorithm works surprisinglywell, as 
an be seen in �gure 11.As a post-pro
essing step unfeasible features are dis
arded using the samete
hnique used to reje
t ball pixels based on angle, des
ribed in se
tion 4.4.2.4.6 Image a
quisition and motor 
ontrolThe RoBIOS platform used on the EyeBot ships with fun
tionality for 
on-trolling velo
ity and angular velo
ity of di�erential drive robots. This typeof lo
omotion 
ontrol interfa
e is powerful and very simple to use, and thusalmost a prerequisite for developing the robot 
ontrol software.Due to a questionable hard- and software implementation the built-in
ontroller of RoBIOS severely limited the usable frame rate of the 
amera. Inour 
ase, the quirks and problems of it were worse, to the degree of being fatal� when any wheel was turning the output from the 
amera got s
rambled.Alas, we didn't even have the option of using the built-in 
ontroller.Instead, we developed our on home brew PID-
ontroller for 
ontrollingthe motors in a similar fashion.This had the side e�e
t of allowing a higher 
amera frame rate. We usedit with no problems at 7.5 Hz only got a few bad frames at 15 Hz. For
omparison, other groups reported that they were limited to frame rates ofroughly 2 Hz.
20



5 Lo
alizationUnless a so

er bot is 
ontent with simply following the largest blob of 
olorin its �eld of vision, like a moth �ying blindly towards the nearest sour
eof light, it has to be able to keep tra
k of its position on the playing �eld.This is 
alled lo
alization, and is typi
ally a

omplished by analyzing sensordata, possibly 
ombining several di�erent sour
es through sensor fusion.Needless to say, lo
alization is also a prerequisite for most planning meth-ods, sin
e they typi
ally boil down to �nding some path from the 
urrentposition to the most desirable goal position.Our group aimed to implement lo
alization by using a kalman �lter tofuse odometri
 data with feature measurements extra
ted from the 
amera.Unfortunately, due to a few elusive bugs and la
k of time, lo
alization hadto be dropped before the tournament. However, these bugs have sin
e beeneliminated, and the following se
tions des
ribe the system we had intendedto use in detail.5.1 Odometri
 error model
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Figure 12: The position un
ertainty of the odometri
 measurements grow intime as a result of error propagation.An initial approa
h to lo
alization might be to simply use wheel en
odersto 
al
ulate the robot's movements relative to some initial position. As weshall soon see, it is rather naive to trust wheel odometry 
ompletely, and onequi
kly realizes the need for sensor fusion.21



Our robot uses a di�erential drive 
on�guration, and thus uses the fol-lowing rule to update its pose[5℄:
p′ = f(x, y, θ,∆sr,∆sl) =







x

y

θ






=







∆s cos(θ + ∆θ
2 )

∆s sin(θ + ∆θ
2 )

∆θ





Where ∆s = ∆sr+∆sl

2 is the distan
e travelled by the robot, ∆θ =
∆sr−∆sl

b
is the 
hange in rotation, ∆sr and ∆sl are the distan
es travelledby the left and right wheels respe
tively, and b is the distan
e between thetwo wheels.Examining this expression, it is easy to see that even a slight error inmeasurement of the starting angle will 
ause a drift in position that in
reaseswith time.We assume that the initial pose is a three-dimensional, normally dis-tributed sto
hasti
 variables with 
ovarian
e matrix:

Σp =







σ2
x 0 0
0 σ2

y 0

0 0 σ2
θ





And that the wheel updates ∆sr and ∆sl are normally distributed with thefollowing 
ovarian
e matrix:
Σ∆ =

(

k|∆sr| 0
0 k|∆sl|

)Then the propagation of error in position 
an be approximated using theerror propagation law:
Σp′ = ∇pf · Σp · ∇pf

T + ∇∆f · Σ∆ · ∇∆fTWhere ∇pf and ∇∆f are the Ja
obians of f with respe
t to x, y, θ and
∆sr,∆sl respe
tively.The parameter k used in the 
ovarian
e matrix of the position updates,
Σ∆ is a measurement of the un
ertainty of the odometry. The wheel en
oderstypi
ally have very high pre
ision, but there are many other fa
tors weighingin, su
h as wheel slippage. After some experimentation in a MATLAB-simulation (see 5.3), a value of k = 0.05 was 
hosen. Sin
e we never got totesting our lo
alization system on the so

er �eld, the validity of this valueis un
ertain.In order to have the most re
ent odometry information available at alltimes, the odometry update pro
edure was 
arried out in the vω-
ontroller,at the same rate as the PID-
ontroller updates.22



5.2 Kalman lo
alizationTo 
ombat the ever-in
reasing un
ertainty of the odometri
 model, we de-
ided to lo
alize using features whose 
oordinates in the world frame wereknown. The features of 
hoi
e for this were the goal 
orners, whi
h provedto be easily dete
table(see 4.5).The Kalman lo
alization pro
edure 
an be divided into the the followingsteps[5℄: position predi
tion, observation, measurement predi
tion, mat
hingand estimation. The �rst of these, position predi
tion, 
orresponds to up-dating the position using the odometry error model and has already beendis
ussed in 5.1. The remaining steps are dis
ussed in the following se
tions.It's worth noting that it's not ne
essary to go through all steps for ea
hposition update. Typi
ally, odometry information arrives at a mu
h higherfrequen
y than 
amera observations. This means that there are usually sev-eral predi
tion steps between ea
h observation.5.2.1 ObservationThe observation step 
onsists of dete
ting a feature and transforming themeasurements of this feature to 
oordinates in the 
amera referen
e frame.Thanks to 
amera 
alibration (see 4.2), we are able to a

urately measurethe x- and y-angles to a 
oordinate on the 
amera's image plane. Usingthese angles, and the known height h = 75 mm of the 
amera above thegoal 
orner, we are able to triangulate the relative lo
ation of the 
orner (see�gure 13) in the 
amera frame.The relative lo
ation of the feature is 
al
ulated using the following for-mula:
pf =

(

xf

yf

)

= ff (α, β, h) =





h cos(α)
tan(β)

h sin(α)
tan(β)



Errors in the measurements of α, β and h are des
ribed by
Σαβh =







σ2
α 0 0
0 σ2

β 0

0 0 σ2
h





These varian
es should be estimated experimentally, but unfortunately wehad no time to do so. The error in (α, β, h) propagates to (xf , yf ) a

ordingto the following approximation:
Σf = ∇ff · Σαβh · ∇fT

fwhere ∇ff is the ja
obian:
∇ff =







−h sin(α)
tan(β) −

h cos(α)(1+tan 2(β))
tan 2(β)

cos(α)
tan(β)

h cos(α)
tan(β) −

h sin(α)(1+tan 2(β))
tan 2(β)

sin(α)
tan(β)





23
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Figure 13: Knowing the angles α and β, and the height h, we 
an triangulatethe relative position of a goal 
orner feature.5.2.2 Measurement predi
tionThis step 
onsists of predi
ting what the feature 
oordinates would be in the
amera referen
e frame, given the 
urrent estimation of the robot pose andthe known feature 
oordinates in the world frame. We de�ne the followingtransition fun
tion:
pC = fpred(p̂, pW ) =

(

(xW − x̂) cos(θ̂) + (yW − ŷ) sin(θ̂)

−(xW − x̂) sin(θ̂) + (yW − ŷ) cos(θ̂)

)Where pC is the feature lo
ation in the 
amera frame, p̂ = (x̂, ŷ, θ̂)T is the
urrent estimation of robot pose and pW =
(

xW

yW

) is the lo
ation of thefeature in world 
oordinates. As before, to propagate the measurement errorof the robot pose estimation to the relative feature 
oordinates, we use theerror propagation law:
Σpred = ∇fpred · Σp · ∇fT

pred

∇fpred =

(

∂xC

∂x̂
∂xC

∂ŷ
∂xC

∂θ̂
∂yC

∂x̂
∂yC

∂ŷ
∂yC

∂θ̂

)

=24



=

(

− cos(θ̂) − sin(θ̂) −(xW − x̂) sin(θ̂) + (yW − ŷ) cos(θ̂)

sin(θ̂) − cos(θ̂) −(xW − x̂) cos(θ̂) − (yW − ŷ) sin(θ̂)

)5.2.3 Mat
hingIn this step we mat
h the observed features against the predi
ted ones, 
al
u-lating the �innovation� of a feature as the di�eren
e between the observationand predi
tion. In the general 
ase, we would not ne
essarily know whi
hpredi
tion 
orresponded with whi
h observation. In su
h 
ases one usuallypi
ks the 
loses mat
h, provided that it is 
loser than some 
hosen threshold.If it isn't, then the observation is dis
arded.In our 
ase, we 
hose to have 
omplete 
on�den
e in our ability to as-
ertain the identity of a feature. We are limited to a mere four features andea
h of them are 
learly distinguishable from the others. For this reason, wewere able to skip the mat
hing step. We still 
al
ulate the innovation forea
h observation, however, sin
e it is needed in the �nal step.
v = pf − pC

Σv = Σpred + Σf5.2.4 EstimationIn the �nal step we update our estimation of the robot pose based on theobservations we have made. This is done by 
al
ulating the Kalman gainand applying it to the innovation:
K = Σp · ∇fT

pred · Σ
−1
v

p̂′ = p̂ + K · vThe 
ovarian
e matrix is updated a

ording to:
Σp′ = Σp − K · Σv · K

T5.3 SimulationAs mentioned earlier, Kalman lo
alization was not �nished in time for thetournament. However, some simulations were run in MATLAB using themodel presented in the previous se
tions. In this simulation the robot movedwithout obsta
les and was presented with angular observations of the fea-tures every third time step, provided that the features were lo
ated in a90-degree �eld of vision in front of the robot. Noise was added to both theodometri
 measurements and the feature observations. Figure 14 shows themovement and believed poses of the robot during a run of this simulation.25
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Figure 14: A simulation of kalman lo
alization on the so

er �eld. A generousamount of noise has been added to the angle measurements.5.4 Ball lo
alizationSome early experimentation was done on ball lo
alization using the sametriangulation method des
ribed in 5.2.1. The a

ura
y of this model wasevaluated using a simple test: a set of images, ea
h showing the ball lo
atedon the playing �eld was taken with the robot's 
amera. In ea
h image, the
lassi�
ation and feature extra
tion algorithms would estimate the lo
ationof the ball in the image, and 
al
ulate the angles to it's 
enter. Theseestimations were then 
ompared against a human user's verdi
t on the balllo
ation, whi
h we 
onsider to be 
orre
t within reasonable pre
ision. Thedi�eren
e was then used to 
al
ulate the mean and 
ovarian
e of the errorin angle measurement.It was found that the 
omputer typi
ally shot low - a fa
t that 
an mostlikely be attributed to the spe
ular highlight from the lighting on top of theball, whi
h was usually mis
lassi�ed. After 
ompensation for this systemati
error, the error propagation from angles into relative x,y-
oordinates was
al
ulated. The results of ball lo
alization on the image shown in �gure 16is shown in �gure 17. 26
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Figure 15: The distan
e error for the simulation illustrated in �gure 14. Theerror de
reases in time as more measurements are in
orporated.The positional un
ertainty of ball lo
alization was judged too great forthe method to be used e�e
tively. Kalman �ltering the ball lo
ation may beable to redu
e the un
ertainty, but would depend on 
ontinuously tra
kingthe ball with the 
amera. We de
ided that this would not be feasible giventhe qui
k movement of the ball, and opted instead to go for the �blind moth�approa
h.6 The 
ompetitionThe 
ompetition started out badly for us. One of the other groups had
omplaints regarding front mounted IR-dete
tors. Be
ause of the emittedlight they saw blue goal pixels in the grass dire
tly below our IR-dete
tors.Thus we had to put some tape underneath the dete
tors so it would notlight up the grass. Be
ause of this our roller did not work properly in theseeding round.We still managed to s
ore one goal and a

ompanied by �ve other teamswe made it through to the a
tual tournament.In our group were Clas Ohlson, Zidane and Ball Blaster (us).Our �rst game against Zidane ended 1-0 to our favor.In our se
ond game we played against Clas Ohlson. Clas Ohlson s
ored27
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ir
le shows the feature extra
tion algorithm's estima-tion of ball lo
ation in the image.�rst � this was the only time in the whole tournament that we were not inthe lead. But we managed to even the s
ore and then in the very last se
ondwe s
ored the �nal goal, whi
h made us the wining team with 2-1.In the semi�nal we met Rasdalf. This game was won with the s
ore 2-1and our 
han
e to partake in the grand �nale was se
ured.In the �nal we met RAAS, who had an impressive tra
k re
ord from thegroup play and semi-�nals. We felt that we were underdogs from the startso we had to do a real good mat
h in order to beat RAAS.We de
ided to make one last 
hange in our program before the �nal. Theprogram was tuned to in
lude an initial berserk mode that should initiatethe game with a qui
k thrust and a well aimed shot dire
tly at the goal.This should be done blindly and with speed none had ever dared trybefore. Sadly, due to an unknown but quite vi
ious bug the berserk mode�zzled, transforming the breath taking speeds we programmed it for into amodest 
rawl.Even with this bug present, this ta
ti
 turned out to work well. We hitthe ball (whi
h was not at all 
lear that we should be able to do) and eventhough we did not s
ore we got the ball down to the left 
orner next to ouropponents goal.With this position of the ball RAAS was not able to get a grip of theball and we got the ball 
loser and 
loser to their goal.When one minute remained of the game we s
ored. Then something veryunfortunate happened � during a wild maneuver to get away from a wall weslammed into a wall so hard that we lost power. This 
aused our programto be lost and sin
e it was to big to store in the EyeBot ROM memory we
ouldn't reload qui
kly but rather had to take the robot out of the �eld toreload the program from our 
omputer.This pro
ess takes well over a minute and during this time RAAS was28
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Figure 17: The estimated map lo
ation of the ball dete
ted in �gure 16.all alone in the playing �eld, leaving our goal fully unguarded.Lu
kily RAAS did not manage to s
ore during this time and we were thewinners of the 
ompetition.
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