Kungl. Tekniska Hogskolan
CSC

Ball blaster

(Project report in Robotics and autonomous systems, 2D1426)

Author: Anders Boberg, Staffan Gimaker,
Ulf Backudd, Joakim Goldkuhl
E-mail: aboberg@kth.se, gimaker@kth.se,
uffesbox@hotmail.com, joakimgo@kth.se
Teacher: Patric Jensfeldt

Abstract

This report describes how we built and programmed the soccer
playing robot Ball Blaster.

Ball Blaster is a wheel driven robot with a camera for vision and
various extra equipment such as IR-sensors for sensing the ball at close
range, ultrasonic-sensor to avoid driving into walls and a roller for hold-
ing the ball. Ball Blaster is built around an Eye Bot microcontroller
and is programmed to score goals by pushing an orange ball into a
blue or yellow goal. Ball Blaster was entered into a robotic soccer
competition and won first place.

Contents

1

2

Introduction 3
Hardware 3
21 TheBase 3
2.2 Roller front 4
2.3 Sensor turret 5)
2.4 CPU board holder and servomount 6
2.5 Sensors and electronics 6
2.6 Armour 6
2.7 Possible improvements on the hardware 7
Strategy overview 7
3.1 The simple strategy Lo oL 8
3.2 The advanced strategy 8
Vision and image processing 10
4.1 Color compensation 10
4.1.1 Imagerejection 11
4.2 Camera calibration 12
4.2.1 Image formation theory 12
4.2.2 Lens distortion theory 13
4.2.3 Calibration procedure and results 14
4.3 Classification 16
4.3.1 GGaussian mixturemodel 16
4.3.2 Adaptive sampling 17
4.4 Filtering and post-processing 17
4.4.1 Median filtering oL 18
4.42 Rejection heuristics 18
4.5 Feature extraction 19
4.6 Image acquisition and motor control 20
Localization 21
5.1 Odometric error model 21
5.2 Kalman localization 23
5.2.1 Observation 23
5.2.2 Measurement prediction 24
5.2.3 Matching oo oo oo 25
5.2.4 Estimation 25
5.3 Simulation 25
5.4 Ball localization, 26
The competition 27

References

30

1 Introduction

Our strategy was to build a robust and modular robot. The robot should
be robust in the sense that we would not program it for special cases that
could occur.

We also wanted the program we wrote to be easy to maintain and extend
when needed. The same goes with the mechanical part of the project. This
was our main concept during the project.

All software development was done in C++ and MATLAB, aided by
version control.

2 Hardware

When we started to design the hardware we decided to build it out of four
blocks (Base, roller front, camera and sonar turret, and CPU board holder)
that could easily be replaced individually. The idea was that we should
have a working robot platform on which we could test the software at all
times. The advantage of the blocks was that if one of the blocks was not
good enough, we could build a new one and quickly replace the block with
minimal disturbance to the software testing and development.

We standardized the distance between drilled holes and the diameter of
holes so that parts could be reused and relocated easily.

For propulsion we used differential drive which had been successful in
previous years and is easy to implement. To sense the environment we used
IR-sensors and a camera.

2.1 The Base

The base was the block to which everything else was attached. It consisted
of an aluminium plate with the motors and wheels attached. We knew that
this part was important to get right the first time, since we needed it at all
times to test the software, and also because it consumed a lot of aluminium.

We designed it as a circular disk with a diameter slightly smaller than 18
cm to get some margins to the maximum allowed diameter. The curvature
of the disc was cut off at the wheel mounts and it was cut flat at the front
were we later mounted a replaceable front.

The wheels were first mounted in slots in the base metal sheet but we
discovered that it was time consuming to mount the motors and wheels that
way. Therefore we cut away the slots so that the wheels could be slid onto
the shaft of the motors without removing the motors from the base.

A bolt was used as support at the stern and smaller bolt was used as a
“tipping guard” in the front of the robot. The tip protection was added to
prevent the robot from tipping over too much when breaking abruptly from

Figure 1: The base roller

full speed. Two M2.5 bolts were fixed to the base front and used as the roller
attachment.

2.2 Roller front

To keep the ball close to the robot when driving, we decided to equip the
robot with a roller that gave the ball backspin. The roller was made out of
a 3mm steel rod covered by a silicone rubber tube. The silicon tube created
enough friction against the ball and it worked surprisingly well.

To hold the rod we used ball bearings mounted in aluminium L profiles.
The roller was propelled by a small 3.5V motor via a rubber band.

We experimented with a divided rod with a V-shape to get the ball
centered on the roller but it did not work as well as we had hoped. Instead
we finally used a straight rod with the bearing holders at the sides to stop
the ball from spinning away from the robot.

The roller motor was fed with a separate 1000 mAh, 4.8V battery pack.
A noise filter, made out of a capacitor between plus and minus poles, was
added to the motor cables to reduce the risk of interference from the motor.

Figure 2:

2.3 Sensor turret

From start we decided to have a camera mount that was movable around
two axes, tilt and rotation. The advantage with this arrangement is that it
is possible to look for the goal without turning the robot and risk losing the
ball.

Another decision we made at the start of the project, was to place the
camera below the violet color marking of the robot, which we later discovered
to be a suboptimal solution for the camera placement.

We tried several different servo setups. The first attempt was with two
standard servos but the limited space made it difficult to fit the camera
holder. Therefore we bought a Hitec micro servo (HS-55).

We discovered by trial and error, that the camera must be mounted so
that the camera and tilt servo rotates. If the camera and rotation servo is
first tilted and then rotated, an unwanted rotation around the optical axis
is created.

The final solution was to mount the standard servo upside down and
let that servo control the rotation. The micro servo and sonar were then
mounted so that both of them rotated. The camera was fixed to the micro
servo so that it controlled the tilt angle.

This setup worked well from a mechanical point of view but we discovered
too late that it placed the camera in a shadow, causing problems when
processing the images.

2.4 CPU board holder and servo mount

To get enough space for the rotating camera and to get a clean design of
the robot we mounted the CPU board and the servo holder onto aluminium
L-profiles, attached vertically at the rear part of the base. Also the sensor
electronics were later attached to this block

2.5 Sensors and electronics

We used IR-sensors to detect if the ball was in the range of the roller. If the
ball was close to the sensor, the roller should be started. The output from the
detector electronics was also fed into the processor to detect if the robot had
the ball or not. We chose to start the roller by hardware because we wanted
a short roller response time and reduce the workload for the processor.

The sensors consist of one IR-LED that illuminates the ball and one photo
diode that detects if something is illuminated by the IR-LED. Because the
output from the photo diode varies less than one volt between “no ball”
and “ball close to the detector”, an op-amp was used to detect the voltage
difference.

We used the open collector op-amp LM339 that gave us the opportunity
to equip the robot with four detectors. Two of them were used for ball
detection so that the full length of the roller could be monitored and the
other two were used as reverse collision detector and lift of field detector.

The output from the ball detector sensors was used to start the roller
motor using an effect transistor. Because the forward current gain of our
effect transistor was only 10-25, we amplified the output from the op-amp
using a small signal transistor.

The reference voltage into the op-amp was created by a voltage divider
that it could be adjusted with a potentiometer. It is important to put the
potentiometer in the lower part of the voltage divider so that the reference
voltage can be adjusted down to 0 volt.

The first IR diodes we used were too bright and caused illumination of
the surroundings so that the pictures from the camera were affected. This
problem was solved with smaller, less luminous LEDs. The cameras of other
robots detect the emitted infrared light but since it appears as white in the
picture, (almost) no one complained.

The packaging of the IR sensor electronics was manufactured from an old
tape case.

2.6 Armour

The robot was equipped with armor around the backside. This armor made
the robot more resistant to collisions with other robots and it also moved
the center of gravity further behind the wheelbase, reducing the nodding
tendencies when breaking.

— 4,8V

Figure 3: Schematics for the IR-detector controller board.

2.7 Possible improvements on the hardware

We discovered some minor issues on the hardware too late, which could have
increased the performance of the robot if we had had the time to fix them.
The camera position was the biggest issue. Better pictures could have been
received from the camera if we had mounted it higher so that the camera
wasn’t in the shade.

The second issue was that the roller spun with a speed that created some
kind of resonance in the ball. The ball sometimes started to bounce against
the roller, sometimes far enough to escape our control. This phenomenon
could probably be eliminated if the roller speed was slightly increased.

3 Strategy overview

We developed two strategies in parallel: a simple fall back plan and a more
elaborate variant with bells and whistles aplenty.

This first, simple strategy was implemented for and used in labl.

With the bonus points for the exam were secured, we began to think
about a more advanced strategy. In the end we had to abandon the advanced
strategy in favor of our fall back due to the inevitable lack of time and a few
elusive bugs in the localization code.

3.1 The simple strategy

The basic approach behind the simple strategy was to first find our target,
adjust our heading and drive in a straight line to it.

Locating the target was done by turning on the spot and taking pictures.
The search was assisted by the panning camera turret which was used as
much as possible, being both faster and more reliable.

When the robot saw the ball it drove up to it where the spinner device
caught on to it. It proceeded by finding the goal and scoring, using the basic
three step procedure described above.

Extra care had to be taken not to drop the ball while turning in search
for the goal.

This strategy was quite simple to implement, pretty robust and worked
reasonably well but can ultimately not be considered intelligent in any way.

It was implemented as a state machine with the following states:

e START STATE - Start up state, drive forward towards the middle of
the field.

e FIND BALL - Search for the ball.

e GO TO BALL - Drive to the ball.

e ADJUST TO BALL - Adjust the heading so it won’t miss the ball.
e SCAN FOR GOAL - Look for the goal.

e ADJUST TO GOAL - Adjust the heading so it won’t miss the goal.
e SCORE - Drive to goal.

e GOAL GESTURE - Makes a goal gesture, and drive out of the goal.

The state transitions are illustrated in figure 4.

Implementation of the state machine was made with a state manager. It
made the code very easy to read, maintain and extend with new states.

When a state has executed it returns a pointer to the next state (which
may or may not be the same state) and the manager directs the program to
that state.

3.2 The advanced strategy

Given that we could establish our absolute position in the playing field a
whole new exciting world of possibilities is opened up — we no longer have
to actively search for the goal, path planning and avoiding the opponent is
suddenly both feasible and quite simple.

As you probably guessed already the basic ingredient of this more intelli-
gent approach is robust localization. With localization in place we envisioned

START STATE

4 FIND BALL -

¥

0O TO BALL .
&

| — |

ADJUST TO BALL ' SCAN FOR GOAL

&

¥

ADJUST TO OAL

v
L SCORE

h 4

GOAL GESTURE

Figure 4: Illustrates all the possible state transitions.

path planning and obstacle avoidance to be implemented using potential field
planning.

The state machine approach used in the simple strategy would still serve
as the basis for implementing the advanced strategy.

The walls and the opponent would generate positive potential. Negative
potential would be generated by the current target, i.e. either the ball or
the goal. The potential generating functions would depend on the entire
pose of the robot, including orientation. This is desirable since not including
orientation in mix implies obvious troubles with driving closely along walls.

If the implementation of this strategy had been completed in time it
would probably have been very general and elegant way to navigate the field
and score.

4 Vision and image processing

4.1 Color compensation

Perhaps the challenge we spent most time on was getting decent pictures
out of the camera. Apart from receiving the occasional strange image the
issue we had was extremely poor color constancy, much thanks to the auto-
brightness feature of the camera.

Soon after labeling and training on our first batch of training data we
started to notice the problem at hand. It would function well for perhaps a
day or a few hours only to totally collapse later.

Battery voltage and ambient lighting seemed to cause a significant change
in color in the image, as can be seen in figure 5.

Figure 5: Data obtained in two different runs, taken under different ambient
lighting conditions. Different classes are marked using different colors. Note
that for most of the classes the data points are dispersed in two distinct
blobs corresponding to the two different runs.

At the time, it seemed like a good idea to a one-shot calibration to
compensate for the illumination. Alas, so we proceeded to implement it.

The basic idea was to take a picture of a black and white object, analyze
it and then compensate all colors so that the black and white appeared as
black and white respectively. L.e., given black and white reference colors B

10

and W transform a color (r,g,b) to (', ¢, b") according to:

B,
r = 255147; 5 (1)
— 255W B{ (2)
b—
b =2
) Bb (3)

Furthermore, each component of (r/,¢',b’) is always saturated to lie in
the range [0, 255].

Needless to say we ran into a lot of headaches both implementing and
using this approach. In retrospect, it’s quite obvious that the calibration is
practically useless once the auto-brightness adjusts the gain settings.

Once we realized this we tried a second approach — online color calibra-
tion, i.e. recalibrate each frame using information in the frame. This is
an indirect way of reading the gain values applied to the respective color
components.

A small black and white reference was attached below the camera. For
each frame, a small number of pixels were sampled from the reference’s
black and white regions. Using this sample we could determine how black
and white were perceived this frame. As in our first approach, equations 1
through 3 were used to compensate all colors.

4.1.1 Image rejection

With a successful color compensation scheme in place there was but one
hurdle remaining — low dynamic range. This phenomenon was especially
bad in the blue channel, where less than 4% of the available range was often
used.

The low dynamic range caused noise to have a large impact since its
magnitude seemed independent of dynamic range. As a result, as dynamic
range tended towards zero we saw more and more blue patches in the image,
often in the banded noise usually present in the image.

This problem was greatly exaggerated when the robot was run with it’s
color marker on, since it made the camera’s mounting location an even dim-
mer place than before. This could probably have been prevented by mounting
the camera in a more open space.

Although this problem remained unsolved due to time constraints, a
method for detecting bad images was developed.

The idea is very simple: if the dynamic range, measured during calibra-
tion using the color reference, is below a certain threshold for one or more
channels the picture is discarded and another is taken. As new pictures are
taken, the auto-brightness will have time to adapt to the new conditions and
result in new pictures with better dynamic range.

11

4.2 Camera calibration

Being able to reliably measure angles in the image is of great value - it
provides the tool needed to track, turn towards or approximate the distance
to an object in sight.

A brief review of the required theory is presented here along with our
results. The theory serves as a basis for understanding how angles are cal-
culated and which camera parameters we have to recover before doing so.

4.2.1 Image formation theory

Suppose we have a point P = (X,Y,Z) in a three-dimensional space that
is projected down on the image plane of a camera with focal length f, as
depicted in figure 6. For simplicity, the point P is described in the reference

1
/ (X,Y,Z)

frame of the camera®.
[x
.

Figure 6: Illustrates how points in 3D-space are projected down to the image
plane. The optical axis is illustrated by the dashed line and the image plane
by the line perpendicular to it.

We assume that the elements of our image sensor are square and the
origin of the image coordinate system is at the intersection with the optical
axis. The image coordinate p = (z,y) corresponding to P is then easily
calculated using similarity:

X

Y
y=1ry
It’s trivial to extend this model to allow rectangular sensor elements and

an arbitrary image coordinate system origin. Let (c.,c,) denote the origin
of the image coordinate system, usually referred to as the camera’s principal

point, and o the width to height ratio of the sensor elements. The equations
then become:

(4)

=< 8l
SIN N

a::f%—kcx (5)

If it’s not, we have to transform P into the coordinate system of the camera before
proceeding. This is trivial to do with one or two matrix transformations.

12

y= fa% + ¢y (6)

It’s often convenient to express this as a linear transformation using ho-
mogeneous coordinates and the matrix K formed by the internal parameters:

v fe v c
K=[0 fo ¢ |=] 0 fy ¢ (7)
0 0 1 0 0 1
T 1 X
v | =Ky (®)
1 Z

Where 7 is a skew factor that’s non-zero if the sensor elements are rhom-
bic rather than rectangular. For our particular camera, however, this pa-
rameter turned out to be close to zero and was thus left out entirely.

4.2.2 Lens distortion theory

The equations derived in the last section only hold for an ideal pin hole
camera. In reality, all cameras are plagued by distortion introduced in the
lens. In a heavily distorted image angles cannot be calculated using the
simple relations presented above, nor is the straightness of lines preserved.

The severity of the lens distortion is usually inversely proportional to
the price of the aperture and proportional to its field of view. Thus, it was
not surprising that the lens used on our camera introduced clearly visible
distortion (see figure 7).

R -'.".;'
'Ll 11

T TLE

=

Figure 7: The figure shows the image of a flat surface with a grid pattern
before and after undistortion.

In the distortion model we employ, each projected image coordinate is
distorted by an amount proportional to its distance to the principal point
[1]. Given the normalized image coordinate x,, the distorted coordinate x4

1S:

13

ro= @) = (500)

z 0

zg=LF) | g |+ 0|, 7=/(@9"(,9) (10)
0

L(7) = k172 + kot + k37® (11)

Incorporating this into equation 8 yields the complete image formation
equation:

x
y | =Kaq (12)
1

What we can measure in an image is limited to distorted coordinates on
the form z4, whereas what we’re really interested in is their corresponding
undistorted coordinates x,,. Thus, we want to find the inverse mapping from
x4 t0 Tp,.

In our case k3 = 0, which reduces the inverse mapping problem from
a pair of seventh order polynomials to a fifth order pair. From equation 9
through 12 we see that the distorted image coordinate (z,y) is related to its
real coordinate (Z,y) by:

{ a = k(2 + &%) + ko (° + 28352 + 7% (13)
B = k(2% + §°) + ko (§3* + 22%5° + 7°)
6 X
g l=K1'y (14)
1 1

Since no analytical solution can be found for the above equations we used
the iterative approximation described in [1] to calculate the inverse mapping.

Calculating the approximation on the robot is not feasible in real-time,
instead it’s stored in a pre-computed lookup table generated in and exported
from MATLAB.

4.2.3 Calibration procedure and results

Our initial plan was to first correct lens distortion in image space, as sug-
gested in [2]. Once rectification is possible the internal parameters K can
be recovered using a known 3D object, singular value decomposition and
handful of linear algebra tricks [3], [2].

The undistortion process turned out to be less straightforward than it
appeared, partly because the required non-linear least squares minimization

14

quite easily got stuck in local minima. Another hurdle is that an imprecisely
measured calibration object is likely to incur significant uncertainties to the
parameters. Ultimately, this home brew approach was abandoned in favour
of a ready-made camera calibration software.

After roaming the web in search for an apt tool we settled on the MAT-
LAB camera calibration toolbox [4].

Figure 8: The 20 images used to calibrate the camera.

It was exceptionally easy to use and produced results far better our a
layman’s attempt ever could have. Only a small amount of manual labour
is required and we highly recommend it to anyone looking to solve the same
problem.

fo 0 ¢ 140.47 0 78.64 039 0 0.78
K= 0 f, ¢ |= 0 154.75 70.70 |+ 0 044 0.58
0 0 1 0 0 1 0 0 1

k1 = —0.32385 £ 0.00562
ko = 0.11651 + 0.00893

Table 1: The results obtained from calibration. The numerical errors are
approximately three times the standard deviations [4].

The toolbox gives an estimate of tangential distortion due to imperfectly
centered lenses in addition to the sixth order radial distortion of equation 11.

15

However, the obtained values were much to uncertain and thus discarded.

Once all parameters are known, the horizontal and vertical angles to a
point are trivial to calculate. Let (Z,7) be the coordinate after undistortion,
then:

T T
tanf, = — < 0, = arctan — 15
. 7. (13)
tan 6, = KA 6, = arctan g (16)
fy)

4.3 Classification

The first multi-class classifier we implemented was the simple and well-known
KNN algorithm. A functional albeit inefficient implementation of the KNN
algorithm is trivial to do and as such it served as a good first candidate.

An investigation detailed enough to draw valid conclusions considering
performance was never done since it was dropped in favor of the other meth-
ods described below.

Our second attempt used a support vector machine. However, training
was so slow that only a far to small subset of the training data could be
used.

All our classifiers were implemented in the same manner on the robot —
using a 32 x 32 x 32 pre-computed lookup indexed with the color of the pixel
being classified.

4.3.1 Gaussian mixture model

The classification method used in the end was a Gaussian mixture model.
The basic idea of mixture model is that instead of trying to fit a single
mode distribution to a potentially diverse class, a superposition of several
distributions is used. The component distributions are adapted to separate
clusters of data within the class using some training algorithm - in our case
expectation mazrimization.

The motivation for taking the mixture approach is that upon examina-
tion, the pixel data points show high intra-class variations and clustering.
Figure 5 illustrates this, although in that particular case the variations are
exaggerated due to lack of calibration. One reason for these intra-class vari-
ations might be varying lighting conditions for different locations on the
playing field. Using a mixture model, we could for example adapt a compo-
nent distribution to a subset of the images for which the lighting conditions
are similar.

As mentioned, the training algorithm used for our mixture model was
expectation maximization, or EM. The one parameter we needed to set be-
fore using this algorithm was the number of components distributions to be

16

used for each class. This parameter was set individually for each class after
inspecting the distribution of their pixel data points in RGB space.

After setting the number of components, the parameters of the compo-
nent distributions are randomized, and the algorithm proceeds iteratively in
two steps: First, the probability density function for each distribution is eval-
uated for each data points, and the data points are labeled as belonging to
the distribution with the highest density. Next, the parameters of each dis-
tribution are recalculated using maximum-likelihood estimation on the data
points belonging to that distribution. This is repeated until convergence.

Using the gaussian mixture trained in this manner, we constructed a maz-
wmum a posteriori classifier. This requires calculating the prior probabilities
for each class, which is typically done by taking their relative frequency.
Instead of doing this, however, we opted to tune these priors manually to
achieve the results best suited to our needs. For example, we lowered the
prior probability of detecting a ball pixel, since the classifier had a high ratio
of false ball positives. One possible reason for this may have been that our
training set had a bias towards pictures containing balls.

4.3.2 Adaptive sampling

It’s often the case that large portions of an image are of no interest to the
control logic — big patches of the opponent’s color tag would be the best
example, since we completely ignore that information. Given that, reducing
computational load by not classifying the uninteresting portions is an obvious
and sound idea.

One simplistic approach is to always only sample a subset of the image.
However, that would break parts of our post-processing (see section 4.4.1).
As a consequence, we chose to implement an algorithm that initially samples
a subset of the image and then expands the search to neighbors of interesting
pixels (ball and goal pixels) — i.e. it adapts the time spent depending of the
value of the information.

For simplicity, we opted for a uniform initial sampling distribution, as
illustrated by figure 9. The main reason for rejecting the idea of sampling
more frequently at the horizon was our tiltable camera turret.

4.4 Filtering and post-processing

To battle spurious noise and other misclassified pixels an array of post-
processing techniques were invented and implemented.

Noise is a big concern due to the Bayer mask used in the camera, which
causes odd colors to appear at sharp color transitions. Another incentive to
do some sanity checking on the classification is the atrociously poor color
constancy of the used camera.

17

Figure 9: The adaptive sampling in action.

4.4.1 Median filtering

In the image processing field, a standard approach to counteract salt and
pepper noise is the median filter. Inspired by it we developed a very similar
filter to suppress spurious misclassified pixels.

The filter takes a set I' of pixel coordinates and outputs a set IV C T’
according to:

I"={(z,y) €T [{(, B) € M@, y) | h(v, B) = h(z,y)}] > t} (17)

Az, y) ={(e,B) € Z ||z —a| <1 |y - p] <1} (18)

h(z,y) and A(x,y) denote the classification and neighborhood of (x,y)
respectively.

Put in text, a pixel passes the filter if at least ¢ pixels in its 3 x 3-
neighborhood are of the same class.

To save valuable instructions we only filter pixels belonging to classes
that we are interested in (ball and goal pixels). For example, the cost of
filtering a huge patch of mostly uninteresting grass is seldom justified.

4.4.2 Rejection heuristics

In addition to the median-like filtering the following checks are applied in
order:

e If the pixel is above the camera center and classified as a ball pixel it’s
rejected. Since the camera’s height above the floor is greater than the
ball’s diameter this is impossible.

This test could also be applied to grass pixels. For performance rea-
sons, this option was not explored — although, in retrospect, this would
probably have been a better approach than the one developed below.

18

(x,y)

Figure 10: If (z,y) is a pixel classified as ball and b — a < 0 it can safely
be rejected. a is the camera’s tilt angle and b the angle to the pixel in the
image.

e Any grass pixels found above a pixel classified as goal can be rejected,
knowing that no grass pixels should be found above the floor. This
check was developed after it was discovered that the Bayer mask often
introduced a thin line of artificially bright green pixels at the upper
edge of the blue goal.

Its imperative that this test is applied after the median filtering to
reduce the risk of rejecting grass pixels due to misclassified goal pixels.

o All goal pixels below the grass line are discarded. This proved to be
an effective tool for removing erroneously classified pixels due to the
specular highlight on the ball. Obviously, this isn’t perfectly robust
and fails when the ball is in close proximity of a wall.

4.5 Feature extraction

To enable localization (see section 5) we need the ability to make observations
that can be related to the pose of the robot. Later in section 5.2.1 we shall
see how an image coordinate of known height can be used for this purpose.

An algorithm for detecting and locating goal corners in the images was
developed, providing four distinct features — a left and right corner feature
for each goal.

These particular features were chosen on the merit of their relatively
good robustness and ease of implementation. The extraction is independent
of the robot’s current pose, which avoids coding for special cases and boosts
robustness.

If a large enough number of goal pixels are found the feature extraction is
triggered. Beginning at the midpoint coordinate of the detected goal pixels,
search outwards horizontally until a wall pixel is found. The x-coordinate of
the feature is calculated as the mean value of the x-coordinates of the first
wall pixel and the last goal pixel found during this search.

19

Figure 11: Eight examples of the feature detector in live action — taken by
the robot during a live game. The features are marked by the black crosses.

If the wall is found, the search proceeds downwards until the first grass
pixel is encountered. This provides the y-coordinate of the feature, calculated
analogously but using the last wall and first grass pixel instead.

Although simple and straightforward, this algorithm works surprisingly
well, as can be seen in figure 11.

As a post-processing step unfeasible features are discarded using the same
technique used to reject ball pixels based on angle, described in section 4.4.2.

4.6 Image acquisition and motor control

The RoBIOS platform used on the EyeBot ships with functionality for con-
trolling velocity and angular velocity of differential drive robots. This type
of locomotion control interface is powerful and very simple to use, and thus
almost a prerequisite for developing the robot control software.

Due to a questionable hard- and software implementation the built-in
controller of RoBIOS severely limited the usable frame rate of the camera. In
our case, the quirks and problems of it were worse, to the degree of being fatal
— when any wheel was turning the output from the camera got scrambled.
Alas, we didn’t even have the option of using the built-in controller.

Instead, we developed our on home brew PID-controller for controlling
the motors in a similar fashion.

This had the side effect of allowing a higher camera frame rate. We used
it with no problems at 7.5 Hz only got a few bad frames at 15 Hz. For
comparison, other groups reported that they were limited to frame rates of
roughly 2 Hz.

20

5 Localization

Unless a soccer bot is content with simply following the largest blob of color
in its field of vision, like a moth flying blindly towards the nearest source
of light, it has to be able to keep track of its position on the playing field.
This is called localization, and is typically accomplished by analyzing sensor
data, possibly combining several different sources through sensor fusion.

Needless to say, localization is also a prerequisite for most planning meth-
ods, since they typically boil down to finding some path from the current
position to the most desirable goal position.

Our group aimed to implement localization by using a kalman filter to
fuse odometric data with feature measurements extracted from the camera.
Unfortunately, due to a few elusive bugs and lack of time, localization had
to be dropped before the tournament. However, these bugs have since been
eliminated, and the following sections describe the system we had intended
to use in detail.

5.1 Odometric error model

100 B

-100

—200

-300

-400 q

I I I I I I
-300 -200 -100 0 100 200 300 400

Figure 12: The position uncertainty of the odometric measurements grow in
time as a result of error propagation.

An initial approach to localization might be to simply use wheel encoders
to calculate the robot’s movements relative to some initial position. As we
shall soon see, it is rather naive to trust wheel odometry completely, and one
quickly realizes the need for sensor fusion.

21

Our robot uses a differential drive configuration, and thus uses the fol-
lowing rule to update its pose|5|:

x Ascos(f + %)
P = f(z,y,0,As,,As))=| y | =| Assin(d + %)
0 Af

Where As = % is the distance travelled by the robot, Af =
% is the change in rotation, As, and As; are the distances travelled
by the left and right wheels respectively, and b is the distance between the
two wheels.

Examining this expression, it is easy to see that even a slight error in
measurement of the starting angle will cause a drift in position that increases
with time.

We assume that the initial pose is a three-dimensional, normally dis-
tributed stochastic variables with covariance matrix:

o2 0
Xy = 0

o, o

2
Ty

0
0
And that the wheel updates As, and As; are normally distributed with the
following covariance matrix:

S k|As,| 0
AT 0 klAs]

Then the propagation of error in position can be approximated using the
error propagation law:

Sp =Vl T VpfT +Vaf -Za-Vaft

Where V,f and Vaf are the Jacobians of f with respect to x,y,0 and
As,, As; respectively.

The parameter k used in the covariance matrix of the position updates,
YA is a measurement of the uncertainty of the odometry. The wheel encoders
typically have very high precision, but there are many other factors weighing
in, such as wheel slippage. After some experimentation in a MATLAB-
simulation (see 5.3), a value of k = 0.05 was chosen. Since we never got to
testing our localization system on the soccer field, the validity of this value
is uncertain.

In order to have the most recent odometry information available at all
times, the odometry update procedure was carried out in the vw-controller,
at the same rate as the PID-controller updates.

22

5.2 Kalman localization

To combat the ever-increasing uncertainty of the odometric model, we de-
cided to localize using features whose coordinates in the world frame were
known. The features of choice for this were the goal corners, which proved
to be easily detectable(see 4.5).

The Kalman localization procedure can be divided into the the following
steps|5]: position prediction, observation, measurement prediction, matching
and estimation. The first of these, position prediction, corresponds to up-
dating the position using the odometry error model and has already been
discussed in 5.1. The remaining steps are discussed in the following sections.

It’s worth noting that it’s not necessary to go through all steps for each
position update. Typically, odometry information arrives at a much higher
frequency than camera observations. This means that there are usually sev-
eral prediction steps between each observation.

5.2.1 Observation

The observation step consists of detecting a feature and transforming the
measurements of this feature to coordinates in the camera reference frame.
Thanks to camera calibration (see 4.2), we are able to accurately measure
the x- and y-angles to a coordinate on the camera’s image plane. Using
these angles, and the known height h = 75 mm of the camera above the
goal corner, we are able to triangulate the relative location of the corner (see
figure 13) in the camera frame.

The relative location of the feature is calculated using the following for-
mula:

h cos(a)
pfr = (xf> :ff(a’ﬁah):]::I;(&B(j)
v an(3)
Errors in the measurements of «, 6 and h are described by
o2 0 0
Zaﬁh = 0 O'% 0
0 0 o}

These variances should be estimated experimentally, but unfortunately we
had no time to do so. The error in (o, 3, h) propagates to (z,y) according
to the following approximation:

Sy =VIr Sapn VI
where V fr is the jacobian:

__hsin(a) hcos(a)(1+tan2(,8)) cos(a)

_ tan(Q) tan 2(3) tan(8)
fo o h cos(a) B hsin(a)(1+tan2(,8)) sin(a)
tan(3) tan 2(3) tan(8)

23

Figure 13: Knowing the angles « and (3, and the height h, we can triangulate
the relative position of a goal corner feature.

5.2.2 Measurement prediction

This step consists of predicting what the feature coordinates would be in the
camera reference frame, given the current estimation of the robot pose and
the known feature coordinates in the world frame. We define the following
transition function:

sin(0

cos(0)

) cos(

Where pc is the feature location in the camera frame, p = (2,9,0)7 is the

P —

(xw —) 008(9) + (yw — 9)
-

pc = fyrea(d;pw) = (—(zw — &) sin(0) + (yw

e

current estimation of robot pose and py = (IW is the location of the

yw
feature in world coordinates. As before, to propagate the measurement error
of the robot pose estimation to the relative feature coordinates, we use the

error propagation law:

Epred = vfpred : Ep : Vf;g;"ed

Jdxc dzc Oz¢c
o o Y 0 _
vfpred = (dyc Oyc a(?JC > -
9z 91 99

24

_ (- COSAé) - sin(@i) —(xw — &) sin(@i) + (yw —9) cos(@i) >
sin(f) —cos(f) —(zw — &) cos(fd) sin(6

5.2.3 Matching

In this step we match the observed features against the predicted ones, calcu-
lating the “innovation” of a feature as the difference between the observation
and prediction. In the general case, we would not necessarily know which
prediction corresponded with which observation. In such cases one usually
picks the closes match, provided that it is closer than some chosen threshold.
If it isn’t, then the observation is discarded.

In our case, we chose to have complete confidence in our ability to as-
certain the identity of a feature. We are limited to a mere four features and
each of them are clearly distinguishable from the others. For this reason, we
were able to skip the matching step. We still calculate the innovation for
each observation, however, since it is needed in the final step.

UV =Ppy—DPC
Ev = Z)pred"i_gf

5.2.4 Estimation

In the final step we update our estimation of the robot pose based on the
observations we have made. This is done by calculating the Kalman gain
and applying it to the innovation:

Kzzp‘vfpz;ed'zgl

P =p+K-v

The covariance matrix is updated according to:

Sy =%, - K %, K"

5.3 Simulation

As mentioned earlier, Kalman localization was not finished in time for the
tournament. However, some simulations were run in MATLAB using the
model presented in the previous sections. In this simulation the robot moved
without obstacles and was presented with angular observations of the fea-
tures every third time step, provided that the features were located in a
90-degree field of vision in front of the robot. Noise was added to both the
odometric measurements and the feature observations. Figure 14 shows the
movement and believed poses of the robot during a run of this simulation.

25

T
ig Believed starting pose
L Actual starting pose
* Goal corner
O Actual pose
O Believed pose
1000 -

500

=500~ —

-1000 L L
-1500 -1000 -500 [500 1000

Figure 14: A simulation of kalman localization on the soccer field. A generous
amount of noise has been added to the angle measurements.

5.4 Ball localization

Some early experimentation was done on ball localization using the same
triangulation method described in 5.2.1. The accuracy of this model was
evaluated using a simple test: a set of images, each showing the ball located
on the playing field was taken with the robot’s camera. In each image, the
classification and feature extraction algorithms would estimate the location
of the ball in the image, and calculate the angles to it’s center. These
estimations were then compared against a human user’s verdict on the ball
location, which we consider to be correct within reasonable precision. The
difference was then used to calculate the mean and covariance of the error
in angle measurement.

It was found that the computer typically shot low - a fact that can most
likely be attributed to the specular highlight from the lighting on top of the
ball, which was usually misclassified. After compensation for this systematic
error, the error propagation from angles into relative x,y-coordinates was
calculated. The results of ball localization on the image shown in figure 16
is shown in figure 17.

26

900

0 50 100 150

Figure 15: The distance error for the simulation illustrated in figure 14. The
error decreases in time as more measurements are incorporated.

The positional uncertainty of ball localization was judged too great for
the method to be used effectively. Kalman filtering the ball location may be
able to reduce the uncertainty, but would depend on continuously tracking
the ball with the camera. We decided that this would not be feasible given
the quick movement of the ball, and opted instead to go for the “blind moth”
approach.

6 The competition

The competition started out badly for us. One of the other groups had
complaints regarding front mounted IR-detectors. Because of the emitted
light they saw blue goal pixels in the grass directly below our IR-detectors.

Thus we had to put some tape underneath the detectors so it would not
light up the grass. Because of this our roller did not work properly in the
seeding round.

We still managed to score one goal and accompanied by five other teams
we made it through to the actual tournament.

In our group were Clas Ohlson, Zidane and Ball Blaster (us).

Our first game against Zidane ended 1-0 to our favor.

In our second game we played against Clas Ohlson. Clas Ohlson scored

27

Figure 16: The blue circle shows the feature extraction algorithm’s estima-
tion of ball location in the image.

first — this was the only time in the whole tournament that we were not in
the lead. But we managed to even the score and then in the very last second
we scored the final goal, which made us the wining team with 2-1.

In the semifinal we met Rasdalf. This game was won with the score 2-1
and our chance to partake in the grand finale was secured.

In the final we met RAAS, who had an impressive track record from the
group play and semi-finals. We felt that we were underdogs from the start
so we had to do a real good match in order to beat RAAS.

We decided to make one last change in our program before the final. The
program was tuned to include an initial berserk mode that should initiate
the game with a quick thrust and a well aimed shot directly at the goal.

This should be done blindly and with speed none had ever dared try
before. Sadly, due to an unknown but quite vicious bug the berserk mode
fizzled, transforming the breath taking speeds we programmed it for into a
modest crawl.

Even with this bug present, this tactic turned out to work well. We hit
the ball (which was not at all clear that we should be able to do) and even
though we did not score we got the ball down to the left corner next to our
opponents goal.

With this position of the ball RAAS was not able to get a grip of the
ball and we got the ball closer and closer to their goal.

When one minute remained of the game we scored. Then something very
unfortunate happened — during a wild maneuver to get away from a wall we
slammed into a wall so hard that we lost power. This caused our program
to be lost and since it was to big to store in the EyeBot ROM memory we
couldn’t reload quickly but rather had to take the robot out of the field to
reload the program from our computer.

This process takes well over a minute and during this time RAAS was

28

T
<l Camera location
Ball location

-50

-60

! ! ! ! ! ! !

-70
-200 -100 0 100 200 300 400 500 600

Figure 17: The estimated map location of the ball detected in figure 16.

all alone in the playing field, leaving our goal fully unguarded.
Luckily RAAS did not manage to score during this time and we were the
winners of the competition.

29

References

1]

2]

3]

[4]

15]

Heikkild J., Silvén O. (1997) A Four-step Camera Calibration Proce-
dure with Implicit Image Correction. IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’97), San
Juan, Puerto Rico, p. 1106-1112.

Hartley R., Zisserman A. (2003) Multiple View Geometry in computer
viston, 2nd ed. Cambridge University Press, Cambridge, United King-
doms (2006). ISBN: 978-0-521-54081-3.

Carlsson S. (2007) Geometric Computer in Image Analysis and Visual-
zation. Numerical Analysis and Computer Science, KTH, Stockholm,
Sweden.

Bouguet J., Camera Calibration ~ Toolbox for Matlab.
http://www.vision.caltech.edu/bouguetj/calib_doc/ (2007-06-07).

Siegwart R., Nourbakhsh I.R. (2004) Introduction to Mobile Au-
tonomous Robots, The MIT Press, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts

30

