Notes by Johan Wikström.

Hashing

Why sort?

Searching: for a set \(S, |S| = n \). Ask \(x \in S \)? Binary search answers this in \(O(\log(n)) \) time but we want to do better.

Alternative: Hashing

Get nice function \(h \), store info on \(x \) in \(h(x) \).

\[
h : U \rightarrow [m] = \{0, 1, ..., m - 1\}
\]

- \(w \approx n \) usually.
- \(h \) should spread \(S \) nicely.
- Best of all worlds \(h(x) \neq h(y), x \neq y, x, y \in S \)

If \(h \) is a fixed function there are always bad sets \(S \). Take \(S = \{x|h(x) = i\} \) for some \(i \). No nice theory for fixed functions!

Instead, use set of hash functions \(h_\alpha, \alpha \in T \). Pick a random \(\alpha \) and use \(h_\alpha \).

For each \(S \), a random \(\alpha \) is good.

Carter-Wegman pair-wise independent hashing

Pair-wise independence was introduced by Carter and Wegman in the 1970’ies and is defined by the following property. \(a, b \in [m], \forall x \neq y \)

\[
P[h_\alpha(x) = a \land h_\alpha(y) = b] = \frac{1}{m^2}
\]

Canonical example

\(U = \{0, 1\}^\ell, m = 2^\ell \) Input \(\ell \) bits, output \(t \) bits

\[
h_{M,r}(x) = Mx + r
\]

- \(M \) is \(t \times \ell \) matrix
- \(r \) is a \(t \) bit vector
- \(+ \) is mod 2, i.e. + is XOR
- \(* \) is mod 2, i.e. * is AND

Theorem 1 \(h_{M,r} \) is a family of pairwise independent hash functions, i.e. they have the Carter-Wegman property.
Proof: For intuition let us study the case $x = 0^\ell = 00...0 \Rightarrow h_{M,r}(x) = r$ $y = 1000... \Rightarrow h_{M,r}(y) = r + m_1$, where m_1 is the first column of M. It is not difficult to see that r and $r + m_1$ are two independent random vectors of t bits.

The strategy of the proof is as follows.

1. Do $t = 1$

2. Observe that output bits behave independently to get general t.

When $t = 1$, $x \neq y \in \{0,1\}^\ell$, a,b are two bits and M is simply a row vector of ℓ bits. The key equations are

$$Mx + r = \sum_{i=0}^{\ell-1} m_ix_i + r = a$$

$$My + r = \sum_{i=0}^{\ell-1} m_iy_i + r = b$$

Now there exists one i such that $x_i \neq y_i$. We can without loss of generality assume that $i = 0$ and $x_0 = 0$ and $y_0 = 1$. Fix $m_1,...,m_{\ell-1}$ and we claim that probability over m_0 and r that we get a and b is $1/4$. In other words exactly one value of r and m_0 that gives the desired bits a and b. To see this, note that we need

$$m_0 \times x_0 + r = a + \sum_{i=0}^{\ell-1} m_ix_i \quad \text{and} \quad - \quad \text{are the same in mod 2}$$

$$m_0 \times y_0 + r = b + \sum_{i=0}^{\ell-1} m_iy_i.$$

Since $x_0 = 0$ and $y_0 = 1$, this is equivalent to

$$r = a + \sum_{i=0}^{\ell-1} m_ix_i$$

$$m_0 + r = b + \sum_{i=0}^{\ell-1} m_iy_i$$

and the first equation gives a unique value for r and the second then gives a unique value of m_0. As there are four potential values of r and m_0 this gives probability $1/4$.

Prove for general t using $t = 1$

Look at fig 1. The fact that the equations are independent implies that the probability that you get the vectors a and b is $(\frac{1}{4})^\ell = (1/2^t)^2$ as the theorem claims.
More theorems on hashing

Theorem 2 The expected number of collisions under \(h_\alpha \) is \(\frac{n(n-1)}{2m} \).

This expectation is over random \(\alpha \) and is true for all \(S \).

Proof: A collision is a pair \((i, j)\) such that \(i \neq j, h_\alpha(x_i) = h_\alpha(x_j) \). Let

\[
E_{ij} = \begin{cases}
1 & \text{if } x_i \text{ and } x_j \text{ collide} \\
0 & \text{otherwise}
\end{cases}
\]

then \# collisions is \(\sum_{i<j} E_{ij} \). We need to calculate the expectation of this.

\[
\mathbb{E}[\sum_{i<j} E_{ij}] = \sum_{i<j} \mathbb{E}[E_{ij}] = \sum_{i<j} P[h_\alpha(x_i) = h_\alpha(x_j)] = \frac{n(n-1)}{2} \cdot \frac{1}{m}
\]

since \(P[h_\alpha(x_i) = h_\alpha(x_j)] = \frac{1}{m} \). The theorem follows.

We have the following immediate corollary.

Theorem 1 If \(m > \frac{n(n-1)}{2} \) there exists a \(h_\alpha \) with no collisions.

Proof: We have

\[
\mathbb{E}[\# \text{ collisions}] = \frac{n(n-1)}{2 \cdot m} < 1
\]

and thus there must be some \(h \) without collisions as otherwise this expected value would be at least 1.

Theorem 2 If \(m \geq n(n-1) \) at least half of all \(h_\alpha \) has no collisions.
Proof: Indeed

\[E[\# \text{ collisions}] \leq \frac{1}{2} \]

and if more than half of the \(h_\alpha \) would have one collision this expected value would be greater than \(\frac{1}{2} \).

Two level hashing (called double hashing in old lecture notes)

\[S = \{ x \in S, h_\alpha(x) = i \} \]

and this set is split perfectly under \(h_\alpha \). Two level hashing answers “\(x \in S? \)” in \(O(1) \) time by the following high level algorithm.

Theorem 3 The two-level hashing can be implemented with \(O(n) \) space.

Proof: We need to check how much space is needed for all small perfect hash tables given by \(h_\alpha \). Let \(s_i \) be the number of elements hashing to \(i \). We know that \(h_\alpha \) can be implemented with space \(s_i(s_i - 1) \). Total extra space needed is \(\sum_{i=1}^{n-1} s_i(s_i - 1) \). Note that this is twice the number of collisions of the outer hash function \(h \). and the expected of such collisions is \(\frac{n(n-1)}{2m} \) when hashing to \([m]\). As in our case we have \(m = n \) the expected number of collisions is
\[\frac{n(n-1)}{2n} = \frac{n-1}{2} \approx \frac{n}{2} \]
\[\Rightarrow E[\text{Extra space needed}] = \frac{2n}{2} = n \]

Preventing for next lecture

Finding median of \(2m+1\) numbers, "middle element"

Attempt 1, sort output - middle element in takes \(n \log n\) times.

Faster?

In a modification of Quicksort we can ignore all recursive calls where you know the median can’t be. Gives \(O(n)\) and we can reduce constant before \(n\) by selecting pivot cleverly.