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Abstract— One of the major drawbacks of the Hopfield
network is that when it is applied to certain polytopes of
combinatorial problems, such as the traveling salesman problem
(TSP), the obtained solutions are often invalid, requiring nu-
merous trial-and-error setting of the network parameters thus
resulting in low-computation efficiency. With this in mind, this
article presents a columnar competitive model (CCM) which
incorporates a winner-takes-all (WTA) learning rule for solving
the TSP. Theoretical analysis for the convergence of the CCM
shows that the competitive computational neural network guar-
antees the convergence of the network to valid states and avoids
the tedious procedure of determining the penalty parameters. In
addition, its intrinsic competitive learning mechanism enables
a fast and effective evolving of the network. Simulation results
illustrate that the competitive model offers more and better
valid solutions as compared to the original Hopfield network.

Index Terms— Competitive learning, simulated annealing,
combinatorial optimization, traveling salesman problem.

I. INTRODUCTION

From the view of mathematical programming, the TSP can
be described as a quadratic 0-1 programming problem with
linear constraints,

minimize Eobj(v) (1)

subject to Si =
n∑

x=1

vxi = 1 ∀i ∈ {1, · · · , n}, (2)

Sx =
n∑

i=1

vxi = 1 ∀x ∈ {1, · · · , n}, (3)

and a redundant constraint S =
∑

x

∑
i

vx,i = n, where

vxi ∈ {0, 1} and Eobj is the total tour length described by
a valid 0-1 solution v. The energy function to be minimized
in the network is

E(v) = Eobj(v) + Ecns(v), (4)

where Ecns is the constraints described by (2) and (3).
In his seminal work, Hopfield [11] solved the TSP, as

a specific instance of combinatorial optimization problems
using a highly-interconnected network of nonlinear analog
neurons. However, the convergence of network to valid
states and preferably quality ones depended heavily on the
values of penalty terms in the energy function. It required
careful setting of these parameters in order to obtain valid
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quality solutions, which is often a difficult and trial-and-error
procedure.

It has been a continuing research effort to improve the
performance of Hopfield network since its origination [2].
The behavior of Hopfield network was analyzed based on
the eigenvalues of connection matrix [1] and the parameter
settings for TSP was derived. The local minimum escape
(LME) algorithm [12] was proposed to improve the local
minimum by combining the network disturbing technique
with the Hopfield network’s local minima search property.
Most recently, a parameter setting procedure based on the
stability conditions of the energy function was presented [3].
Although these methods have been successful to some extent
for improving the quality and validity of solutions, spurious
states were often generated. Moreover, the existing methods
require a large volume of computational resources, which
restricts their practical applications.

II. COLUMNAR COMPETITIVE MODEL

The dynamics of Hopfield networks can be described by
a system of differential equations and the activation function
is a hyperbolic tangent. Let v, ib be the vectors of neuron
activities and biases, and W be the connection matrix, then
the energy function of the Hopfield network for the high-gain
limit expression exists such that

E = −1
2
vT Wv − (ib)T v. (5)

Hopfield has shown that the network will converge to local
minima of energy function (5) if W is symmetric [11].

In this section, the columnar competitive model (CCM)
which is constructed by incorporating WTA into the net-
work in column-wise is introduced. Competitive learning
by winner-takes-all (WTA) has been recognized to play
an important role in many areas of computational neural
networks, such as feature discovery and pattern classification
[4], [9], [10], [6]. Nevertheless, the potential of WTA as
a means of eliminating all spurious states is seen due to
its intrinsic competitive nature that can elegantly reduce
the number of penalty terms, and hence the constraints of
the network for optimization. The WTA mechanism can be
described as: given a set of n neurons, the input to each
neuron is calculated and the neuron with the maximum input
value is declared the winner. The winner’s output is set to
‘1’ while the remaining neurons will have their values set to
‘0’.

The neurons of the CCM are evolved based on the WTA
learning rule. The competitive model handles the columnar
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constraints (2) elegantly, due to its competitive property
of ensuring one ‘1’ per column. As in two dimensional
forms, v = {vx,i}, ib = {ibx,i}, where the subscript x, i ∈
{1, . . . , n} denotes the city index and the visit order, respec-
tively. The strength of connection between neuron (x, i) and
neuron (y, j) is denoted by Wxy,ij . Hence, the associated
energy function can be written as

E(v) =
K

2

∑
x

∑
i

(vx,i

∑
j �=i

vx,j) +

1
2

∑
x

∑
y �=x

∑
i

dxyvx,i(vy,i+1 + vy,i−1), (6)

where K > 0 is a scaling parameter and dxy is the
distance between cities x and y. Comparing (5) and (6), the
connection matrix and the external input of the network are
computed as follows,

Wxi,yj = −{Kδxy(1 − δij) + dxy(δi,j+1 + δi,j−1)},(7)

ib = 0, (8)

where δi,j is the Kronecker’s delta.
The input to a neuron (x, i) is calculated as

Netx,i =
∑

y

∑
j

(Wxi,yjvyj) + ib

= −
∑

y

dxy(vy,i−1 + vy,i+1) − K
∑
j �=i

vx,j (9)

The WTA is applied based on a column-by-column basis,
with the winner being the neuron with the largest input. The
WTA updating rule is thus defined as

vx,i =
{

1, if Netx,i = max{Net1,i, Net2,i, · · · , Netn,i}
0, otherwise

(10)
Hereafter, vx,i is evaluated by the above WTA rule.

The algorithm of implementing the competitive model is
summarized as follows:

Competitive Model Algorithm
1) Initialize the network, with each neuron having a small

initial value vx,i. A small random noise is added to
break the initial network symmetry. Compute the W
matrix using (7).

2) Select a column (e.g., the first column). Compute the
input Netx,i of each neuron in that column.

3) Apply WTA using (10), and update the output state of
the neurons in that column.

4) Go to the next column, preferably the one immediately
on the right for the convenience of computation. Repeat
step 3 until the last column in the network is done. This
constitutes the first epoch.

5) Go to step 2 until the network converges (i.e., the states
of the network stop changes).

III. CONVERGENCE OF COMPETITIVE MODEL AND FULL

VALID SOLUTIONS

For the energy function (6) of CCM, the critical value of
the penalty-term scaling parameter K plays a predominant
role in ensuring its convergence and driving the network to
converge to valid states. Meanwhile, it is known that the
stability of the original Hopfield networks is guaranteed by
the well-known Lyapunov energy function. However, the dy-
namics of the CCM is so different from the Hopfield network,
thus the stability of the CCM needs to be investigated.

In this section, our efforts are devoted to such two objec-
tives, i.e., determining the critical value of K that ensures
the convergence of full valid solutions and proving the
convergence of the competitive networks under the WTA
updating rule. The following theorem is drawn.

Theorem 1: Let K > 2dmax − dmin, where dmax and
dmin is the maximum and the minimum distance, respec-
tively. Then the competitive model defined by (6)–(10) is
always convergent to valid states.

Proof: The proof is composed of two parts based on
the two objectives respectively.

(i) While the WTA ensures that there can only be one ’1’
per column, it does not guarantee the same for each row.
Thise responsibility lies in the parameter K of the penalty
term. Without a loss of generality, it is assumed that after
some updating the network reaches the following state, which
is given by

Let the first row be an all-zero row. The input to each
neuron in the i-th column is computed by

Net1,i = −(d12 + d13),
Net2,i = −(K + d23),
Net3,i = −(K + d23),
Netn,i = −(K + d2n + d3n).

For valid state, v1,i occupying the all-zero row will have
to be the winner, i.e., Net1,i = max

x=1,...,n
{Netx,i}. Therefore,

it is verified that

d12 + d13 < K + d23,

d12 + d13 < K + d2n + d3n.
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To satisfy both conditions, it is sufficient for K to satisfy

K > d12 + d13 − d23, (11)

since d2n + d3n > d23 straightforwardly.
Let dmax = max{dxy}, dmin = min{dxy}. Firstly,

assume the ‘worst’ scenario for deriving (11), i.e., d12 =
d13 = dmax, d23 = dmin, it holds

K > 2dmax − dmin. (12)

Secondly, assume the ‘best’ scenario, i.e., d12 = d13 =
dmin, d23 = dmax, the following is obtained

K > 2dmin − dmax. (13)

Obviously, condition (12) is the sufficient condition for
guaranteed convergence to fully valid solutions, while (13)
is the necessary condition for convergence to some valid
solutions. Although a specific case has been assumed, the
results obtained are regardless of the specific case.

(ii) To investigate the dynamical stability of the CCM, a
n × n network (for n cities) is considered. After the n-th
WTA updating, the network would have reached the state
with only one ‘1’ per column, but may have more than one
‘1’ per row.

Suppose vt and vt+1 are two states before and after WTA
updating respectively. Consider p-th column, and let neuron
(a, p) be the only active neuron before updating, i.e., vt

a,p =
1 and vt

i,p = 0,∀i �= a. After updating, let neuron (b, p) be
the winning neuron, i.e., vt+1

b,p = 1, vt+1
i,p = 0,∀i �= b.

The energy function (6) can be further broken into two
terms Ep and Eo, i.e., E = Ep + Eo, where Ep stands for
the energy of the consecutive columns p − 1, p and p + 1
and of the rows a and b. Eo stands for the energy of the rest
columns and rows.

Ep is calculated by

Ep =
K

2

⎛
⎝∑

i

va,i

∑
j �=i

va,j +
∑

i

vb,i

∑
j �=i

vb,j

⎞
⎠

+
∑

x

∑
y

dxyvx,p(vy,p+1 + vy,p−1). (14)

Accordingly, Eo is computed by

Eo =
K

2

∑
x�=a,b

∑
i

(vx,i

∑
j �=i

vx,j)

+
1
2

∑
x

∑
y

∑
i�=p−1,p,p+1

dxyvx,i(vy,i+1 + vy,i−1)

+
1
2

∑
x

∑
y

dxyvx,p−1vx,p−2

+
1
2

∑
x

∑
y

dxyvx,p+1vx,p+2. (15)

Thus, it can be seen that only Ep will be affected by the
states of the column p. It is assumed that the neuron (a, p)
is the only active neuron in the p-th column before updating,
i.e., vt

a,p = 1 and vt
i,p = 0 for all i �= a, and the neuron

(b, p) wins the competition after updating, i.e., vt+1
b,p = 1 and

vt+1
i,p = 0 for all i �= b. Let Et and Et+1 be the energy before

updating and after updating, respectively. To investigate how
E changes under the WTA learning rule, the following two
cases are considered.

Case 1: Row a contains m ‘1’ (m > 1), row b is an all-
zero row.
According to equation (9), the input to neuron
(a, p) and (b, p) is computed by (16) and (17),
respectively.

Neta,p = −K
∑
j �=p

va,j −
∑

y

day(vy,p−1 + vy,p+1)

(16)
Netb,p = −K

∑
j �=p

vb,j −
∑

y

dby(vy,p−1 + vy,p+1)

(17)
Considering the WTA learning rule (10), it leads to
Netb,p = max

i
{Neti,p}. It implies that

K
∑
j �=p

vb,j +
∑

y

dby(vy,p−1 + vy,p+1) <

K
∑
j �=p

va,j +
∑

y

day(vy,p−1 + vy,p+1) (18)

Obviously,
∑

j �=p vb,j = 0,
∑

j �=p va,j = m − 1.
Therefore, it is derived from (18) that∑

y

dby(vy,p−1 + vy,p+1) −
∑

y

day(vy,p−1 + vy,p+1)

< K(m − 1) (19)

Now considering the energy function (14), Et
p and

Et+1
p is computed by (20) and (20), respectively.

Et
p =

K

2
m(m−1)+

∑
y

dayva,p(vy,p+1+vy,p−1).

Et+1
p =

K

2
(m−1)(m−2)+

∑
y

dbyvb,p(vy,p+1+vy,p−1)

Thus, it is clear that

Et+1
p − Et

p = −K(m − 1) +∑
y

dbyvb,p(vy,p+1 + vy,p−1)

−
∑

y

dayva,p(vy,p+1 + vy,p−1)

(20)

Recall equation (19), it is obtained Et+1
p −Et

p < 0.
It implies that

Et+1 − Et < 0 (21)

Case 2: Row a contains only one ‘1’, row b is an all-zero
row.
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According to the WTA updating rule, again it holds
that Netb,p = max

i
{Neti,p}. Similar to case 1, it

is obtained

K
∑
j �=p

vb,j +
∑

y

dby(vy,p−1 + vy,p+1) <

K
∑
j �=p

va,j +
∑

y

day(vy,p−1 + vy,p+1) (22)

Obviously,
∑

j �=p vb,j = 0,
∑

j �=p va,j = 0. There-
fore, it is obtained that∑

y

dby(vy,p−1 + vy,p+1) −
∑

y

day(vy,p−1 + vy,p+1) < 0. (23)

On the other hand, Et
p and Et+1

p are now computed
as follows,

Et
p =

∑
y

dayva,p(vy,p+1 + vy,p−1) (24)

Et+1
p =

∑
y

dbyvb,p(vy,p+1 + vy,p−1) (25)

Again, it is obtained

Et+1 − Et < 0. (26)

Based on the above two cases, the CCM is always con-
vergent under the WTA updating rule. This completes the
proof.

It is noted that the WTA tends to drive the rows with
more than one active neurons to reduce the number of active
neurons, and drive one of the neurons in all-zero rows to
become active. Once there is no row that contains more than
one active neurons (equivalently there is no all-zero row),
then a valid state is reached and the state of the network
stops the transition (in this case Et+1 − Et = 0).

IV. SIMULATED ANNEALING APPLIED TO COMPETITIVE

MODEL

Simulated Annealing (SA), a stochastic process, is known
to improve the quality of solutions when solving combi-
natorial optimization problems [7], [8]. It derives its name
from an analogy of thermodynamics and metallurgy (the
interested reader is directed to [8]) – th metal is first heated
to a high temperature T0, causing the metal atoms to vibrate
vigorously, hence resulting in a highly disordered structure.
The metal is then cooled slowly, allowing the atoms to
rearrange themselves in an orderly fashion, which in turn
corresponds to a structure of minimum energy.

Optimum or near optimum results can usually be obtained,
but at the expense of long computational time, due to the
slow convergence of the SA algorithm. WTA, on the other
hand, offers fast convergence, but produces solutions that
are of lower quality. Wth this inmind, it is beneficial to
combine these 2 techniques, such that a fully valid solution
set, preferably one with mostly optimum or near optimum

tour distances, can be obtained within a reasonably short
time.

When K is at least 2dmax −dmin, all states are valid, but
the solutions are of average quality (since there are fewer
states with an optimum tour distance). As K decreases, it
becomes more probable for the network to converge to states
of optimum tour distance, but there is also a corresponding
increase in the number of spurious states. When K is less
than 2dmin − dmax, the network never converges to valid
states, regardless of the initial network states. Therefore, by
having a small K and slowly increasing it, the quality of
solutions can be increased, while preserving the validity of
all states at the same time. The algorithm in conjunction with
the simulated annealing schedule for the parameter K can be
implemented in the following way:

Competitive Model with SA
1) Initialized the network, with vx,i having a small initial

value, added with small random noise. Initialize K =
dmax and ε > 0 that determines how fast K reaches
2dmax − dmin.

2) Do N times: Select a column i to compute the input
Netx,i for each neuron in that column, then apply
WTA and update the output of the neurons. This
constitutes a whole epoch.

3) Increase K by

K = dmax + (0.5 · tanh(t − ε) + 0.5)(dmax − dmin),

where t is the current epoch number. Go to step 2 until
convergence.

V. SIMULATION RESULTS

It is known that the solutions of double-circle problem are
very hard to obtain by the original Hopfield network [5]. In
this section, the 24-city example that was analyzed in [5] is
employed to verify the theoretical results. There are 12 cities
uniformly distributed in the outer circle, while the rest are
allocated in the inner circle, with the radius equals to 2 and
1.9, respectively. In this work, 500 simulations have been
performed for each case of Hopfield network and CCM. The
simulation results are given in Tables I and II. The item good
indicates the number of tours with distance within 150% of
the optimum distance. Figures 1 and 2 depict the optimum
tour and the near-optimum tour generated by the CCM.

TABLE I

THE PERFORMANCE OF ORIGINAL HOPFIELD MODEL FOR THE 24-CITY

EXAMPLE

C Valid Invalid Good Minimum Average
length length

10 302 198 111 35.2769 50.9725
1 285 215 108 26.2441 37.3273

0.1 366 134 168 25.2030 36.3042
0.01 360 140 159 27.5906 36.9118

0.001 372 128 153 21.6254 32.5432
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TABLE II

THE PERFORMANCE OF CCM FOR THE 24-CITY EXAMPLE

K Valid Invalid Good Minimum Average
length length

dmax 438 62 248 13.3220 18.1172
dmax

+dmin 453 47 256 13.3220 17.9778
2dmax

+dmin 500 0 18 15.1856 24.1177
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Fig. 1. Optimum tour generated by CCM
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Fig. 2. Near-optimum tour generated by CCM

As can be seen from the simulation results, the origi-
nal Hopfield network generated a large number of invalid
solutions with respect to various weighting factors C. Its
minimum and average distances are also far away from the
optimum solution of 13.322. Comparatively, the new compet-
itive model generated less spurious states and produced better
quality solutions in terms of the minimum and average tour
lengths. In addition, the CCM has a rapid convergence rate

of less than 5 epochs on the average. It can be seen that when
K was set to a small value (e.g., dmax), with a small portion
of invalid solutions, the CCM can easily reach the optimum
solution. When K was increased to 2dmax − dmin, all the
spurious states were eliminated, which was achieved at minor
expense of the solution quality. Obviously, these findings are
in agreement with the theoretical results obtained.

With SA applied to the new WTA model, its performance
increases significantly III. All the states generated are valid,
and has approximately 65% good solutions (optimum or near
optimum states) for all cases. The average tour distance is
about 18, which is much better than the Hopfield model and
that of the WTA model (without SA). Its convergence rate
is slightly slower than the WTA model (without SA) and
requires 9 epoches on the average. Nevertheless, it is much
faster that of the Hopfield model.

TABLE III

THE PERFORMANCE OF CCM WITH SA FOR THE 24-CITY EXAMPLE

ε Valid Invalid Good Minimum Average
length length

0 500 0 18 15.1856 24.1177
1 500 0 203 13.3404 22.2688
2 500 0 218 13.3220 19.9771
3 500 0 259 13.3220 18.7153
5 500 0 256 13.3220 18.6785

10 500 0 301 13.3220 18.4080
15 500 0 307 13.3220 18.3352
20 500 0 289 13.3220 18.4643

The theoretical results are also validated upon the 48-city
example which has a similar coordinates configuration as
the 24-city one. 100 experiments are performed for each
case and the results are given in Table IV. It can be seen
that when K was increased from dmax to 2dmax − dmin,
all invalid solutions were suppressed with the minimum
and average lengths increased, which is consistent with the
findings observed in Table IV.

TABLE IV

THE PERFORMANCE OF CCM FOR THE 48-CITY EXAMPLE

K Valid Invalid Good Minimum Average
length length

dmax 90 10 0 24.6860 32.7950
dmax

+dmin 92 8 0 24.9202 33.8892
2dmax

−dmin 100 0 0 35.9438 42.4797

Remark 1: Since for non-proper values of K (e.g., dmax

and dmax + dmin), the convergence of the CCM is not
guaranteed, thus for the sake of comparing the performance
of the CCM with different parameter settings, only the results
of the convergent cases in the experiments recorded are
recorded. It is also noted that when the coordinates configu-
ration becomes more complex, good solutions become more
difficult to be achieved as well.

The WTA with SA model is now applied to TSP of various
city sizes, with their city topology similar to that of 24 cities,
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i.e., their coordinates evenly distributed around 2 circles of
radius 1.9 and 2.0. The ε is set to 5 for the simulations.
The results are shown in Table V and VI. The performance
ratio is defined to be the ratio of the minimum length to the
average length of the tours found, i.e. (Perf. ratio=Minimum
length/Average length).

TABLE V

THE PERFORMANCE OF CCM WITH SA FOR VARIOUS CITY SIZES

City Simulations Valid Invalid
size
30 250 250 0
100 250 250 0
500 100 100 0
1000 50 50 0
3000 5 5 0

TABLE VI

THE PERFORMANCE OF CCM WITH SA FOR VARIOUS CITY SIZES

(CONTINUATION FROM TABLE ABOVE)

City Minimum Average Perf.
size length length ratio
30 13.6922 22.3159 0.6136
100 28.2552 35.6920 0.7916
500 257.1380 283.2810 0.9060
1000 454.3827 490.6963 0.9260
3000 1395.5 1454.2 0.9455

The proposed approach of using a WTA with SA model
is seen to perform satisfactory, with an average performance
ratio of 0.85. Less computing resources are used, thereby
allowing city sizes of up to 3000 to be successfully solved
using the proposed approach. This is quite remarkable, as
none of the existing algorithms proposed in the literature has
been able to solve such a large city size in practice using a
computational intelligence framework, primarily due to the
extensive amount of time and resources required.

VI. CONCLUSION

In this article, a new columnar competitive model (CCM)
incorporating the WTA learning rule has been proposed for
solving the combinatorial optimization problems, which has
guaranteed convergence to valid states and total suppression
of spurious states in the network. Consistently good results,
better than that of the Hopfield network in terms of both the
number as well as quality of valid solutions were obtained us-
ing computer simulations. It also has the additional advantage
of faster convergence, while utilizing comparatively lower
computing resources, thereby allowing it to solve large-scale
combinatorial problems. The dynamics analysis of the CCM
implied that the CCM is incapable of hill-climbing transitions
and thus being trapped at local minima, which is still a
problem and a possible direction for future work. With the
full validity of solutions ensured by competitive learning,
probabilistic optimization techniques such as LME [12] can
be incorporated into the competitive model to further improve
the solution quality. Simulated annealing [7], [8], when

incorporated into the proposed approach showed even better
results. In addition, with some modification to the energy
function, the competitive model can also be extended to solve
other polytopes of combinatorial optimization problems, such
as the 4-color map.
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