
Neural Networks for Combinatorial Optimization: A Review
of More Than a Decade of Research

KATE A. SMITH y School of Business Systems, Monash University, Clayton, Victoria, 3168, Australia.
Email: ksmith@bs.monash.edu.au

(Received: June 1997; revised February 1998, May 1998; accepted: October 1998)

It has been over a decade since neural networks were first
applied to solve combinatorial optimization problems. During
this period, enthusiasm has been erratic as new approaches are
developed and (sometimes years later) their limitations are re-
alized. This article briefly summarizes the work that has been
done and presents the current standing of neural networks for
combinatorial optimization by considering each of the major
classes of combinatorial optimization problems. Areas which
have not yet been studied are identified for future research.

I n a recent survey of meta-heuristics, Osman and La-
porte[130] reported that while neural networks are a very
powerful technique for solving problems of prediction, clas-
sification and pattern recognition, they “have not been as
successful when applied to optimization problems and are
not competitive with the best meta-heuristics from the op-
erations research literature, when applied to combinatorial
optimization problems.” Researchers have been trying for
over a decade now to make neural networks competitive
with meta-heuristics[145] such as simulated annealing,[1, 2]

tabu search,[67, 68] constraint logic programming,[180] and
genetic algorithms,[46, 69] and they have experienced varying
degrees of success. Almost every type of combinatorial op-
timization problem (COP) has been tackled by neural net-
works, and many of the approaches result in solutions that
are very competitive with alternative techniques in terms of
solution quality. Unfortunately, the reputation of neural
networks for solving COPs does not reflect this evidence.
The reasons are twofold. First, from within the first few
years of research, controversy and debate has surrounded
the field, discouraging many researchers: a state from which
the field has never truly recovered. Second, researchers are
forced to simulate the behavior of neural networks on digital
computers while awaiting the development of suitable hard-
ware advances. These simulations are designed to evaluate
the potential of neural networks for generating near-optimal
solutions to COPs, and naturally result in large CPU times
that are uncompetitive with alternative techniques. Further
research into the design of suitable hardware is contingent
upon demonstrated success of neural network simulations.
Unfortunately, the many successful applications of neural
networks will not receive full merit until the reputation of
neural networks has been salvaged. This article aims to
clarify the current standing and potential of neural networks
for solving COPs after more than a decade of research.

The idea of using neural networks to provide solutions to

difficult NP-hard optimization problems[61, 125] originated in
1985 when Hopfield and Tank demonstrated that the Trav-
elling Salesman Problem (TSP) could be solved using a
Hopfield neural network.[87] This work is well-known, and
their impressive results for the solution of a TSP generated
much excitement in the neural network and operations re-
search communities alike. Their work is also quite contro-
versial because many researchers have been unable to re-
produce their results (due perhaps to certain omissions in
Hopfield and Tank’s article[87] relating to simulation proce-
dure, termination criteria, etc.). Wilson and Pawley[192] first
published these findings nearly three years after Hopfield
and Tank’s original article was published. In doing so, they
raised serious doubts as to the validity of the Hopfield-Tank
(H-T) approach to solving optimization problems, which
seemingly served to dampen the enthusiasm surrounding
the field. Since Wilson and Pawley’s results were published,
it has been widely recognized that the H-T formulation is
not ideal, even for problems other than the TSP. The nature
of the energy function that the method utilizes causes infea-
sible solutions to occur most of the time. A number of
penalty parameters need to be fixed before each simulation
of the network, yet the values of these parameters that will
enable the network to generate valid solutions are unknown.
The problem of optimally selecting these parameters is not
trivial, and much work has been done to try to facilitate this
process.[79, 96, 109] Many other researchers believed that the
H-T energy function needed to be modified before any
progress would be made, and considerable effort has also
been spent in this area.[21, 177] Perhaps the most important
breakthrough in the field, however, came from the valid
subspace approach of Aiyer et al.,[6] and the subsequent work
of Gee.[63] By representing all of the constraints by a single
term, the feasibility of the Hopfield network can now be
essentially guaranteed.

The question of solution quality has also been addressed
over the last decade by various methods that attempt to
avoid the many local minima of the energy function. Many
variations of the Hopfield network have been proposed and
can be broadly categorized as either deterministic or sto-
chastic. The stochastic approaches are perhaps more suc-
cessfully able to improve solution quality because they at-
tempt to embed the principles of simulated annealing into
the Hopfield network to escape from local minima. Such
attempts have resulted in several alternative approaches
including Boltzmann,[1, 4, 82] Cauchy,[90, 167] and Gaussian

Subject classifications: Neural networks, combinatorial optimization
Other key words: Combinatorial optimization, neural networks.

15
INFORMS Journal on Computing 0899-1499y 99 y1101-0015 $05.00
Vol. 11, No. 1, Winter 1999 © 1999 INFORMS

Machines,[8] which are able to compete effectively with other
techniques in terms of solution quality.

The other main neural network approach to combinatorial
optimization is based on Kohonen’s Self-Organizing Feature
Map.[101] While much of the Hopfield network literature is
focused on the solution of the TSP, a similar focus on the TSP
is found in almost all of the literature relating to the use of
self-organizing approaches to optimization.[11, 52, 56] In this
case, the reason is not simply because of the benchmark
status of the TSP, but more because the vast majority of these
approaches are based upon the elastic net method.[49] Ko-
honen’s principles of self-organization[101] are combined
with the concept of an “elastic band” containing a circular
ring of neurons that move in the Euclidean plane of the TSP
cities, so that the “elastic band” eventually passes through
all of the cities and represents the final TSP tour. Such
approaches rely upon the fact that the “elastic band” can
move in Euclidean space, and that physical distances be-
tween the neurons and the cities can be measured in the
same space. Self-organizing neural networks have been suc-
cessfully applied to solve other two-dimensional problems
such as vehicle routing[173, 174] and shortest path prob-
lems.[164] Recently, a generalization of the self-organizing
map has been proposed to solve generalized quadratic as-
signment problems, relieving the restriction to two-dimen-
sional problems, and has been applied to solve several optimi-
zation problems arising from industrial situations.[74, 155, 158]

While further discussion regarding many of these ap-
proaches is continued in the following sections of this article,
we refer the interested reader to survey articles by Burke
and Ignizio,[25] Looi,[120] Potvin,[139] and Sharda[152] for com-
prehensive reviews and discussions of several of the existing
neural network techniques for optimization.

1. Hopfield Neural Network Approaches
In this section, we review Hopfield neural networks and the
approach used to solve COPs. We then discuss the criticisms
of the technique, and present some of the modifications that
have been proposed. Finally, modifications that ensure the
feasibility of the final solution, as well as improve the solu-
tion quality through hill-climbing, are presented.

1.1 Hopfield Networks
In his seminal paper[85] of 1982, John Hopfield described a
new way of modeling a system of neurons capable of per-
forming “computational” tasks. The Hopfield neural net-
work emerged, initially as a means of exhibiting a content-
addressable memory (CAM). A general CAM must be capable
of retrieving a complete item from the system’s memory
when presented with only sufficient partial information.
Hopfield showed that his model was not only capable of
correctly yielding an entire memory from any portion of
sufficient size, but also included some capacity for general-
ization, familiarity recognition, categorization, error correc-
tion, and time-sequence retention.

The Hopfield network, as described in [85, 86], comprises
a fully interconnected system of n computational elements
or neurons. In the following description, Hopfield’s original
notation has been altered where necessary for consistency.
The strength of the connection, or weight, between neuron i
and neuron j is determined by Wij, which may be positive or

negative depending on whether the neurons act in an exci-
tatory or inhibitory manner. The internal state of each neu-
ron ui is equivalent to the weighted sum of the external
states of all connecting neurons. The external state of neuron
i is given by vi, with 0 ¶ vi ¶ 1. An external input, ii, to each
neuron i is also incorporated. The relationship between the
internal state of a neuron and its output level in this contin-
uous Hopfield network is determined by an activation func-
tion gi(ui), which is bounded below by 0 and above by 1.
Commonly, this activation function is given by

vi 5 gi~ui! 5
1
2S 1 1 tanhS ui

TD D , (1)

where T is a parameter used to control the gain (or slope) of
the activation function.

In the biological system, ui lags behind the instantaneous
outputs, vj, of the other neurons because of the input capac-
itance, Ci, of the cell membrane, the trans-membrane resis-
tance Ri, and the finite impedance Rij 5 Wij

21 between the
output vj and the cell body of neuron i. Thus, the following
resistance-capacitance differential equation determines the
rate of change of ui, and hence the time evolution of the
continuous Hopfield network:

Ci

dui

dt
5 O

j

Wijvj 2
ui

Ri
1 i i (2)

ui 5 gi
21~vi! .

The same set of equations represents the resistively con-
nected network of electronic amplifiers shown in Figure 1.

The synapse (or weight) between two neurons is now
defined by a conductance Wij, which connects one of the two
outputs of amplifier j to the input of amplifier i. The con-
nection is made with a resistor of value Rij 5 iWiji

21. v# i is the
output of the inverted amplifier. Figure 1 also includes an
input resistance, ri, for amplifier i. However, this value can
be eliminated from the equation because Ri is a parallel
combination of ri and the Rij:

1
Ri

5
1
ri

1 O
j

1
Rij

.

For simplicity, each neuron/amplifier is assumed to be iden-
tical, so that

gi 5 g , Ri 5 R , and Ci 5 C .

Dividing Eq. 2 by C and redefining Wij/C and ii/C to be Wij

and ii, respectively, we arrive at the equations of motion:

dui

dt
5 O

j

Wijvj 2
ui

t
1 i i (3)

ui 5 gi
21~vi! and t 5 RC .

t is the value of the time constant of the amplifiers, and
without loss of generality can be assigned a value of unity,
provided the time step of the discrete time simulation of Eq.
3 is considerably smaller than unity. Although this “neural”
computational network has been described in terms of an
electronic circuit, it has been shown[86] that biological mod-

16
Smith

els with action potentials and excitatory and inhibitory syn-
apses can compute in a similar fashion to this electrical
hardware.

For the continuous Hopfield network, a Liapunov func-
tion can be constructed for the system, which guarantees
convergence to stable states. Consider the energy function,

% c 5 2
1
2 O

i

O
j

viWijvj 2 O
i

i ivi 1 E
0

vi

gi
21~v!dv (4)

Provided the matrix of weights W is symmetric (although
Vidyasagar[183] has shown that convergence is still possible

under some asymmetric conditions), the time derivative of
%c is:

d% c

dt
5 2O

i

dvi

dt S O
j

Wijvj 2
ui

t
1 i iD

5 2O
i
S dvi

dt D S dui

dt D
5 2O

i

gi
219~vi!S dvi

dt D 2

.

Figure 1. An electronic circuit representation of the continuous Hopfield neural network.

17
Neural Networks for Combinatorial Optimization

Because gi
21(vi) is a monotonically increasing function, then

d% c

dt
0, and

d% c

dt
5 0 f

dvi

dt
5 0 @i . (5)

Together with the boundedness of %c, Eq. 5 shows that
under the control of the differential Eq. 2, %c decreases and
converges to a minimum, at which it stays.

A discrete version of the Hopfield network also exists
where vi is a binary state given by

vi 5 gi~ui! 5 H 1 if ui . 0
0 if ui < 0 (6)

and gi(ui) is a discrete threshold function. The discrete Hop-
field network has been shown[85] to minimize the energy
function

%d 5 2
1
2 O

i

O
j

viWijvj 2 O
i

i ivi (7)

The continuous Hopfield network therefore relates directly
to the discrete version in the high-gain limit of the activation
function (Eq. 1). In this high-gain limit (T ' 0), g(ui) approx-
imates the behavior of the discrete threshold function and
the local minima of %c coincide with the local minima of %d

and all lie at the vertices of the unit hypercube. Conse-
quently, in the high-gain limit, provided the weight matrix is
symmetric and that the inverse function of g9(ui) (the first
derivative of the activation function) exists, the continuous
Hopfield network converges to a 0–1 vertex, which mini-
mizes %d given by Eq. 7.

1.2 The Hopfield-Tank Approach to Solving
Optimization Problems

In 1985, John Hopfield teamed together with David Tank to
extend the applications of his model to include solving
optimization problems (see [87]). Hopfield and Tank (H-T)
realized that networks of neurons with this basic organiza-
tion could be used to compute solutions to specific optimi-
zation problems by selecting weights and external inputs
that appropriately represent the function to be minimized
and the desired states of the problem. The analog nature of
the neurons and the parallel processing of the updating
procedure could be combined to create a rapid and powerful
solution technique. Using the method proposed by Hopfield
and Tank, the network energy function is made equivalent
to the objective function of the optimization problem that
needs to be minimized, while the constraints of the problem
are included in the energy function as penalty terms.

Consider the optimization problem:

~P1! minimize f~v!

subject to @A#1v 5 b1

@A#2v 5 b2

. . .
@A# rv 5 br

where [A]i (the ith row of the constraint matrix A) and v are
n-dimensional vectors, and r is the number of constraints.

Then the H-T energy function is

%~v! 5 af~v! 1 b1~@A#1v 2 b1!
2

1 b2~@A#2v 2 b2!
2 1 · · · 1 bm~@A# rv 2 br!

2.

a, b1, . . . , br are penalty parameters that are chosen to reflect
the relative importance of each term in the energy function.
This approach is essentially a Lagrangian relaxation of the
constraints, although the nonlinearity of the terms makes
determination of the optimal penalty parameters unlikely.
Clearly, a constrained minimum of P1 will also optimize the
energy function, because the objective function, f(v), will be
minimized, and constraint satisfaction implies that the pen-
alty terms will be zero. Once a suitable energy function has
been chosen, the network parameters (weights and inputs)
can be inferred by comparison with the standard energy
function given by Eq. 7. The weights of the continuous
Hopfield network, Wij, are the coefficients of the quadratic
terms vivj, and the external inputs, ii, are the coefficients of
the linear terms vi in the chosen energy function. The net-
work can then be initialized by setting the activity level vi of
each neuron to a small random perturbation around 0.5.
This places the initial state of the system at approximately
the center of the n-dimensional hypercube, and ensures that
the initial state is unbiased. Alternative initialization
schemes have been investigated by Lai et al.[110] and show
that initialization can have a significant effect on solution
quality. From its initialized state, asynchronous updating of
the network will then allow a minimum energy state to be
attained, because the energy level never increases during
state transitions. 0–1 solutions of combinatorial problems
can be encouraged if desired by setting the parameter T of
the activation function to a small enough value that the
function approximates the discrete thresholding (step) func-
tion given by Eq. 6.

However, these stable states may not necessarily corre-
spond to feasible or good solutions of the optimization
problem, and this is one of the major pitfalls of the H-T
formulation. Because the energy function comprises several
terms (each of which is competing to be minimized), there
are many local minima, and a tradeoff exists between which
terms will be minimized. An infeasible solution to the prob-
lem will arise when at least one of the constraint penalty
terms is non-zero. If this occurs, the objective function term
is generally quite small, because it has been minimized to
the detriment of the constraint terms, thus the solution is
“good” but not feasible. Alternatively, all constraints may be
satisfied, but a local minimum may be encountered that does
not globally minimize the objective function, in which case
the solution is feasible but not “good.” Certainly, a penalty
parameter can be increased to force its associated term to be
minimized, but this generally causes other terms to be in-
creased. The solution to this trade-off problem is to find the
optimal values of the penalty parameters that balance the
terms of the energy function and ensure that each term is
minimized with equal priority. Only then will the constraint
terms be zero (a feasible solution), and the objective function
be also minimized (a “good” solution).

Hopfield and Tank successfully applied their approach to

18
Smith

several optimization problems including an analog-to-digi-
tal converter, a signal decision circuit, and a linear program-
ming model (see [168]). It was, however, their results for the
combinatorial Travelling Salesman Problem (TSP) that at-
tracted the most attention. Hopfield and Tank[87] simulated
a network of 10 cities (100 neurons), chosen at random on
the interior of a two-dimensional unit square. Addressing
the issue of parameter selection, they claimed that an “an-
ecdotal exploration of parameter values was used to find a
good (but not optimized) operating point.”[87] They ac-
knowledged the sensitivity of the results to the parameters
of the system by stating that “the choice of network param-
eters which provides good solutions is a compromise be-
tween always obtaining legitimate tours . . . and weighting
the distances heavily.” However, they also state that “an
appropriate general size of the parameters was easily
found.” Unfortunately, Hopfield and Tank omitted certain
practical details from their article, including the method
they used to simulate the differential Eq. 3 and the termina-
tion criteria. Their results for small-sized problems were
quite encouraging. For a 10-city problem, and for 20 random
starts, 16 converged to valid tours. About 50% of the trials
produced one of the two known shortest tours. Hopfield and
Tank then studied a 30-city (900 neuron) problem, because
this is more representative of the biological system where,
typically, a neuron may be connected to 1000–10,000 others.
Because the time required to simulate the differential equa-
tions on a computer scales worse than O(n3), their results
were fragmentary. They were unable to find appropriate
parameters to generate valid tours, and comment that “pa-
rameter choice seems to be a more delicate issue with 900
neurons than with 100.” In fact, their best solution was
around 40% away from the best known solution of Lin and
Kernighan[115] on the same 30-city problem.

1.3 The Wilson and Pawley Investigation
In 1988, two British researchers, Wilson and Pawley, pub-
lished a paper[192] that raised doubts as to the reliability and
validity of the H-T approach to solving COPs. Their original
intention was to imitate the method for increasing city size
until restricted by their computational resources. In doing
so, they had hoped to find a procedure for scaling to the
larger problem sizes of real interest. Starting with a 64-city
problem, Wilson and Pawley were unable to find any com-
bination of parameters that would result in a valid solution
to the TSP. They then decided to try to reproduce the HT
solutions for the 10-city problem in an attempt to find a
method for changing the parameters in order to maintain
feasibility for larger problems. Simulating the differential
Eq. 3 using an Euler approximation, and using the identical
parameters specified by Hopfield and Tank[87] for their 10-
city problem, Wilson and Pawley found that from 100 ran-
dom starts, only 15 converged to valid tours, while 45 froze
into local minima corresponding to invalid tours, and the
remaining 40 did not converge within 1000 iterations. These
results were dramatically different from those produced by
Hopfield and Tank on the identical problem. Moreover,
Wilson and Pawley found that the 15 valid tours were only
slightly better than randomly chosen tours. Similarly poor

results were found when the 10 cities were randomly gen-
erated, with valid tours found only 8% of the time. Cer-
tainly, these inconsistent results could be due to differences
in the simulation procedure or the termination criteria.

In their article,[192] Wilson and Pawley suggested many
modifications to the original H-T formulation to try to cor-
rect some of the problems they encountered. These modifi-
cations included changes in parameter selection, and in-
creasing the value of the distance from a city to itself in order
to deter tours with one city visited twice in succession (a
common reason for the invalidity of many of their generated
tours). None of these modifications significantly improved
the percentage of valid tours obtained, or the quality of the
valid tours. Wilson and Pawley concluded that, even for
small-sized problems, the original HT formulation “is unre-
liable and does not offer much scope for improvement.”
They were unable to discover how the parameters of the
model need to change as the size is scaled up because no
combination of parameter values (or operating point) could
be found that consistently generated valid solutions. How-
ever, they also added, “it was felt that it was the method,
and not the operating point, which was the root of the
problems.” As for the irreproducibility of Hopfield and
Tank’s impressive results, they state, “our simulations indi-
cate that Hopfield and Tank were very fortunate in the
limited number of TSP simulations they attempted.”

1.4 Parameter Selection and Energy Modifications
Just as Wilson and Pawley felt that the H-T method for
solving COPs was unjustified, others have put forward sim-
ilar comments, questioning the stability of their formula-
tion[95, 96, 170] and the necessity of an energy function with
such a high degree of ultrametricity.[118] The solution to the
problem, as far as a few of these researchers are concerned,
is to abandon the concept of an interconnected system of
neurons ever being capable of solving general optimization
problems, and turn instead to problem-specific heuris-
tics.[118] Most of these involve starting with a feasible solu-
tion and performing variations on swapping-type algo-
rithms to try to minimize the objective function. Under such
a scheme, feasibility is never lost, so solutions are guaran-
teed to be valid.

For many others, however, the fundamental worth of the
H-T method is beyond contention. Of those who persist with
Hopfield and Tank’s original ideas, they are largely divided
between two different approaches: rewriting the energy
function to eliminate the trade-off problems between valid
and good solutions; and accepting the H-T energy function
while searching for ways to optimally select the penalty
parameters. In 1988, Hegde et al.[79] published the results of
their many experiments that studied the interaction between
the penalty parameters of the H-T TSP formulation. Plotting
in parameter space the region that led to feasible solutions,
they found that, as the problem size was slowly increased,
the wedge of parameter choices that resulted in feasible
tours became narrower. Hedge et al.[79] concluded that their
results imply inter-relationships among the parameters, and
the nature of these relationships indicate that the H-T for-
mulation for the TSP does not possess good scaling proper-

19
Neural Networks for Combinatorial Optimization

ties. Theoretical results relating to the nature of the relation-
ships between the parameters of the H-T TSP formulation
were published by Kamgar-Parsi et al.[96] They proposed a
systematic method for selecting these parameters based on
analyzing the dynamic stability of valid solutions. Examin-
ing the eigenvalues of the Jacobian matrix of the H-T energy
function, they found conditions for the parameters under
which a valid tour would be stable. Extensive studies by
Davis[45] confirmed their analysis, which showed that there
are only a very narrow range of parameter combinations
that result in valid and stable solutions to the TSP—explain-
ing the disappointing percentage of valid tours generated by
many using the H-T formulation of the TSP. Despite these
theoretical results, many researchers continue the search for
methods of optimally selecting the penalty parameters. Re-
cent approaches include genetic algorithms, whereby the
penalty parameters are genetically bred and improved
through subsequent generations to meet the validity re-
quirements of the network (see [109]). Another approach
that has been suggested[13] is to treat each penalty parameter
as a Lagrange multiplier and attempt to find the optimal
parameters exactly.

Efforts to obtain more consistent results by modifying the
energy function have been more successful. Most of the
approaches have involved rewriting the constraints and re-
ducing the number of terms and parameters in the energy
function.[21, 126, 177] Most of these approaches, while gener-
ating a greater percentage of feasible solutions, involve
modifications that are specific to the TSP. In the following
section, we review an important modification to the H-T
approach that is suitable for the entire class of problems
given by P1 in Section 1.2. We then review ways in which
the solution quality of the Hopfield network approaches can
be improved.

1.5 Ensuring Feasibility
Consider the general energy function first proposed by
Aiyer.[7]

%~v! 5 f~v! 1
g

2 Evalid~v! , (8)

where f(v) is the objective function expressed in the standard
quadratic form vTQv. The single constraint term Evalid con-
sists of the deviation of the vector v from the constraint
plane given by Av 5 b. It is noted that a similar method was
also proposed by Chu.[33] The advantage of this energy
function is that only one penalty parameter, g, needs to be
selected. If g is large enough, then validity of the solution is
ensured, because the constraint term will be forced to van-
ish. Hence, the solution will necessarily lie on the constraint
plane. A vector v, when projected onto the solution space of
Av 5 b becomes:

v 4 Proj.v 1 s (9)

where Proj 5 I 2 AT~AAT!21A (10)

s 5 AT~AAT!21b. (11)

and I is the Identity matrix. Therefore, the deviation of the

vector v from the constraint plane is given by

iv 2 ~Proj.v 1 s!i2.

So

%~v! 5 cTv 1 vTQv 1
g

2 @~Proj.v 1 s! 2 v#2

5 2
1
2 vT@22Q 1 g~Proj 2 I!#v

2 vT@gs 2 c# 1
g

2 sTs.

Comparing %(v) to the standard energy function (Eq. 7), we
can infer the weights (W) and external inputs (i) of the
network from the coefficients of the quadratic and linear
terms, respectively. It is noted that the weights are symmet-
ric provided Q is symmetric, although if Q is not symmetric,
it can be replaced with (Q 1 QT)/2, which is symmetric,
without affecting the cost of the objective function. Addi-
tionally, the value of the diagonal terms, Wii, may be posi-
tive, negative, or zero, depending upon the nature of the
quadratic form Q, the constraint plane, and the value of g.
Because negative diagonal terms may result in a convex
energy function and thus convergence to a non-integral
feasible solution, we add another term to the energy func-
tion to drive the solution trace towards a vertex point (or an
alternative annealing strategy can achieve the same result).
This term is given by dvT(1 2 v) (where 1 is a vector of 1’s).
The energy function is now given by:

%~v! 5 2
1
2 vT@22Q 1 2dI 1 g~Proj 2 I!#v

2 vT@gs 2 c 2 d1# 1
g

2 sTs.

Thus, the weight matrix and vector of external inputs of this
feasible Hopfield network are given by:

W 5 22Q 1 2dI 1 g~Proj 2 I! (12)

i 5 gs 2 d1 2 c. (13)

We are still presented with the problem of how to select the
parameters g and d optimally (if d is required), so that the
solution to which the network converges is both 0–1 and
feasible, as well as being near-optimal. This issue can be
avoided if we assign to g a large enough value that the
convergence trace is essentially “pinned” to the constraint
plane. The parameter d need only be a small fraction of g,
just large enough to drive the solution trace towards a
vertex. Liapunov descent of the energy function will then
ensure that the solution trace moves towards vertices that
minimize the cost of the solution, while being (necessarily)
feasible.

1.6 Improving Solution Quality
Many variations of the Hopfield network have been pro-
posed for improving the solution quality. These approaches
can be broadly categorized as either deterministic or sto-

20
Smith

chastic. There have also been developments in hardware
implementation that have enabled local minima to be
avoided (Lee et al.[112]) and problem-specific theoretical
work on basins of attraction that enable the initial states of
the network leading to good quality solutions to be calcu-
lated.[27] The deterministic approaches include problem-spe-
cific enhancements such as the “divide and conquer”
method of Foo et al. for solving the TSP,[55] deterministic
hill-climbing such as the “rock and roll” perturbation
method of Lo,[119] and the use of alternative neuron models
within the Hopfield network such as the winner-take-all
neurons used by Amartur et al.[9] to improve the feasibility
of the solutions. Stochastic approaches address the problem
of poor solution quality by attempting to escape from local
minima. There are basically four main methods found in the
literature to embed stochasticity into the Hopfield network:

1. replace sigmoidal activation function with a stochastic
decision-type activation function,

2. add noise to the weights of the network,
3. add noise to the external inputs (biases) of the network,

and
4. any combination of the above methods.

The Boltzmann machine[1, 82] utilizes the first method based
on a discrete Hopfield model. The inputs are fixed, but the
discrete activation function is modified to become probabi-
listic. Much like simulated annealing, the consequence of
modifying the binary activation level of each neuron is
evaluated according to the criteria of the Boltzmann proba-
bility factor. This model is able to escape from local minima,
but suffers from extremely large computation times. In order
to improve the efficiency and speed of the Boltzmann ma-
chine, Akiyama et al.[8] proposed Gaussian machines that
combine features of continuous Hopfield networks and the
Boltzmann machine. Gaussian machines have continuous
outputs with a deterministic activation function like the
Hopfield network, but random noise is added to the external
input (bias) of each neuron. This noise is normally distrib-
uted (or Gaussian) with a mean of zero and a variance
controlled by a temperature parameter. However, based
upon Szu’s fast simulated annealing,[161] which uses Cauchy
noise to generate new search states and requires only a
t/log(t) cooling schedule, the Cauchy machine[160, 167] was
proposed as an improvement to solution quality. The
Cauchy distribution is said to yield a better chance of con-
vergence to the global minimum than the Gaussian distri-
bution. Furthermore, Cauchy noise produces both local ran-
dom walks and larger random leaps in solution space,
whereas Gaussian noise produces only local random
walks.[167] The noise is incorporated into the activation func-
tion, while the outputs of the Cauchy machine are binary. In
the high-gain limit of the gradient of the stochastic activation
function, the Cauchy machine approaches the behavior of
the discrete (and deterministic) Hopfield network. Another
stochastic approach that has been very successful is mean-
field annealing,[133, 178, 179] so named because the model com-
putes the mean activation levels of the stochastic binary
Boltzmann machine.

Often, however, stochastic neural networks designed to

“kick” a solution out of a local minimum suffer from insta-
bility.[73] In previous work,[157] we have suggested a modi-
fication to the internal dynamics of the modified Hopfield
network described in Section 1.5 (with the feasibility guar-
anteed) that permits escape from local minima through hill-
climbing. The rate of change of the neurons is controlled by
a multiplier a(t) so that

dui

dt
5 a~t!S O

j

Wijvj 1 i iD ,

which is equivalent to

dvi

dt
5 2a~t!

f~v!

vi

for v within the unit hypercube and on the constraint plane.
Thus, the steepest descent and ascent are achieved when
a(t) 5 61, respectively. The cooling schedule for the param-
eter a(t) is given by

a~t! 5 random~k~t! , 1! where k~t! 5 1 2 2e2t/Tk.

Figure 2 shows how the value of k changes with time for
Tk 5 40.

The length of the Markov chain (or the number of random
walks permitted in the search space) at each point in time is
held constant at a value that depends upon the size of the
problem. Initially, k(0) 5 21, and so a(0) is randomly se-
lected from within the range [21, 1]. Consequently, the en-
ergy value (which is equivalent to the objective cost pro-
vided the solution trace is confined to the constraint plane
through large g) will often increase initially. As t 3 `,
however, k(t) 3 1, and so a(t) will also approach unity,
which is needed for steepest descent. Thus, this hill-climbing
Hopfield network method allows random increases in en-
ergy initially, with such increases becoming less likely as
time proceeds, until finally the network tends towards a
steepest descent (Hopfield) algorithm.

Clearly, there are many approaches to improving the
solution quality of the Hopfield network through escape
from local minima of the energy function and embedding
stochasticity into the dynamics of the network. The valid
subspace approach has resulted in a guarantee of feasibility
as well. Thus, the initial problems that have plagued the
reputation of the Hopfield network have now been resolved.

Figure 2. Graph of k(t) 5 1 2 2e2t/Tk with Tk 5 40.

21
Neural Networks for Combinatorial Optimization

2. Self-Organizing Neural Network Approaches
In this section, an alternative neural network architecture is
described: self-organization. The origins of self-organization
are presented, followed by a discussion of how this concept
was combined with the geometry of the elastic net method
to solve planar combinatorial optimization problems like the
TSP.

2.1 Self-Organizing Feature Maps
Unlike the Hopfield network, the self-organizing feature
map (SOFM)[101] does not contain preset weights that store
information about the desired final states. Nor is supervision
needed to guide the network externally to such states as
with other kinds of neural networks.[18] The SOFM is an
unsupervised neural network that simply inspects the input
data for regularities and patterns and organizes itself in such
a way as to form an ordered description of the data. Ko-
honen’s SOFM converts input patterns of arbitrary dimen-
sionality into the responses of a one- or two-dimensional
array of neurons. Learning is achieved through adaptation
of the weights connecting the input (pattern) layer to the
array of neurons. Figure 3 shows an example of a SOFM
with a two-dimensional array of neurons. Each component
in the input vector x is connected to each of the neurons, and
the weight Wij transmits the input xj toward the ith neuron
of the feature array. Input x is applied simultaneously to all
neurons.

The learning process comprises a competitive stage of
identifying the winning neuron, which is “closest” (accord-
ing to some similarity definition) to the input data, and an
adaptive stage where the weights of the winning neuron and
its neighboring neurons (according to some neighborhood
definition) are adjusted in order to approach the presented
input data. Identifying the winning neuron requires finding
the neuron m such that

ym 5 min yi 5 f~6~x, @W# i!!

for all neurons i in the array, where 6 is a function of
similarity between the input vector x and the ith row of the
weight matrix, [W]i. Selection of the winning neuron also
activates its neighboring neurons to react to the same input
pattern. The concept of a neighborhood is generally regarded
to be spatial. That is, neighboring neurons are those that are
adjacent in the one- or two-dimensional array of neurons.
Figure 4 shows a planar array of neurons with hexagonal
neighborhoods, as used by Kohonen.[103] The spatial neigh-
borhood of the winning neuron m is given by the set of

neurons Nm. The radius of Nm (given by r(Nm)) should
decrease as training progresses, with r(Nm(t1)) . r(Nm(t2)) .
r(Nm(t3)) . . . , for t1 , t2 , t3

The weight adaptation rule for the SOFM is defined by:

D@W# i~t! 5 a~Ni, t!@x~t! 2 @W# i~t!# @i [Nm~t!

where Nm(t) denotes the current (spatial) neighborhood of
the winning neuron m. For the learning parameter a, Ko-
honen[103] used the function

a~Ni, t! 5 a~t!e2iri2rmi/s2~t!

where rm and ri are the position vectors of the winning
neuron and its neighbors, respectively, and a(t) and s(t) are
suitably chosen decreasing functions of the learning time t.
After all input data have been presented to the network, the
size of the neighborhood is reduced and the data presented
again. This process continues until the weights connecting
the input data to the array of neurons have stabilized. As a
result of the weight adaptations, the collective and co-oper-
ative learning tunes the network to create localized re-
sponses to certain input vectors, and thus to reflect the
topological ordering of the input vectors. As such, the SOFM
can be considered as a nonlinear projection of the input
space onto the neurons in the array that represent certain
features.

Kohonen’s SOFM has successfully been applied to sen-
sory mapping, robot control, vector quantization pattern
recognition and classification, and speech recogni-
tion.[102, 146] The principles of self-organization have also
been used to solve the TSP, from within the geometry of the
elastic net method. We first discuss this method and then
present some of the more recent work that merges the two
approaches of the elastic net and SOFM.

2.2 The Elastic Net Method
Durbin and Willshaw[49] first proposed the elastic net
method in 1987 as a means of solving the TSP. Their ap-
proach places the discrete optimization problem into a con-
tinuous space framework—the Euclidean space of the TSP
cities. The algorithm starts with k points (or nodes) lying on
an imaginary “elastic band,” where k is greater than the
number of cities. The nodes are then moved in the Euclidean
space, thus stretching the “elastic band,” in such a way that

Figure 3. Kohonen’s SOFM: mapping features of input
vector x onto a two dimensional array of neurons. Figure 4. Hexagonal neighborhood function used by

Kohonen.

22
Smith

minimizes the energy function

%~y, K! 5 2aK O
i51

k

ln O
j51

k

e2
uxi2yju2

2K2 1 b O
j51

k

uyj 2 yj11u2

where xi represents the position of the ith city, yj represents
the position of the jth node on the “elastic band,” and a or b
are constants. The first term of the energy function is mini-
mized when every city is covered by a node on the “elastic
band,” while the second term constitutes the length of the
“elastic band,” and hence the TSP tour length if the first term
is negligible. This is achieved by starting the algorithm with
a large value of the parameter K, and then gradually reduc-
ing K to keep to a local minimum of %. The path is updated
in each time step according to:

Dyj 5 2a O
i51

k

Wij~xi 2 yj! 1 bK~yj11 1 yj21 2 2yj!

5 2K
%

yj

where

Wij 5
e2uxi2yju2/~2K2!

O k e2uxi2yku2/~2K2!
.

Thus, the elastic net method can be seen as gradient descent
of the energy function, and in the limit as K 3 0, a local
minimum will eventually be reached.

Durbin and Willshaw applied their elastic net method to
the 30-city TSP used by Hopfield and Tank,[87] and obtained
the best known solution[115] in 1000 iterations (Hopfield and
Tank’s best solution was 19% worse in terms of solution
quality. The authors acknowledged, however, that their
method was only suited to Euclidean TSPs and related prob-
lems, and not to random TSPs or problems that could not be
embedded in the Euclidean plane.

2.3 Self-Organizing Approaches to the TSP
Even before Durbin and Willshaw’s work on the elastic net
method was published, Fort[56] had been working on the
idea of using a self-organizing process to solve the TSP. His
approach was to take a one-dimensional circular array of
neurons, and map it onto the TSP cities in such a way that
two neighboring points on the array are also neighbors in
distance. Clearly, this is very similar to the idea behind the
elastic net method. Fort acknowledges this by stating “Dur-
ing the time we worked on this paper, Willshaw and Durbin
have published a paper . . . in which the basic idea is essen-
tially the same as here and has the same origin.”[56] The
difference between the two approaches, however, is that
Fort’s algorithm incorporates stochasticities into the weight
adaptations, whereas the elastic net method is completely
deterministic in nature. There is also no energy minimiza-
tion involved with the method of Fort. Testing his approach
on the same TSP test sets used by Hopfield and Tank,
however, Fort’s results were not as good as those obtained
using the elastic net method.

Subsequently, researchers began to combine features of
both the elastic net and SOFM to arrive at a technique that
performs well on the TSP (although results are largely re-
stricted to testing the original TSPs used by Hopfield and
Tank, rather than a wide range of TSPs differing in com-
plexity). One of the first such approaches is due to Angéniol
et al.[11] In their method, an approximate tour is given by a
set of nodes (with coordinates (c1, c2)) joined together in a
continuous ring. All nodes move freely in the Euclidean
plane through an iterative process, until an actual tour has
been obtained when every city (with coordinates (x1, x2)) has
“caught” one node of the ring. This process is similar to the
weights converging to the input patterns of the Kohonen
SOFM. An iteration step consists of the presentation of one
city. The node closest to the city moves towards it and
induces its neighbors to move some distance toward the
presented city, which is a function f(a, d) of their distance (d)
along the ring, and a gain parameter a.

Angéniol et al.[11] also included some node creation and
deletion rules. A node is duplicated if it is chosen as the
winner for two different cities. The duplicate is inserted onto
the ring as a neighbor of the winner, but only permitted to
move when the next city is presented. A node is deleted if it
has not been selected by a city after three complete presen-
tations of all the N cities. Testing their approach on the same
set of TSPs used by Hopfield and Tank,[87] Angéniol et al.
found their results to be comparable in quality to the best
results of the elastic net method of Durbin and Willshaw.[49]

A good average solution (less than 3% greater than the
optimum) was obtained in less than 2 seconds on classical
hardware, and a solution to a 1000-city problem was found
in 20 minutes on a digital computer (they do not mention the
machine specifications). The authors concluded that their
approach to solving the TSP through a modified SOFM
appears to be very promising because the total number of
nodes and connections is proportional to N (the number of
cities), and thus scales well with problem size (compared to
Hopfield’s model, which has N2 nodes and N4 connections).
They also view the single parameter a, which controls the
number of iterations as a further advantage.

Burke and Damany[24] suggested an alternative to the
approach of Angéniol et al., which eliminates the need for
the node creation and deletion rules. They proposed the
guilty net for solving the TSP, in which the number of nodes
is always equal to the number of cities. Using the idea of
conscience introduced by DeSieno,[47] the guilty net ensures
feasibility of the TSP tour as a minimum requirement, with
a nearly feasible solution being provided if the network is
terminated prematurely. The conscience element is incorpo-
rated in a bias term added to each node when the winning
node is calculated. This bias term has the effect of inhibiting
nodes that are winning too often, and takes the form:

biasj 5
winj

1 1 O k wink

(14)

for each node j, where winj is the number of times node j has
been the winning node thus far. Although the results pre-
sented in [24] for TSP problems of size 10, 30, 50, and 100 are

23
Neural Networks for Combinatorial Optimization

poorer than the elastic net method (on average 9.5% poorer)
or simulated annealing (on average 2.2% poorer), the au-
thors point out that the guilty net requires substantially
fewer iterations and can terminate before convergence to
arrive at an approximate solution.

In more recent work, Burke[23] has extended the guilty net
to automate the separation of nodes (rather than needing the
bias term and its associated parameter). This new network is
called the vigilant net and uses a simpler measure inspired
by the vigilance of the adaptive resonance networks.[26]

Winning nodes are now determined according to a set vig-
ilance level. The effect of the vigilance net is to constrain the
ratio between the lengths of the longest and the average
links in the TSP tour to be within some desirable interval.
Further, the processing time is near linear in the number of
cities. 100- and 200-city problems (both uniformly and non-
uniformly generated) were tested and compared to heuris-
tics from operations research, including the space-filling
curve approach of Platzman and Bartholdi.[136] While the
vigilant net compared well with the space-filling curve heu-
ristic, previous neural approaches were not tested on the
new data sets.

Favata and Walker[52] also borrowed the idea of a circular
array of neurons mapping onto the set of TSP cities. Their
use of the SOFM algorithm is much more literal, however,
and involves a minimal amount of modification. On the
same 30-city TSP used by Hopfield and Tank,[87] Favata and
Walker’s approach yielded solutions that were on average
about 5% more costly than those generated by Kirkpatrick et
al.[100] using simulated annealing, but that were obtained
consistently faster. Favata and Walker also assessed the
scaling characteristics of the algorithm and found that the
system converged reliably regardless of the problem size.

Vakhutinsky and Golden[174] considered speeding up the
convergence process by employing a hierarchical strategy
with the elastic net. The idea of their algorithm is to subdi-
vide the plane into smaller square areas and replace the
nodes in each square with the “center of gravity” of those
nodes. As the algorithm proceeds, the squares are further
divided so that eventually the TSP cities are all represented
with no more than one city per square. A speed-up of
around 16 times was achieved for a 500-city problem, and
the speed-up appears to increase as the problem size is
scaled up. This approach is one of global to local perspec-
tive, and has also been successfully applied to other neural
algorithms[36] to speed-up convergence.

Several other approaches have also emerged over recent
years, which are very similar to the aforementioned meth-
ods. While Fort[56] suggested some potential applications to
graph projection as well as classification of statistical data,
other authors have extended these approaches to deal with
the Multiple TSP[70] and obstacle avoidance tour plan-
ning.[193] All of these approaches are based on a low dimen-
sional deformable template method like the elastic net
method. Clearly, the method of merging details of the SOFM
algorithm with the elastic net method is very successful for
solving TSPs and other optimization problems embedded in
the Euclidean plane. However, owing to the fact that the
geometry of these methods is based upon the elastic net

method (utilizing a circular ring of neurons), they are not
readily generalizable to solve any other non-Euclidean prob-
lems. In this respect, such approaches are not nearly as
useful as the Hopfield-Tank method,[87] which generalizes
to solve many practical and diverse optimization problems.
Angéniol et al.[11] noted the absence of generalization and
stated that they “. . . plan to generalize this method to other
optimization problems by varying the organizing topology.”

Recently, such an approach has been proposed,[154, 155]

which is not based on the elastic net method and so gener-
alizes to solve a large class of problems with quadratic
objective functions and linear constraint sets. The basic idea
is to present rows of a permutation matrix (which represents
a feasible solution) to a self-organizing feature map whose
outputs represent each row number. The outputs compete to
gain possession of the row of the permutation matrix under
consideration. The competition is based on minimizing the
objective function. We refer the interested reader to [155] for
more details about this generalization, its implementation,
and applications.

3. A Survey of Applications
The majority of neural network research is applied to try to
solve the TSP: for historical reasons this problem has become
a benchmark. It has been argued, however, that the TSP is
perhaps not the best benchmark by which to judge the
effectiveness of neural networks for optimization.[156] Al-
most every class of combinatorial (and non-combinatorial)
optimization problem has been tackled by neural networks
over the last decade, and many of the results are very
competitive with alternative techniques in terms of solution
quality, particular those of recent years. Unfortunately,
many researchers have not always compared their neural
approach with the best performing alternative technique
available at the time, and in doing so, their results are often
viewed as inconclusive. Recent articles that define appropri-
ate methods for reporting computational experiments and
testing heuristics[17, 84] appear to have rectified this ten-
dency.

In the following sections, we briefly review some of the
many neural network approaches that have been reported
for classical COPs. This survey is not intended to be exhaus-
tive, but provides interested readers with appropriate start-
ing points for considering neural approaches to various
classes of problems.

3.1 Assignment Problems
Assignment problems have been well tackled by neural
network researchers, no doubt due to the wide variety of
practical applications that can be categorized as either gen-
eral assignment problems (with a linear objective function)
and quadratic assignment problems. While there exist a
number of reliable and efficient exact algorithms for solving
linear assignment problems,[195] neural algorithms are still
pursued as a solution technique for their promise of rapid
execution through eventual hardware implementation.

24
Smith

3.1.1 General Assignment Problems.

The general assignment problem is best known as the prob-
lem of assigning N tasks to N people, where each person
may only perform one task. This problem has applications to
crew scheduling and manpower planning,[124] as well as
allocation applications such weapon target assignments.[185]

The constraints are similar to the TSP constraint set, and so
solution by neural networks has been common.[188] Cho et
al.[31] have used a discrete Hopfield network to solve the
general assignment problem using a parallel algorithm that
converges in near 0(1) time (less than 100 iterations regard-
less of the size of the problem). Gong et al.[71] use a contin-
uous Hopfield network to solve the general assignment
problem and add quadratic concave equality constraints to
the energy function to ensure zero-one solutions. They em-
ploy an augmented Lagrangian multiplier method to deter-
mine the penalty parameters and show that this helps to
alleviate the problems of convergence to local minima. A
comparison was not performed with existing solution tech-
niques for linear assignment problems however.

3.1.2 Quadratic Assignment Problems.

Quadratic assignment problems find even more application
in the real world, and their quadratic objective function
means that they are particularly well suited to solution using
energy based networks. Hopfield networks have been used
to solve facility location problems,[159] cell placement in
VLSI design,[44, 172] and assignment of frequencies in satel-
lite and wireless communication networks.[58, 106, 107, 158]

Several authors have also proposed neural networks to solve
general quadratic assignment problems, regardless of the
application, and have tested the applicability of their tech-
niques using a wide range of applications. These include the
self-organizing approach of Smith[154] and the mean-field
annealing approach of Fang et al.[51]

3.2 Constraint Satisfaction Problems
There are many well-known constraint satisfaction problems
found in the literature: both practical ones and those that
could best be described as puzzles. Problems such as the
N-Queen problem, or the Stable Marriage Problem, involve
constraints that are similar to assignment constraints, and so
the solution of these puzzles has applicability to a wide
range of applications employing similar constraints.

In 1987, Tagliarini and Page[162] used a Hopfield network
to solve the N-Queen problem. This problem involves plac-
ing N Queens on a chess board in such a way that there is
only one Queen in each row, column and diagonal, so that
the N Queens are in a configuration where none are under
attack. This problem has no objective function, and so the
standard Hopfield-Tank method is able to quickly converge
to a feasible solution. Takefuji[165] and others[5, 93] have
solved many such puzzles using parallel neural networks
including tiling problems and the stable marriage prob-
lem.[198] Other types of constraint satisfaction problems, in-
volving constraints such as k-out-of-N constraints (where k

elements in a row of N have to be “on”) have been ad-
dressed.[50, 151]

Research into appropriate representations of certain con-
straints has resulted in automatic translation techniques[59]

and the ability to handle difficult constraints such as logical
constraints.[169] Knowledge of the best ways to incorporate
certain constraints into a neural network is imperative if
practical applications such as timetabling are to be at-
tempted. Timetabling is a complex problem, and includes
class scheduling, examination timetabling, rostering, etc.
There have been several successful implementations of neu-
ral networks for timetabling[66, 104, 123, 134] (mostly based on
mean-field annealing neural networks), and these results
compare well to heuristic approaches.

3.3 Clustering Problems
The problem of clustering data is equivalent to the partition-
ing of a set of N patterns in a metric space into K clusters, so
that those patterns in a given cluster are more similar to each
other than to the rest of the patterns. By minimizing the
distance between each point and the centroid of each cluster,
the problem can be formulated as 0–1 quadratic program-
ming problem, where the (binary) variables represent the
probability that a data point is assigned to a certain cluster.
Hopfield networks have been used for clustering[94] and
were shown to outperform conventional iterative techniques
when the clusters are well defined. For fuzzy clustering, or
when the number of clusters is not compatible with the
structure of the data, the neural network is unable to find
valid solutions easily, indicating that something may be
wrong with the problem description. Boltzmann machines
have also been investigated for clustering[15] and tested us-
ing well-known data sets. The results have been compared
with traditional clustering algorithms such as K-means[91]

and show that neural network methods are able to outper-
form traditional techniques in this application area in terms
of both solution quality and speed. Self-organizing neural
network architectures such as Kohonen’s Feature Map[103]

and the Counter-propagation network[78] are also suitable
for clustering.[30]

3.4 Cutting Stock and Packing Problems
This category of problems includes sub-classes such as bin-
packing, knapsack, and cutting problems. Solutions to these
problems are important because many of these problems
find application in industry. Takada et al. have used a neural
network for solving the problem of cutting steel sheets into
assorted sizes,[163] and such systems find applicability in
glass-cutting and other industries. Industrial packing prob-
lems have also been solved using neural approaches. Dai et
al.[42] have used common heuristic packing rules to con-
struct a Hopfield network to solve a two-dimensional pack-
ing problem, while Bahrami et al.[16] have developed a hy-
brid intelligent system, comprising a neural network and a
rule-based system, to solve industry packing problems.

3.4.1 Knapsack Problems.

Most of the research in the application to packing problems
has been focused on the knapsack problem. This is no doubt

25
Neural Networks for Combinatorial Optimization

due to the inequality constraints that require special treat-
ment when using energy function related approaches.[3, 113]

Mean-field theory techniques have managed to solve large-
scale knapsack problems using a discrete form of the deriv-
ative to compensate for the non-differentiable energy func-
tion. Ohlson et al.[129] use a mean-field algorithm that scales
like NM for problems with N items and M constraints, and
solve problems of size up to 10,000 items. Their results are
comparable to those obtained using simulated annealing
and an exact formulation, and are better than a greedy
heuristic. The multidimensional knapsack problem has also
been solved using a Boltzmann machine,[176] although the
results were not compared to any other technique. Alterna-
tive neural network approaches, including a Hopfield net-
work with asymmetric weights[196] and the Dual-Mode Dy-
namics Neural Network of Lee and Park,[114] have been
proposed to handle inequality constraints, and tested using
the knapsack problem. Vinod et al.[184] use the idea of or-
thogonal projections onto convex sets to solve problems
with inequality constraints, including the 0–1 knapsack and
multidimensional knapsack problems. Their results are
shown to compare quite well with optimal and suboptimal
solutions obtained using standard techniques.

3.5 Graph Problems
There are many types of graph problems found in the op-
erations research literature that have also been attempted
using neural networks. Ramanujam and Sadayappan[142]

provide a very good overview of how several graph prob-
lems can be solved using a Hopfield network, including
graph partitioning, vertex covering, maximum independent
set and maximum clique problems, number partitioning,
maximum matching, set covering, and graph coloring prob-
lems. Their paper shows suitable energy function represen-
tations for each of the problems, and the consequent weights
and external inputs of the Hopfield network, but does not
report results for any of the formulations. Many other au-
thors have used neural networks to solve various graph
problems, including Hérault and Niez,[81] and we now
briefly review some of the approaches that have been taken.

3.5.1 Graph Sectioning, Partitioning, and Minimum Cut
Problems.

Graph bipartitioning is a well-studied problem that finds
application in the design of VLSI circuits.[132] Van den Bout
and Miller[179] have used mean-field annealing to solve the
bipartitioning problem, and their results extend to solve the
(more computationally difficult) problem of partitioning
into three or more bins. Such problems find extensions to the
bin-packing problem, which in turn can be used to solve
resource allocation problems. The results for the mean-field
annealing network were found to be superior to those ob-
tained using simulated annealing and the heuristic approach
of Kernighan and Lin.[98] In fact, the rate of convergence of
mean-field annealing on graph bipartitioning problems was
as much as 50 times faster than simulated annealing without
degrading the solution quality.[179] Other mean-field anneal-
ing and Boltzmann machine solutions have been equally

successful.[22, 202] Unsupervised competitive neural net-
works have also been used to solve the circuit bipartitioning
problem[171] (also called the Minimum Cut problem), and
their results are shown to be comparable to those found by
the ratio cut algorithm of Wei and Cheng.[191] Hameenant-
tila and Carothers[75] consider the use of a Hopfield network
to solve the related problem of partitioning circuits with
thermal constraints. This inequality constraint is handled
using a slack variable approach, and while the results look
promising, comparison with existing heuristics is reserved
for future work.

3.5.2 Vertex Covering, Maximum Independent Set, and
Maximum Clique Problems.

The vertex covering problem and its related problems of
finding the maximum independent set and maximum clique
find important applications in project scheduling, cluster
analysis, facility location problems, and other problems
from operations research.[142] Lai et al.[108] used a Hopfield
network to solve these problems, but their energy function
representations are different from those used by Ramanujam
and Sadayappan[142] and are based on logical functions.
Problem sets of various sizes are considered, and the Hop-
field network results are shown to outperform a sequential
greedy algorithm and perform comparably to two fast gra-
dient descent heuristics in terms of solution quality.
Jagota[89] has considered the maximum clique problem
alone and presents several energy minimizing dynamics of a
Hopfield network, both discrete (deterministic and stochas-
tic) and continuous. Some of these dynamics emulate well-
known heuristics for the maximum clique problem, and the
results show that mean-field annealing and a stochastic ver-
sion of the Hopfield network perform the best of the neural
networks and are comparable to the best of the traditional
heuristics.

3.5.3 Graph Coloring Problems.

The problem of coloring or labeling the vertices of a graph so
that no two adjacent vertices are the same color is one that
finds application in areas such as frequency assignment
problems[58, 158] and computer compiler optimization.[62]

Takefuji and Lee[166] have used a discrete Hopfield-type
network to solve the problem using four colors, while
Berger[19] has considered the general problem using k colors.
Gassen and Carothers[62] have extended these models to try
to minimize the number of colors required for a coloring of
a given graph. While their results were not compared to
alternative techniques, studies that use similar formulations
for applications based on graph coloring problems have
confirmed that Hopfield networks can match the perfor-
mance of simulated annealing and other heuristics in this
area.[158]

3.5.4 Tree Problems.

There are many different types of problem that involve
finding a tree structure on a graph, including minimum

26
Smith

spanning trees, degree constrained minimum spanning
trees, Steiner trees, and shortest path problems. Many of
these problems are important because they find application
in areas such as the design of electrical connections on a
printed circuit board or traffic routing through computer
nodes. Craig et al.[37] have conducted an extensive study
where Hopfield neural network solutions to the degree-
constrained minimum spanning tree problem are compared
to a variety of heuristics including simulated annealing and
algorithms of Kruskal[105] and Dijkstra.[48] The Hopfield net-
work consists of two layers: one for minimizing the cost of
branches in the graph while satisfying the degree con-
straints, and a second layer for determining if the current
graph is a tree or not. The Hopfield network was found to
converge to a feasible solution in only approximately 56% of
the test problems, but when a feasible solution was found it
was generally very close to the known optimal solution.
Pornvalai et al. have also used a Hopfield network to solve
the constrained Steiner tree problem.[138] This problem re-
duces to a shortest path problem when the number of des-
tination nodes is one or to a minimum spanning tree prob-
lem when the number of destination nodes equals the
number of nodes in the graph. Their results show that the
Hopfield network can find near optimal solutions in ran-
domly connected graphs, and the performance is compara-
ble to the best heuristics.

3.5.5 Shortest Path Problems.

The shortest path problem is concerned with finding the
shortest path from an origin node to a destination node in a
directed graph. It finds significant application in the routing
of traffic in telecommunications networks[143, 199] and cell
placement in VLSI design to minimize total wire
length.[27, 164] Neural network solutions to these problems
have been very successful. Wang[189] has used a Hopfield
network based on an edge path representation (leading to a
linear programming formulation) of the shortest path prob-
lem. The results show that the Hopfield network can locate
optimal solutions to the example problems considered, but
no comparison with other techniques was provided. Hong et
al.[83] also use a Hopfield network, but their energy function
is extremely complicated due to their formulation of the
constraints. Although their results show that minimum cost
solutions can be found for small sized problems, the many
local minima of their energy function will make it unlikely
that a strict descent technique like the standard Hopfield
network will be able to find optimal solutions for larger
problems. Zhao and Dillon[200] eliminate local minima prob-
lems by using a variation on the winner-take-all network,
which does not involve any energy function minimization.
Their approach is guaranteed to reach optimal solutions and
possesses good scaling properties.

3.6 Integer and Mixed-Integer Linear Programming
Problems

Neural networks can be used to solve 0–1 linear program-
ming problems, by expressing the 0–1 constraint as a qua-
dratic term (xi(1 2 xi) added to the energy function. Aourid

et al.[13] have used this technique to solve problems with
known optimal solutions and have found optimal solutions
using a Hopfield network by determining the lower bound
of the penalty parameter that enforces the 0–1 constraint. In
the work of Foo and Takefuji,[54] the 0–1 constraints of the
integer linear programming problem are satisfied through
high gain of the activation function for a Hopfield network
(so that the continuous activation function approximates the
discrete step function). Continuous linear programming can
be achieved by using linear activation functions.[39, 43, 97]

Consequently, mixed integer linear programming can be
achieved through appropriate choice of the activation func-
tion to reflect the desired state of each final decision variable.
Lin et al.[117] have proposed an alternative to the Hopfield
network for the solution of mixed integer linear program-
ming problems. They employ the traditional branch-and-
bound approach,[72, 111] but use backpropagation learning
with a multilayered feedforward neural network to learn
more efficient branching strategies. The technique is shown
to be significantly faster than conventional methods for cer-
tain classes of mixed integer linear programming problems,
particularly knapsack problems.

3.7 Scheduling Problems
Scheduling problems constitute quite a large class of prac-
tical optimization problems from industry. These problems
include the scheduling of resources such as machinery (job-
shop scheduling), labor (crew scheduling), and timetabling.

3.7.1 Crew Scheduling.

Airline crew scheduling has received much attention from
the operations research community, principally because it
can be formulated as a set partitioning problem, and an
optimal solution would enable many related problems to be
solved.[32] Airline crew scheduling has been solved using a
Boltzmann machine[38] and tested using both artificially gen-
erated and real data sets. The results demonstrate that near-
optimal solutions can be obtained, but solutions to large
problems are inhibited by excessive computation times. The
scheduling of crew in the fast food industry has also been
attempted using neural networks.[137] This problem (and
other manpower scheduling problems) involves the assign-
ment of crew members to jobs so that the correct number of
people are scheduled at the right time, performing the right
tasks, and with the right ability. Poliac et al.[137] use a net-
work of parallel distributed elements with inhibitory and
excitatory connection to enforce the labor, proficiency and
availability constraints. Their results were unreported due to
the preliminary nature of their study.

3.7.2 Job-Shop Scheduling.

Most of the literature on using neural networks for sched-
uling has been focused on job-shop scheduling. This is the
problem of scheduling each operation i of each job j to a
machine k, where there are m machines. Clearly, job-shop
scheduling is a resource allocation problem. Precedence re-
lationships can make the problem even more tightly con-

27
Neural Networks for Combinatorial Optimization

strained. Foo and Takefuji[53] have proposed a stochastic
(hill-climbing) version of the Hopfield network for solving
the problem with precedence constraints. Their approach
produces near optimal solutions, but requires a large num-
ber of neurons and is computationally expensive. Foo and
Takefuji[54] have also proposed a more efficient approach
based on an integer linear programming formulation of the
job shop scheduling problem, which halves the number of
neurons required. By defining a continuous variable (start-
ing time for a job on a machine), rather than a 0–1 variable,
Zhou et al.[201] were able to reduce further the number of
neurons and weights needed to solve the problem. There
have been many other successful implementations of neural
networks for scheduling and sequencing jobs on ma-
chines.[28, 99, 135]

3.7.3 Scheduling Applications.

Ansari et al.[12] have used mean-field annealing to schedule
computation tasks onto a multiprocessor. Their experimen-
tal results indicate that this technique is very effective for
solving such problems. Other authors have also solved mul-
tiprocessor task scheduling using neural approach-
es.[80, 121, 144] A stochastic neural approach has been pro-
posed by Vaithyanathan et al.[175] for resource-constrained
scheduling. Project scheduling is an important type of re-
source-constrained scheduling, and has also been attempted
using neural networks.[131] Applications to assembly line
scheduling have been considered using both Hopfield net-
works and self-organizing neural networks,[40, 147, 155, 157]

and the results appear to compare well with traditional
techniques in terms of solution quality. Obviously for indus-
trial applications, solution speed is an important factor, and
suitable hardware advances are needed for these techniques
to be truly useful to industry.

3.8 Travelling Salesman Problems
Owing to the fact that Hopfield and Tank[87] originally
demonstrated the applicability of their neural network for
solving optimization problems by solving the TSP, almost all
new neural network techniques for optimization are tested
on the same problem. Surveys of many of these approaches
for solving the TSP can be found in articles by Burke,[23]

Looi,[120] and Potvin.[139] Like most neural network applica-
tions to optimization, there are mainly two approaches:
Hopfield-type networks[21, 64, 116, 177] (energy minimization)
and self-organizing approaches[11, 35, 56, 92, 194] (based on the
elastic net method.[49] These approaches have already been
discussed to some extent in Sections 1.4 and 2.3, respec-
tively. There have also been studies that use neural networks
to solve generalizations of the TSP[10] and variants of the
TSP like the Orienteering Problem.[190] Further generaliza-
tions of the TSP (the Multiple TSP and Vehicle Routing
Problems) are discussed below.

3.8.1 Multiple TSPs.

The multiple TSP involves minimizing the distance travelled
by multiple salesmen, where each city must now be visited

by exactly one salesman sharing each depot. Extensions of
the Hopfield-Tank approach have been considered to solve
this generalized version of the TSP.[181, 186, 187] Self-organiz-
ing approaches have also been successfully applied to the
multiple TSP. Goldstein[70] has extended the elastic net ap-
proach, and these results show that self-organizing ap-
proaches can be very competitive with simulated annealing
and other heuristics.

3.8.2 Vehicle Routing Problems.

Vehicle routing involves the problem of finding a route, for
each vehicle, that begins at the depot, visits a subset of the
cities, and returns to the depot. The distance travelled must
be minimized, while the capacity constraints of each vehicle
restrict the choice of cities a vehicle can visit in any single
trip. Like the multiple TSP, vehicle routing has been solved
successfully using elastic net and self-organizing approach-
es,[65, 122, 140, 173] and energy minimization approaches.[128]

4. Conclusions
In this article, we have attempted to present the current
standing of neural networks for combinatorial optimization.
We have traced the history of neural network research from
the perspective of the two main approaches: Hopfield net-
works and self-organizing networks. This history has seen
neural networks for combinatorial optimization progress
from a field plagued with problems of poor solution quality
and infeasibility to the state we find them in today: quite
competitive with meta-heuristics such as simulated anneal-
ing in terms of solution quality.

Nevertheless, there are still several areas of research need-
ing attention. First, there is the never-ending quest to im-
prove solution quality by novel techniques. In this regard,
alternative models of neuron dynamics should be investi-
gated, such as chaotic neural networks, which have recently
been shown to help improve the search for global minima
through their rich dynamics.[29, 57, 77, 88, 127] Another prom-
ising direction lies in the hybridization of neural networks
with meta-heuristics such as genetic algorithms and simu-
lated annealing in such a way that the advantages of each of
the techniques can be combined to overcome the known
limitations.[14, 41, 109, 150, 197]

Second, more practical applications need to be solved
using neural networks to demonstrate their potential. To
date, most research has been focused on solutions to the
TSP, and although a wide range of classical combinatorial
(and noncombinatorial) optimization problems have also
been tackled using neural networks, extensive studies that
evaluate the potential of using neural networks to solve
practical optimization problems from industry are scarce. In
this article, we have briefly reviewed the research that has
been done by considering the most common classes of com-
binatorial optimization problems and trying to report com-
parisons with alternative techniques. Such comparisons are
not always available because, as Looi noted, “although there
is a large collection of operations research based on other
methods for solving all of these problems, comparisons be-

28
Smith

tween neural network methods with existing methods have
been lacking.”[120] This is the third area in which future
research must focus. The problem is now being addressed as
comparisons with existing techniques is seen to be essential
for the results to be considered significant.[17, 84]

An accurate evaluation of the capabilities of neural net-
works for obtaining near-optimal solutions to optimization
problems is necessary if neural networks are to be devel-
oped and employed in practical situations where their ad-
vantages over existing techniques can truly be exploited.
Realizing this potential is the fourth main area for future
research. While hardware implementation of a neural net-
work is ideal for industrial situations, where the same prob-
lem will need to be solved many times as the environment
changes, it is however an unlikely choice for an operations
researcher, whose methodology tends to be simulation
based, and who typically only needs to solve the problem
once. Fortunately, recent work in the area of Field Program-
mable Gate Arrays (FPGAs)[20] has enabled the speed ad-
vantages of hardware implementation to be simulated on a
digital computer using reconfigurable hardware with desk-
top programmability. Such a simulation can easily achieve
speeds of several million interconnections per second, mak-
ing the advantages associated with hardware implementa-
tion of neural networks more readily attainable. Certainly,
satisfactory hardware implementation is still the topic of
much research, and many design challenges lie ahead in this
field.[34] Yet there is little doubt that it is only a matter of
time before VLSI implementations of large scale neural net-
works are possible.[76, 149, 153] Already, researchers have
been very successful in demonstrating this potential on
small to medium-sized neural networks that can solve com-
binatorial and other optimization problems.[141, 148, 182]

Acknowledgements

The author is grateful to three anonymous referees, an associate
editor, Dr. M. Gendreau, and Dr. B. Golden for their helpful com-
ments and suggestions.

References

1. E. H. L. AARTS and J. KORST, 1989. Simulated Annealing and
Boltzmann Machines, John Wiley & Sons, Essex, U.K.

2. E. H. L. AARTS and P. J. M. LAARHOVEN, 1985. Statistical
Cooling: A General Approach to Combinatorial Optimisation
Problems, Philips Journal of Research 40, 193–226.

3. S. ABE, J. KAWAKAMI, and K. HIRASAWA, 1992. Solving Inequal-
ity Constrained Combinatorial Optimization Problems by the
Hopfield Neural Networks, Neural Networks 5, 663–670.

4. D. H. ACKLEY, G. E. HINTON, and T. J. SEJNOWSKI, 1985. A
Learning Algorithm for Boltzmann Machines, Cognitive Science
9, 147–169.

5. H. M. ADORF and M. D. JOHNSTON, 1990. A Discrete Stochastic
Neural Network Algorithm for Constraint Satisfaction Prob-
lems, Proceedings International Joint Conference on Neural Net-
works 3, San Diego, 917–924.

6. S. V. B. AIYER, M. NIRANJAN, and F. FALLSIDE, 1990. A Theo-
retical Investigation into the Performance of the Hopfield
Model, IEEE Transactions on Neural Networks 1, 204–215.

7. S. V. B. AIYER, 1991. Solving Combinatorial Optimization Prob-

lems Using Neural Networks, Technical Report CUED/F-IN-
FENG/TR 89, Cambridge University Engineering Department,
Cambridge, U.K.

8. Y. AKIYAMA, A. YAMASHITA, M. KAJIURA, and H. AISO, 1989.
Combinatorial Optimization with Gaussian Machines, Proceed-
ings IEEE International Joint Conference on Neural Networks 1,
533–540.

9. S. C. AMARTUR, D. PIRAINO, and Y. TAKEFUJI, 1992. Optimiza-
tion Neural Networks for the Segmentation of Magnetic Res-
onance Images, IEEE Transactions on Medical Imaging 11, 215–
220.

10. R. ANDRESOL, M. GENDREAU, and J.-Y. POTVIN, 1997. A Hop-
field-Tank Neural Network Model for the Generalized Travel-
ing Salesman Problem, in Meta-Heuristics: Advances and Trends
in Local Search Paradigms for Optimization, S. Voss et al. (eds.),
Kluwer Academic Publishers, Boston, 393–402.

11. B. ANGÉNIOL, G. DE LA CROIX, and J.-Y. LE TEXIER, 1988. Self
Organising Feature Maps and the Travelling Salesman Prob-
lem, Neural Networks 1, 289–293.

12. N. ANSARI, Z. Z. ZHANG, and E. S. H. HOU, 1993. Scheduling
Computation Tasks onto a Multiprocessor System by Mean
Field Annealing of a Hopfield Neural Network, in Neural
Networks in Design and Manufacturing, J. Wang and Y. Takefuji
(eds.), World Scientific, Singapore, 163–184.

13. S. M. AOURID, X. D. DO, and B. KAMINSKA, 1995. Penalty
Formulation for 0–1 Linear Programming Problem: A Neural
Network Approach, Proceedings International Conference on Neu-
ral Networks 4, 1690–1693.

14. J. ARABAS, 1994. A Genetic Approach to the Hopfield Neural
Network in the Optimization Problems, Bulletin Polish Academy
of Sciences 42, 59–66.

15. G. P. BABU and M. N. MURTY, 1994. Connectionist Approach
for Clustering, Proceedings International Conference on Neural
Networks 7, 4661–4666.

16. A. BAHRAMI and C. DAGLI, 1994. Hybrid Intelligent Packing
System (HIPS) Through Integration of Artificial Neural Net-
works, Artificial Intelligence and Mathematical Programming,
Applied Intelligence 4, 321–336.

17. R. S. BARR, B. L. GOLDEN, J. P. KELLY, M. G. C. RESENDE, and
W. R. STEWART, 1995. Designing and Reporting on Computa-
tional Experiments with Heuristic Methods, Journal of Heuris-
tics 1, 9–32.

18. R. BEALE and T. JACKSON, 1990. Neural Computing: An Introduc-
tion, IOP Publishing Ltd., Bristol, U.K.

19. M. O. BERGER, 1994. k-Coloring Vertices Using a Neural Net-
work with Convergence to Valid Solutions, Proceedings Inter-
national Conference on Neural Networks 7, 4514–4517.

20. N. BOTROS and M. ABDUL-AZIZ, 1994. Hardware Implementa-
tion of an Artificial Neural Network Using Field Programma-
ble Gate Arrays (FPGA’s), IEEE Transactions on Industrial Elec-
tronics 41, 665–667.

21. R. D. BRANDT, Y. WANG, A. J. LAUB, and S. K. MITRA, 1988.
Alternative Networks for Solving the Travelling Salesman
Problem and the List-Matching Problem, Proceedings Interna-
tional Conference on Neural Networks 2, 333–340.

22. T. BULTAN and C. AYKANAT, 1991. Circuit Partitioning Using
Parallel Mean Field Annealing Algorithms, Proceedings 3rd
IEEE Symposium on Parallel and Distributed Processing, 534–541.

23. L. I. BURKE, 1994. Adaptive Neural Networks for the Traveling
Salesman Problem: Insights from Operations Research, Neural
Networks 7, 681–690.

24. L. I. BURKE and P. DAMANY, 1992. The Guilty Net for the
Travelling Salesman Problem, Computers and Operations Re-
search 19, 255–265.

29
Neural Networks for Combinatorial Optimization

25. L. I. BURKE and J. P. IGNIZIO, 1992. Neural Networks and
Operations Research: An Overview, Computers and Operations
Research 19, 179–189.

26. G. CARPENTER and S. GROSSBERG, 1987. ART2: Self-Organiza-
tion of Stable Category Recognition Codes for Analog Input
Patterns, Applied Optics 26, 4919–4946.

27. D. D. CAVIGLIA, G. M. BISIO, F. CURATELLI, L. GIOVANNACCI

and L. RAFFO, 1989. Neural Algorithms for Cell Placement in
VLSI Design, Proceedings IEEE International Joint Conference on
Neural Networks 1, 573–580.

28. S. CHANG and B. H. NAM, 1994. Hopfield-type Neural Net-
works for Standard Form Linear Programming and Jobshop
Scheduling, Transactions Korean Institute Electrical Engineering
43, 1361–1369.

29. L. CHEN and K. AIHARA, 1995. Chaotic Simulated Annealing by
a Neural Network Model with Transient Chaos, Neural Net-
works 8, 915–930.

30. S. K. CHEN, P. MANGIAMELI, and D. WEST, 1995. The Compar-
ative Ability of Self-Organizing Neural Networks to Define
Cluster Structure, Omega 23, 271–279.

31. Y. B. CHO, T. KUROKAWA, Y. TAKEFUJI, and H. S. KIM, 1993. An
O(1) Approximate Parallel Algorithm for the n-Task n-Person
Assignment Problem, Proceedings International Joint Conference
on Neural Networks 2, Nagoya, 1503–1506.

32. N. CHRISTOFIDES, 1975. Graph Theory: An Algorithmic Approach,
Academic Press, New York.

33. P. CHU, 1992. A Neural Network for Solving Optimization
Problems with Linear Equality Constraints, Proceedings IEEE
International Joint Conference on Neural Networks 2, 272–277.

34. J. COLLINS and P. A. PENZ, 1989. Considerations for Neural
Network Hardware Implementations, Proceedings IEEE Inter-
national Symposium on Circuits and Systems, Portland, 834–847.

35. M. COTTRELL and J. C. FORT, 1986. A Stochastic Model of
Retinotopy: A Self-Organizing Process, Biological Cybernetics
53, 166–170.

36. S. COY, B. GOLDEN, E. WASIL, and G. RUNGER, 1997. Evaluating
the Effectiveness of Fine-Tuned Learning Enhancement to
Backpropagation, in Intelligent Engineering Systems Through Ar-
tificial Neural Networks, C. Dagli et al. (eds.), ASME Press, New
York, 105–111.

37. G. CRAIG, M. KRISHNAMOORTHY, and M. PALANISWAMI, 1996.
Comparison of Heuristic Algorithms for the Degree Con-
strained Minimum Spanning Tree, in Meta-Heuristics: Theory
and Applications, I. H. Osman and J. P. Kelly (eds.), Kluwer
Academic Press, Boston, 83–96.

38. I. F. CROALL and J. P. MASON, 1992. Industrial Applications of
Neural Networks, Springer-Verlag, Luxembourg, 160–218.

39. J. C. CULIOLI, V. PROTOPOPESCU, C. L. BRITTON, and M. N.
ERICSON, 1990. Neural Network Models for Linear Program-
ming, Proceedings of International Joint Conference on Neural Net-
works, 293–296.

40. C. DAGLI and S. LAMMERS, 1989. Possible Applications of Neu-
ral Networks in Manufacturing, Proceedings of the IEEE Inter-
national Joint Conference of Neural Networks 2, 605 (abstract
only).

41. C. H. DAGLI and S. SITTISATHANCHAI, 1993. Genetic Neuro-
Scheduler for Job-Shop Scheduling, Computers and Industrial
Engineering 25, 267–270.

42. Z. DAI, J. CHA, W. GUO, and F. WANG, 1994. A Heuristic-Based
Neural Network for Packing Problems, Proceedings Interna-
tional Conference on Data and Knowledge Systems for Manufactur-
ing and Engineering 2, 698–703.

43. G. B. DANTZIG, 1963. Linear Programming and Extensions, Prince-
ton University Press, Princeton, NJ.

44. H. DATE, M. SEKI, and T. HAYASHI, 1990. LSI Module Place-
ment Using Neural Computation Networks, Proceedings Inter-
national Joint Conference on Neural Networks 3, San Diego, 831–
836.

45. G. W. DAVIS, 1989. Sensitivity Analysis in Neural Net Solu-
tions, IEEE Transactions on Systems, Man and Cybernetics 19,
1078–1082.

46. L. DAVIS (ed.), 1991. Handbook of Genetic Algorithms, Van Nos-
trand Reinhold, New York.

47. D. DESIENO, 1988. Adding a Conscience Mechanism to Com-
petitive Learning, Proceedings IEEE International Conference on
Neural Networks 1, 117–124.

48. E. W. DIJKSTRA, 1959. A Note on Two Problems in Connection
with Graphs, Numerische Mathematik 1, 269.

49. R. DURBIN and D. WILLSHAW, 1987. An Analogue Approach to
the Travelling Salesman Problem Using an Elastic Net Method,
Nature 326, 689–691.

50. L. FANG and T. LI, 1990. Design of Competition-Based Neural
Networks for Combinatorial Optimization, International Journal
of Neural Systems 1, 221–235.

51. L. FANG, W. H. WILSON, and T. LI, 1990. Mean-Field Annealing
Neural Net for Quadratic Assignment, Proceedings International
Conference on Neural Networks, Paris, 282–286.

52. F. FAVATA and R. WALKER, 1991. A Study of the Application of
Kohonen-Type Neural Networks to the Travelling Salesman
Problem, Biological Cybernetics 64, 463–468.

53. Y. P. S. FOO and Y. TAKEFUJI, 1988. Stochastic Neural Networks
for Job-Shop Scheduling: Parts 1 and 2, Proceedings of the IEEE
International Conference on Neural Networks 2, 275–290.

54. Y. P. S. FOO and Y. TAKEFUJI, 1988. Integer Linear Program-
ming Neural Networks for Job Shop Scheduling, Proceedings of
the IEEE International Conference on Neural Networks 2, 341–348.

55. Y. P. S. FOO and H. SZU, 1989. Solving Large-Scale Optimiza-
tion Problems by Divide-and-Conquer Neural Networks, Pro-
ceedings IEEE International Joint Conference on Neural Networks 1,
507–511.

56. J. C. FORT, 1988. Solving a Combinatorial Problem via Self-
Organizing Process: An Application of the Kohonen Algorithm
to the Traveling Salesman Problem, Biological Cybernetics 59,
33–40.

57. T. FUJITA, K. YASUDA, and R. YOKOYAMA, 1995. Global Opti-
mization Method Using Chaos in Dissipative System, Electron-
ics and Communications in Japan, Part 3, 78, 881–889.

58. N. FUNABIKI and Y. TAKEFUJI, 1992. A Neural Network Parallel
Algorithm for Channel Assignment Problems in Cellular Radio
Networks, IEEE Transactions on Vehicular Technology 41, 430–
437.

59. C. GASPIN, 1990. Automatic Translation of Constraints for Solv-
ing Optimization Problems by Neural Networks, Proceedings
International Joint Conference on Neural Networks, 857–861.

61. M. R. GAREY and D. S. JOHNSON, 1979. Computers and Intracta-
bility, W. H. Freeman, New York.

62. D. W. GASSEN and J. D. CAROTHERS, 1993. Graph Color Mini-
mization Using Neural Networks, Proceedings International Joint
Conference on Neural Networks 2, Nagoya, 1541–1544.

63. A. H. GEE, 1993. Problem Solving with Optimization Net-
works, Ph.D. thesis, Queen’s College, Cambridge University,
Cambridge, U. K.

64. A. H. GEE and R. W. PRAGER, 1995. Limitations of Neural
Networks for Solving Traveling Salesman Problems, IEEE
Transactions on Neural Networks 6, 280–282.

65. H. GHAZIRI, 1996. Supervision in the Self-Organizing Feature
Map: Application to the Vehicle Routing Problem, in Metaheu-

30
Smith

ristics: Theory and Applications, I. H. Osman and J. P. Kelly
(eds.), Kluwer, Boston, 651–660.

66. L. GISLEN, C. PETERSON and B. SODERBERG, 1989. Teachers and
Classes with Neural Networks, International Journal of Neural
Systems 1, 167–176.

67. F. GLOVER, 1986. Future Paths for Integer Programming and
Links to Artificial Intelligence, Computers and Operations Re-
search 5, 533–549.

68. F. GLOVER, 1993. A User’s Guide to Tabu Search, Annals of
Operations Research 41, 3–28.

69. D. E. GOLDBERG, 1989. Genetic Algorithms in Search Optimization,
and Machine Learning, Addison-Wesley, Reading, MA.

70. M. GOLDSTEIN, 1990. Self-Organizing Feature Maps for the
Multiple Traveling Salesman Problem (MTSP), Proceedings
IEEE International Conference on Neural Networks, Paris, 258–261.

71. D. GONG, M. GEN, G. YAMAZAKI, and W. XU, 1995. Neural
Network Approach for General Assignment Problem, Proceed-
ings International Conference on Neural Networks 4, Perth, 1861–
1866.

72. R. E. GOMORY, 1958. Outline for an Algorithm for Integer
Solution to Linear Programs, Bulletin of the American Mathemat-
ical Society 64, 5.

73. S. GROSSBERG, 1988. Nonlinear Neural Networks: Principles,
Mechanisms and Architectures, Neural Networks 1, 17–61.

74. F. GUERRERO, S. LOZANO, D. CANCA, and K. SMITH, 1998.
Machine Grouping in Cellular Manufacturing: A Self-Organis-
ing Neural Network, in Engineering Benefits from Neural Net-
works, A. B. Bulsari et al. (eds.), Systems Engineering Associa-
tion, Turku, Finland, 374–377.

75. T. HAMEENANTTILA and J. D. CAROTHERS, 1994. A Hopfield
Neural Network Solution to the TCM Partitioning Problem,
Proceedings IEEE International Conference on Neural Networks 7,
4676–4680.

76. D. HAMMERSTROM, 1990. A VLSI Architecture for High Perfor-
mance, Low Cost, On-Chip Learning, Proceedings IEEE Interna-
tional Joint Conference on Neural Networks 2, 537–543.

77. Y. HAYAKAWA, A. MARUMOTOT, and Y. SAWADA, 1995. Effects
of the Chaotic Noise on the Performance of a Neural Network
Model for Optimization Problems, Physical Review E 51, 2693–
2700.

78. R. HECHT-NIELSEN, 1988. Applications of Counterpropagation
Networks, Neural Networks 1, 131–139.

79. S. HEDGE, J. SWEET, and W. LEVY, 1988. Determination of
Parameters in a Hopfield/Tank Computational Network, Pro-
ceedings IEEE International Conference on Neural Networks 2,
291–298.

80. B. J. HELLSTROM and L. N. KANAL, 1992. Asymmetric Mean-
Field Neural Networks for Multi-Processor Scheduling, Neural
Networks 5, 671–686.

81. L. HÉRAULT and J. J. NIEZ, 1991. Neural Network and Combi-
natorial Optimization. A Study of NP-Complete Graph Prob-
lems, in Neural Networks: Advances and Applications, E. Gelenbe
(ed.), North-Holland, Amsterdam, 165–213.

82. G. E. HINTON, T. J. SEJNOWSKI, and D. H. ACKLEY, 1984. Bolt-
zmann Machines: Constraint Satisfaction Networks that Learn,
Carnegie Mellon University Technical Report CMU-CS-84-119.

83. S. G. HONG, S. W. KIM, and J. J. LEE, 1995. The Minimum Cost
Path Finding Algorithm Using a Hopfield Type Neural Net-
work, Proceedings IEEE International Conference on Fuzzy Sys-
tems 4, 1719–1726.

84. J. N. HOOKER, 1995. Testing Heuristics: We Have it All Wrong,
Journal of Heuristics 1, 33–42.

85. J. J. HOPFIELD, 1982. Neural Networks and Physical Systems

with Emergent Collective Computational Abilities, Proceedings
National Academy of Sciences 79, 2554–2558.

86. J. J. HOPFIELD, 1984. Neurons with Graded Response Have
Collective Computational Properties Like Those of Two-State
Neurons, Proceedings National Academy of Sciences 81, 3088–
3092.

87. J. J. HOPFIELD and D. W. TANK, 1985. “Neural” Computation of
Decisions in Optimization Problems, Biological Cybernetics 52,
141–152.

88. M. INOUE and A. NAGAYOSHI, 1992. Solving an Optimization
Problem with a Chaos Neural Network, Proceedings Theoretical
Physics 88, 769–773.

89. A. JAGOTA, 1995. Approximating Maximum Clique with a
Hopfield Network, IEEE Transactions on Neural Networks 6,
724–735.

90. H. JEONG and J. H. PARK, 1989. Lower Bounds of Annealing
Schedule for Boltzmann and Cauchy Machines, Proceedings
IEEE International Joint Conference on Neural Networks 1, 581–
586.

91. A. K. JAIN and R. C. DUBES, 1988. Algorithms for Clustering,
Prentice Hall, Englewood, NJ.

92. A. JOPPE, H. R. A. CARDON, and J. C. BIOCH, 1990. A Neural
Network for Solving the Traveling Salesman Problem, Proceed-
ings IEEE International Joint Conference on Neural Networks 3,
961–964.

93. M. KAJIURA, Y. AKIYAMA, and Y. ANZAI, 1990. Solving Large
Scale Puzzles with Neural Networks, Proceedings Tools for AI
Conference, Fairfax, 562–569.

94. B. KAMGAR-PARSI, J. A. GUALTIERI, J. E. DEVANEY, and B.
KAMGAR-PARSI, 1990. Clustering with Neural Networks, Bio-
logical Cybernetics 63, 201–208.

95. B. KAMGAR-PARSI and B. KAMGAR-PARSI, 1987. An Efficient
Model of Neural Networks for Optimization, Proceedings IEEE
International Conference on Neural Networks 3, 785–790.

96. B. KAMGAR-PARSI and B. KAMGAR-PARSI, 1992. Dynamical Sta-
bility and Parameter Selection in Neural Optimization, Proceed-
ings International Joint Conference on Neural Networks 4, 566–571.

97. M. KENNEDY and L. CHUA, 1988. Neural Networks for Linear
and Nonlinear Programming, IEEE Transactions on Circuits and
Systems 35, 554–562.

98. B. KERNIGHAN and S. LIN, 1970. An Efficient Heuristic Proce-
dure for Partitioning Graphs, Bell System Technical Journal 49,
291–307.

99. S. Y. KIM, Y. H. LEE, and D. AGNIHOTRI, 1995. A Hybrid
Approach to Sequencing Jobs Using Heuristic Rules and Neu-
ral Networks, Production Planning and Control 6, 445–454.

100. S. KIRKPATRICK, C. GELATT, and M. VECCHI, 1983. Optimisation
by Simulated Annealing, Science 220, 671–680.

101. T. KOHONEN, 1982. Self-Organized Formation of Topologically
Correct Feature Maps, Biological Cybernetics 43, 59–69.

102. T. KOHONEN, 1984. Self-Organisation and Associative Memory,
Springer-Verlag, Berlin.

103. T. KOHONEN, 1990. The Self-Organizing Map, Proceedings of the
IEEE 78, 1464–1480.

104. M. KOVACIC, 1993. Timetable Construction with Markovian
Neural Network, European Journal of Operational Research 69,
92–96.

105. J. KRUSKAL, 1956. On the Shortest Spanning Subtree of a Graph
and the Travelling Salesman Problem, Proceedings American
Mathematical Society 7, 48.

106. D. KUNZ, 1991. Channel Assignment for Cellular Radio Using
Neural Networks, IEEE Transactions on Vehicular Technology 40,
188–193.

107. T. KUROKAWA and S. KOZUKA, 1994. Use of Neural Networks

31
Neural Networks for Combinatorial Optimization

for the Optimum Frequency Assignment Problem, Electronics
and Communications in Japan, Part 1, 77, 106–116.

108. J. S. LAI, S. Y. KUO, and I. Y. CHEN, 1994. Neural Networks for
Optimization Problems in Graph Theory, Proceedings IEEE In-
ternational Symposium on Circuits and Systems 6, 269–272.

109. W. K. LAI and G. G. COGHILL, 1992. Genetic Breeding of
Control Parameters for the Hopfield/Tank Neural Net, Pro-
ceedings International Joint Conference on Neural Networks 4, 618–
623.

110. W. K. LAI and G. G. COGHILL, 1994. Initialising the Continuous
Hopfield Net, Proceedings International Conference on Neural Net-
works 7, 4640–4644.

111. A. H. LAND and A. G. DOIG, 1960. An Automatic Method of
Solving Discrete Programming Problems, Econometrica 28, 497–
520.

112. B. W. LEE and B. J. SHEU, 1989. Design of a Neural-Based A/D
Converter Using Modified Hopfield Network, IEEE Journal of
Solid-State Circuits 24, 1129–1135.

113. H.-M. LEE and C.-C. HSU, 1990. Neural Network Processing
Through Energy Minimization with Learning Ability to the
Multiconstraint Zero-One Knapsack Problem, Proceedings Tools
for AI Conference, Fairfax, Virginia, 548–555.

114. S. LEE and J. PARK, 1993. Dual-Mode Dynamics Neural Net-
work (D2NN) for Knapsack Packing Problem, Proceedings In-
ternational Joint Conference on Neural Networks 3, Nagoya, 2425–
2428.

115. S. LIN and B. W. KERNIGHAN, 1973. An Effective Heuristic
Algorithm for the Travelling Salesman Problem, Operations
Research 21, 498–516.

116. W. LIN, J. G. DELGADO-FRIAS, G. G. PECHANEK, and S. VASSILI-
ADIS, 1994. Impact of Energy Function on a Neural Network
Model for Optimization Problems, Proceedings IEEE Interna-
tional Conference on Neural Networks 7, 4518–4523.

117. Y. LIN, L. M. AUSTIN, and J. R. BURNS, 1992. An Intelligent
Algorithm for Mixed-Integer Programming Models, Computers
and Operations Research 19, 461–468.

118. R. LISTER, 1993. Annealing Networks and Fractal Landscapes,
Proceedings IEEE International Conference on Neural Networks 1,
257–262.

119. J. T-H. LO, 1992. A New Approach to Global Optimization and
its Applications to Neural Networks, Proceedings IEEE Interna-
tional Joint Conference on Neural Networks 4, 600–605.

120. C.-K. LOOI, 1992. Neural Network Methods in Combinatorial
Optimization, Computers and Operations Research 19, 191–208.

121. N. MANSOUR, 1994. Parallel Physical Optimization Algorithms
for Allocating Data to Multicomputer Nodes, Journal of Super-
computing 8, 53–80.

122. Y. MATSUYAMA, 1991. Self-Organization via Competition, Co-
operation and Categorization Applied to Extended Vehicle
Routing Problems, Proceedings International Joint Conference on
Neural Networks 1, 385–390.

123. H. MAUSSER, M. J. MAGAZINE, and J. B. MOORE, 1993. Appli-
cation of an Annealed Neural Network to a Timetabling Prob-
lem, Working Paper, School of Business Administration, Uni-
versity of Colorado at Boulder.

124. A. MEHREZ, Y. YUAN, and A. GAFNI, 1988. Stable Solution vs.
Multiplicative Utility Solutions for the Assignment Problem,
Operations Research Letters 7, 131–139.

125. G. L. NEMHAUSER and L. A. WOLSEY, 1988. Integer and Combi-
natorial Optimization, John Wiley & Sons, New York.

126. H. NONAKA and Y. KOBAYASHI, 1992. Sub-Optimal Solution
Screening in Optimization by Neural Networks, Proceedings
International Joint Conference on Neural Networks 4, 606–611.

127. H. NOZAWA, 1994. Solution of the Optimization Problem Using

the Neural Network Model as a Globally Coupled Map, in
Towards the Harnessing of Chaos, M. Yamaguti (ed.), Elsevier
Science B. V., Amsterdam, 99–114.

128. K. E. NYGARD, P. JUELI, and N. KADABA, 1990. Neural Net-
works for Selecting Vehicle Routing Heuristics, ORSA Journal
of Computing 2, 353–364.

129. M. OHLSSON, C. PETERSON, and B. SODERBERG, 1993. Neural
Networks for Optimization Problems with Inequality Con-
straints: The Knapsack Problem, Neural Computation 5, 331–339.

130. I. H. OSMAN and G. LAPORTE, 1996. Metaheuristics: A Bibliog-
raphy, Annals of Operations Research 63, 513–623.

131. R. PADMAN, 1991. Choosing Solvers in Decision Support Sys-
tems. A Neural Network Application in Resource-Constrained
Project Scheduling, in Recent Developments in Decision Support
Systems 101, Springer-Verlag, Berlin, 539–574.

132. C. PETERSON and J. ANDERSON, 1988. Neural Networks and
NP-Complete Optimization Problems: A Performance Study
on the Graph Bisection Problem, Complex Systems 2, 59–89.

133. C. PETERSON and B. SÖDERBERG, 1989. A New Method for
Mapping Optimization Problems onto Neural Networks, Inter-
national Journal of Neural Systems 1, 3–22.

134. C. PETERSON and B. SÖDERBERG, 1993. Artificial Neural Net-
works, in Modern Heuristic Techniques for Combinatorial Prob-
lems, C. R. Reeves (ed.), Blackwell Scientific Publications, Ox-
ford, 197–242.

135. P. R. PHILIPOOM, L. P. REES, and L. WIEGMANN, 1994. Using
Neural Networks to Determine Internally Set Due-Date As-
signments for Shop Scheduling, Decision Sciences 26, 825–851.

136. L. K. PLATZMAN and J. J. BARTHOLDI, 1989. Spacefilling Curves
and the Planar Travelling Salesman Problem, Journal of the
ACM 36, 719–737.

137. M. O. POLIAC, E. B. LEE, J. R. SLAGLE, and M. R. WICK, 1987. A
Crew Scheduling Problem, Proceedings IEEE International Con-
ference on Neural Networks 2, 779–786.

138. C. PORNAVALAI, G. CHAKRABORTY, and N. SHIRATORI, 1995.
Neural Networks for Solving Constrained Steiner Tree Prob-
lem, Proceedings IEEE International Conference on Neural Net-
works 4, 1867–1870.

139. J.-Y. POTVIN, 1993. The Traveling Salesman Problem: A Neural
Network Perspective, ORSA Journal on Computing 5, 328–348.

140. J.-Y. POTVIN and C. ROBILLARD, 1995. Clustering for Vehicle
Routing with a Competitive Neural Network, Neurocomputing
8, 125–139.

141. P. W. PROTZEL, D. L. PALUMBO, and M. K. ARRAS, 1993. Per-
formance and Fault Tolerance of Neural Networks for Optimi-
zation, IEEE Transactions on Neural Networks 4, 600–614.

142. J. RAMANUJAM and P. SADAYAPPAN, 1995. Mapping Combina-
torial Optimization Problems onto Neural Networks, Informa-
tion Sciences 82, 239–255.

143. H. E. RAUCH and T. WINARSKE, 1988. Neural Networks for
Routing Communications Traffic, IEEE Control Systems Maga-
zine, April, 26–31.

144. C. P. RAVIKUMAR and N. VEDI, 1995. Heuristic and Neural
Algorithms for Mapping Tasks to a Reconfigurable Array,
Microprocessing and Microprogramming 41, 137–151.

145. C. R. REEVES (ed.), 1993. Modern Heuristic Techniques for Com-
binatorial Problems, Blackwell Scientific Publications, Oxford.

146. H. RITTER and K. SCHULTEN, 1988. Kohonen’s Self-Organizing
Maps: Exploring their Computational Capabilities, Proceedings
IEEE International Conference on Neural Networks 1, 109–116.

147. R. ROMANO, O. MAIMON, and M. FURST, 1989. Neural Net
Implementation for Assigning a Product to a Production Line,
Proceedings of the IEEE International Joint Conference on Neural
Networks 2, 577 (abstract only).

32
Smith

148. B. ROYSAM and A. K. BHATTACHARJYA, 1992. Hierarchically
Structured Unit-Simplex Transformations for Parallel Distrib-
uted Optimization Problems, IEEE Transactions on Neural Net-
works 3, 108–124.

149. S. SATYANARAYANA, Y. P. TSIVIDIS, and H. P. GRAF, 1992. A
Reconfigurable VLSI Neural Network, IEEE Journal of Solid-
State Circuits 27, 67–81.

150. J. D. SCHAFFER, D. WHITLEY, and L. J. ESHELMAN, 1992. Com-
binations of Genetic Algorithms and Neural Networks. A Sur-
vey of the State of the Art, Proceedings of the International
Workshops on Combinations of Genetic Algorithms and Neural
Networks, 1–37.

151. H. N. SCHALLER, 1993. Problem Solving by Global Optimiza-
tion: The Rolling Stone Neural Network, Proceedings Interna-
tional Joint Conference on Neural Networks 2, Nagoya, 1481–1484.

152. R. SHARDA, 1994. Neural Networks for the MS/OR Analyst:
An Application Bibliography, Interfaces 24, 116–130.

153. B. SHEU, E. CHOU, R. TSAI, and D. CHEN, 1995. VLSI Neural
Networks: Design Challenges and Opportunities, in Computa-
tional Intelligence, M. Palaniswami, Y. Attikiouzel, R. J. Marks
II, D. Fogel, and T. Fukada (eds.), IEEE Press, New York,
261–271.

154. K. SMITH, 1995. Solving the Generalized Quadratic Assignment
Problem using a Self-Organising Process, Proceedings IEEE In-
ternational Conference on Neural Networks 4, Perth, 1876–1879.

155. K. SMITH, M. PALANISWAMI, and M. KRISHNAMOORTHY, 1996.
A Hybrid Neural Approach to Combinatorial Optimization,
Computers and Operations Research 23, 597–610.

156. K. SMITH, 1996. An Argument for Abandoning the Traveling
Salesman Problem as a Neural Network Benchmark, IEEE
Transactions of Neural Networks 7, 1542–1544.

157. K. SMITH, M. PALANISWAMI, and M. KRISHNAMOORTHY, 1996.
Traditional Heuristic versus Hopfield Neural Network Ap-
proaches to a Car Sequencing Problem, European Journal of
Operational Research 93, 300–316.

158. K. SMITH and M. PALANISWAMI, 1997. Static and Dynamic
Channel Assignment Using Neural Networks, IEEE Journal on
Selected Areas in Communications 15, 238–249.

159. K. SMITH, M. KRISHNAMOORTHY, and M. PALANISWAMI, 1996.
Neural versus Traditional Approaches to the Location of In-
teracting Hub Facilities, Location Science 4, 155–171.

160. H. SZU, 1988. Fast TSP Algorithm Based on Binary Neuron
Output and Analog Input Using Zero-Diagonal Interconnect
Matrix and Necessary and Sufficient Conditions of the Permu-
tation Matrix, Proceedings IEEE International Conference on Neu-
ral Networks 2, 259–266.

161. H. SZU and R. HARTLEY, 1987. Fast Simulated Annealing, Phys-
ics Letters A 122, 157–162.

162. G. A. TAGLIARINI and E. W. PAGE, 1987. Solving Constraint
Satisfaction Problems with Neural Networks, Proceedings IEEE
International Conference on Neural Networks 3, 741–747.

163. T. TAKADA, K. SANOU, and S. FUKUMARA, 1995. A Neural-
Network Systems for Solving an Assortment Problem in the
Steel-Industry, Annals of Operations Research 57, 265–281.

164. M. TAKAHASHI, K. KYUMA, and E. FUNADA, 1993. 10000 Cell
Placement Optimization using a Self-Organizing Map, Proceed-
ings International Joint Conference on Neural Networks 3, 2417–
2420.

165. Y. TAKEFUJI, 1992. Neural Network Parallel Computing, Kluwer
Academic Publishers, Boston, MA.

166. Y. TAKEFUJI and K. C. LEE, 1991. Artificial Neural Networks for
Four-Coloring Map Problems and K-Colorability Problems,
IEEE Transactions on Circuits and Systems 38, 326–333.

167. Y. TAKEFUJI and H. SZU, 1989. Design of Parallel Distributed

Cauchy Machines, Proceedings IEEE International Joint Confer-
ence on Neural Networks 1, 529–532.

168. D. W. TANK and J. J. HOPFIELD, 1986. Simple Neural Optimi-
zation Networks: An A/D Converter, Signal Decision Circuit
and a Linear Programming Circuit, IEEE Transactions on Circuit
Systems 33, 533–541.

169. D. A. THOMAE and D. VAN DEN BOUT, 1990. Encoding Logical
Constraints into Neural Network Cost Functions, Proceedings
International Joint Conference on Neural Networks 3, San Diego,
863–868.

170. Y. UESAKA, 1993. Mathematical Basis of Neural Networks for
Combinatorial Optimization Problems, Optoelectronics 8, 1–9.

171. M. K. UNALTUNA and V. PITCHUMANI, 1994. Unsupervised
Competitive Learning Neural Network Algorithms for Circuit
Bipartitioning, Proceedings World Congress on Neural Networks 1,
San Diego, 302–307.

172. K. URAHAMA and H. NISHIYUKI, 1993. Neural Algorithms for
Placement Problems, Proceedings International Joint Conference
on Neural Networks 3, Nagoya, 2421–2424.

173. A. I. VAKHUTINSKY and B. L. GOLDEN, 1994. Solving Vehicle
Routing Problems Using Elastic Nets, Proceedings IEEE Interna-
tional Conference on Neural Networks 7, 4535–4540.

174. A. I. VAKHUTINSKY and B. L. GOLDEN, 1995. A Hierarchical
Strategy for Solving Traveling Salesman Problems Using Elas-
tic Nets, Journal of Heuristics 1, 67–76.

175. S. VAITHAYANATHAN and J. IGNIZIO, 1992. A Stochastic Neural
Network for Resource Constrained Scheduling, Computers and
Operations Research 19, 241–254.

176. S. VAITHYANATHAN, H. OGMEN, and J. IGNIZIO, 1994. General-
ized Boltzmann Machines for Multidimensional Knapsack
Problems, Intelligent Engineering Systems Through Artificial Neu-
ral Networks 4, ASME Press, New York, 1079–1084.

177. D. E. VAN DEN BOUT and T. K. MILLER III, 1988. A Travelling
Salesman Objective Function That Works, Proceedings IEEE
International Conference on Neural Networks 2, 299–303.

178. D. E. VAN DEN BOUT and T. K. MILLER III, 1989. Improving the
Performance of the Hopfield-Tank Neural Network through
Normalization and Annealing, Biological Cybernetics 62, 129–
139.

179. D. E. VAN DEN BOUT and T. K. MILLER III, 1990. Graph Parti-
tioning Using Annealed Neural Networks, IEEE Transactions
on Neural Networks 1, 192–203.

180. P. VAN HENTENRYCK, 1989. Constraint Satisfaction in Logic Pro-
gramming, MIT Press, Cambridge, MA.

181. R. VAN VLIET and H. CARDON, 1991. Combining a Graph
Partitioning and a TSP Neural Network to Solve the MTSP, in
Artificial Neural Networks 2, T. Kohonen, K. Makisara, O.
Simula, and J. Kangas (eds.), North Holland, Amsterdam, 157–
162.

182. M. VERLEYSEN and P. JESPERS, 1989. An Analog VLSI Imple-
mentation of Hopfield’s Neural Network, IEEE Micro, Decem-
ber, 46–55.

183. M. VIDYASAGAR, 1993. Location and Stability of the High-Gain
Equilibria of Nonlinear Neural Networks, IEEE Transactions on
Neural Networks 4, 660–672.

184. V. V. VINOD, S. GHOSE, and P. P. CHAKRABARTI, 1996. Resultant
Projection Neural Networks for Optimization Under Inequal-
ity Constraints, IEEE Transactions on Systems, Man, and Cyber-
netics Part B 26, 509–521.

185. E. WACHOLDER, 1990. A Neural Network-Based Optimization
Algorithm for the Static Weapon-Target Assignment Problem,
ORSA Journal on Computing 1, 232–246.

186. E. WACHOLDER, J. HAN, and R. C. MANN, 1991. An Extension
of the Hopfield-Tank Model for Solution of the Multiple TSP,

33
Neural Networks for Combinatorial Optimization

Proceedings IEEE International Conference on Neural Networks 2,
305–325.

187. E. WACHOLDER, J. HAN, and R. C. MANN, 1989. A Neural
Network Algorithm for the Multiple TSP, Biological Cybernetics
61, 11–19.

188. J. WANG, 1992. Analogue Neural Networks for Solving the
Assignment Problem, Electronics Letters 28, 1047–1050.

189. J. WANG, 1994. A Recurrent Neural Network for Solving the
Shortest Path Problem, Proceedings IEEE International Sympo-
sium Circuits and Systems 6, 319–322.

190. Q. WANG, X. SUN, B. GOLDEN, and J. JIA, 1995. Using Artificial
Neural Networks to Solve the Orienteering Problem, Annals of
Operations Research 61, 111–120.

191. Y. C. WEI and C. K. CHENG, 1991. Ratio Cut Partitioning for
Hierarchical Designs, IEEE Transactions on CAD, July, 911–921.

192. G. V. WILSON and G. S. PAWLEY, 1988. On the Stability of the
TSP Algorithm of Hopfield and Tank, Biological Cybernetics 58,
63–70.

193. W. S. WONG and C. A. FUNKA-LEA, 1990. An Elastic Net
Solution to Obstacle Avoidance Tour Planning, Proceedings
International Joint Conference on Neural Networks 3, San Diego,
799–804.

194. X. XU and W. T. TSAI, 1991. Effective Neural Algorithms for the
Travelling Salesman Problem, Neural Networks 4, 193–205.

195. S. YAMADA and T. KASAI, 1990. An Efficient Algorithm for the
Linear Assignment Problem, Electronics and Communications in
Japan, Part 3, 73, 28–36.

196. A. YAMAMOTO, M. OHTA, H. UEDA, A. OGIHARA, and K. FUKU-
NAGA, 1995. Asymmetric Neural Network and its Application
to Knapsack Problem, IEICE Transactions Fundamentals E78-A,
300–305.

197. X. YAO, 1993. Evolutionary Artificial Neural Networks, Inter-
national Journal of Neural Systems 4, 203–222.

198. P. YIP and Y. TAKEFUJI, 1994. Constrained Optimization with
Use of Two-Dimensional Maximum Neurons, Proceedings In-
ternational Conference on Neural Networks 7, 4667–4671.

199. L. ZHANG and S. C. A. THOMOPOULOS, 1989. Neural Network
Implementation of Shortest Path Algorithm for Traffic Routing
in Communication Networks, Proceedings International Joint
Conference on Neural Networks 2, Washington DC, 591 (abstract
only).

200. S. ZHAO and T. S. DILLON, 1993. Parallel Distributed Imple-
mentation of the Shortest Path Algorithm, Proceedings Interna-
tional Joint Conference on Neural Networks 2, Nagoya, 1598–1601.

201. D. N. ZHOU, V. CHERKASSKY, T. R. BALDWIN, and D. W. HONG,
1990. Scaling Neural Networks for Job-Shop Scheduling, Pro-
ceedings International Joint Conference on Neural Networks 3, San
Diego, 889–894.

202. V. ZISSIMOPOLOUS, V. PASCHOS, and F. PEKERGIN, 1991. On the
Approximation of NP-Complete Problems by Using the Bolt-
zmann Machine Method: The Case of Some Covering and
Packing Problems, IEEE Transactions on Computers 40, 1413–
1418.

34
Smith

