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Finite and discrete probability distributions

To understand the algorithmic aspects of number theory and algebra, and appli-
cations such as cryptography, a firm grasp of the basics of probability theory is
required. This chapter introduces concepts from probability theory, starting with
the basic notions of probability distributions on finite sample spaces, and then
continuing with conditional probability and independence, random variables, and
expectation. Applications such as “balls and bins,” “hash functions,” and the “left-
over hash lemma” are also discussed. The chapter closes by extending the basic
theory to probability distributions on countably infinite sample spaces.

8.1 Basic definitions
Let Ω be a finite, non-empty set. A probability distribution on Ω is a function
P : Ω → [0, 1] that satisfies the following property:

∑

ω∈Ω

P(ω) = 1. (8.1)

The set Ω is called the sample space of P.
Intuitively, the elements of Ω represent the possible outcomes of a random

experiment, where the probability of outcome ω ∈ Ω is P(ω). For now, we
shall only consider probability distributions on finite sample spaces. Later in this
chapter, in §8.10, we generalize this to allow probability distributions on countably
infinite sample spaces.

Example 8.1. If we think of rolling a fair die, then setting Ω := {1, 2, 3, 4, 5, 6},
and P(ω) := 1/6 for all ω ∈ Ω, gives a probability distribution that naturally
describes the possible outcomes of the experiment. 2

Example 8.2. More generally, ifΩ is any non-empty, finite set, and P(ω) := 1/|Ω|
for all ω ∈ Ω, then P is called the uniform distribution on Ω. 2
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208 Finite and discrete probability distributions

Example 8.3. A coin toss is an example of a Bernoulli trial, which in general
is an experiment with only two possible outcomes: success, which occurs with
probability p; and failure, which occurs with probability q := 1 − p. Of course,
success and failure are arbitrary names, which can be changed as convenient. In the
case of a coin, we might associate success with the outcome that the coin comes up
heads. For a fair coin, we have p = q = 1/2; for a biased coin, we have p 6= 1/2. 2

An event is a subsetA of Ω, and the probability ofA is defined to be

P[A] :=
∑

ω∈A

P(ω). (8.2)

While an event is simply a subset of the sample space, when discussing the proba-
bility of an event (or other properties to be introduced later), the discussion always
takes place relative to a particular probability distribution, which may be implicit
from context.

For eventsA and B, their unionA ∪ B logically represents the event that either
the event A or the event B occurs (or both), while their intersection A ∩ B logi-
cally represents the event that both A and B occur. For an event A, we define its
complement A := Ω \ A, which logically represents the event that A does not
occur.

In working with events, one makes frequent use of the usual rules of Boolean
logic. De Morgan’s law says that for all eventsA and B,

A ∪ B = A ∩ B and A ∩ B = A ∪ B.

We also have the Boolean distributive law: for all eventsA, B, and C,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Example 8.4. Continuing with Example 8.1, the event that the die has an odd
value is A := {1, 3, 5}, and we have P[A] = 1/2. The event that the die has a
value greater than 2 is B := {3, 4, 5, 6}, and P[B] = 2/3. The event that the die
has a value that is at most 2 is B = {1, 2}, and P[B] = 1/3. The event that the
value of the die is odd or exceeds 2 isA∪B = {1, 3, 4, 5, 6}, and P[A∪B] = 5/6.
The event that the value of the die is odd and exceeds 2 is A ∩ B = {3, 5}, and
P[A ∩ B] = 1/3. 2

Example 8.5. If P is the uniform distribution on a set Ω, and A is a subset of Ω,
then P[A] = |A|/|Ω|. 2

We next derive some elementary facts about probabilities of certain events, and
relations among them. It is clear from the definitions that

P[∅] = 0 and P[Ω] = 1,
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and that for every eventA, we have

P[A] = 1 − P[A].

Now consider eventsA and B, and their unionA ∪ B. We have

P[A ∪ B] ≤ P[A] + P[B]; (8.3)

moreover,

P[A ∪ B] = P[A] + P[B] ifA and B are disjoint, (8.4)

that is, ifA ∩ B = ∅. The exact formula for arbitrary eventsA and B is:

P[A ∪ B] = P[A] + P[B] − P[A ∩ B]. (8.5)

(8.3), (8.4), and (8.5) all follow from the observation that in the expression

P[A] + P[B] =
∑

ω∈A

P(ω) +
∑

ω∈B

P(ω),

the value P(ω) is counted once for each ω ∈ A ∪ B, except for those ω ∈ A ∩ B,
for which P(ω) is counted twice.

Example 8.6. Alice rolls two dice, and asks Bob to guess a value that appears on
either of the two dice (without looking). Let us model this situation by considering
the uniform distribution on Ω := {1, . . . , 6} × {1, . . . , 6}, where for each pair
(s, t) ∈ Ω, s represents the value of the first die, and t the value of the second.

For k = 1, . . . , 6, letAk be the event that the first die is k, and Bk the event that
the second die is k. Let Ck = Ak ∪ Bk be the event that k appears on either of the
two dice. No matter what value k Bob chooses, the probability that this choice is
correct is

P[Ck] = P[Ak ∪ Bk] = P[Ak] + P[Bk] − P[Ak ∩ Bk]

= 1/6 + 1/6 − 1/36 = 11/36,

which is slightly less than the estimate P[Ak] + P[Bk] obtained from (8.3). 2

If {Ai}i∈I is a family of events, indexed by some set I , we can naturally form the
union

⋃

i∈I Ai and intersection
⋂

i∈I Ai. If I = ∅, then by definition, the union is ∅,
and by special convention, the intersection is the entire sample spaceΩ. Logically,
the union represents the event that someAi occurs, and the intersection represents
the event that all theAi’s occur. De Morgan’s law generalizes as follows:

⋃

i∈I
Ai =

⋂

i∈I
Ai and

⋂

i∈I
Ai =

⋃

i∈I
Ai,
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and if B is an event, then the Boolean distributive law generalizes as follows:

B ∩
(

⋃

i∈I
Ai

)

=
⋃

i∈I
(B ∩Ai) and B ∪

(

⋂

i∈I
Ai

)

=
⋂

i∈I
(B ∪Ai).

We now generalize (8.3), (8.4), and (8.5) from pairs of events to families of
events. Let {Ai}i∈I be a finite family of events (i.e., the index set I is finite).
Using (8.3), it follows by induction on |I | that

P
[

⋃

i∈I
Ai

]

≤
∑

i∈I
P[Ai], (8.6)

which is known as Boole’s inequality (and sometimes called the union bound).
Analogously, using (8.4), it follows by induction on |I | that

P
[

⋃

i∈I
Ai

]

=
∑

i∈I
P[Ai] if {Ai}i∈I is pairwise disjoint, (8.7)

that is, ifAi ∩ Aj = ∅ for all i, j ∈ I with i 6= j. We shall refer to (8.7) as Boole’s
equality. Both (8.6) and (8.7) are invaluable tools in calculating or estimating the
probability of an event A by breaking A up into a family {Ai}i∈I of smaller, and
hopefully simpler, events, whose union isA. We shall make frequent use of them.

The generalization of (8.5) is messier. Consider first the case of three events,A,
B, and C. We have

P[A ∪ B ∪ C] = P[A] + P[B] + P[C] − P[A ∩ B] − P[A ∩ C] − P[B ∩ C]

+ P[A ∩ B ∩ C].

Thus, starting with the sum of the probabilities of the individual events, we have
to subtract a “correction term” that consists of the sum of probabilities of all inter-
sections of pairs of events; however, this is an “over-correction,” and we have to
correct the correction by adding back in the probability of the intersection of all
three events. The general statement is as follows:

Theorem 8.1 (Inclusion/exclusion principle). Let {Ai}i∈I be a finite family of
events. Then

P
[

⋃

i∈I
Ai

]

=
∑

∅(J⊆I
(−1)|J |−1 P

[

⋂

j∈J
Aj

]

,

the sum being over all non-empty subsets J of I .

Proof. For ω ∈ Ω and B ⊆ Ω, define δω[B] := 1 if ω ∈ B, and δω[B] := 0
if ω /∈ B. As a function of ω, δω[B] is simply the characteristic function of
B. One may easily verify that for all ω ∈ Ω, B ⊆ Ω, and C ⊆ Ω, we have
δω[B] = 1 − δω[B] and δω[B ∩ C] = δω[B]δω[C]. It is also easily seen that for
every B ⊆ Ω, we have

∑

ω∈Ω P(ω)δω[B] = P[B].
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LetA :=
⋃

i∈I Ai, and for J ⊆ I , letAJ :=
⋂

j∈J Aj. For every ω ∈ Ω,

1 − δω[A] = δω[A] = δω

[

⋂

i∈I
Ai

]

=
∏

i∈I
δω[Ai] =

∏

i∈I
(1 − δω[Ai])

=
∑

J⊆I
(−1)|J |

∏

j∈J
δω[Aj] =

∑

J⊆I
(−1)|J |δω[AJ ],

and so

δω[A] =
∑

∅(J⊆I
(−1)|J |−1δω[AJ ]. (8.8)

Multiplying (8.8) by P(ω), and summing over all ω ∈ Ω, we have

P[A] =
∑

ω∈Ω

P(ω)δω[A] =
∑

ω∈Ω

P(ω)
∑

∅(J⊆I
(−1)|J |−1δω[AJ ]

=
∑

∅(J⊆I
(−1)|J |−1

∑

ω∈Ω

P(ω)δω[AJ ] =
∑

∅(J⊆I
(−1)|J |−1 P[AJ ]. 2

One can also state the inclusion/exclusion principle in a slightly different way,
splitting the sum into terms with |J | = 1, |J | = 2, etc., as follows:

P
[

⋃

i∈I
Ai

]

=
∑

i∈I
P[Ai] +

|I |
∑

k=2

(−1)k−1
∑

J⊆I
|J |=k

P
[

⋂

j∈J
Aj

]

,

where the last sum in this formula is taken over all subsets J of I of size k.

We next consider a useful way to “glue together” probability distributions. Sup-
pose one conducts two physically separate and unrelated random experiments, with
each experiment modeled separately as a probability distribution. What we would
like is a way to combine these distributions, obtaining a single probability dis-
tribution that models the two experiments as one grand experiment. This can be
accomplished in general, as follows.

Let P1 : Ω1 → [0, 1] and P2 : Ω2 → [0, 1] be probability distributions. Their
product distribution P := P1 P2 is defined as follows:

P : Ω1 ×Ω2 → [0, 1]

(ω1,ω2) 7→ P1(ω1) P2(ω2).

It is easily verified that P is a probability distribution on the sample spaceΩ1×Ω2:
∑

ω1,ω2

P(ω1,ω2) =
∑

ω1,ω2

P1(ω1) P2(ω2) =
(

∑

ω1

P1(ω1)
)(

∑

ω2

P2(ω2)
)

= 1 · 1 = 1.

More generally, if Pi : Ωi → [0, 1], for i = 1, . . . , n, are probability distributions,
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then their product distribution is P := P1 · · ·Pn, where

P : Ω1 × · · · ×Ωn → [0, 1]

(ω1, . . . ,ωn) 7→ P1(ω1) · · ·Pn(ωn).

If P1 = P2 = · · · = Pn, then we may write P = Pn1. It is clear from the definitions
that if each Pi is the uniform distribution on Ωi, then P is the uniform distribution
on Ω1 × · · · ×Ωn.

Example 8.7. We can view the probability distribution P in Example 8.6 as P2
1,

where P1 is the uniform distribution on {1, . . . , 6}. 2

Example 8.8. Suppose we have a coin that comes up heads with some probability
p, and tails with probability q := 1 − p. We toss the coin n times, and record the
outcomes. We can model this as the product distribution P = Pn1, where P1 is the
distribution of a Bernoulli trial (see Example 8.3) with success probability p, and
where we identify success with heads, and failure with tails. The sample space Ω
of P is the set of all 2n tuples ω = (ω1, . . . ,ωn), where each ωi is either heads or
tails. If the tuple ω has k heads and n − k tails, then P(ω) = pkqn−k, regardless of
the positions of the heads and tails in the tuple.

For each k = 0, . . . , n, let Ak be the event that our coin comes up heads exactly
k times. As a set, Ak consists of all those tuples in the sample space with exactly
k heads, and so

|Ak| =
(

n

k

)

,

from which it follows that

P[Ak] =
(

n

k

)

pkqn−k.

If our coin is a fair coin, so that p = q = 1/2, then P is the uniform distribution on
Ω, and for each k = 0, . . . , n, we have

P[Ak] =
(

n

k

)

2−n. 2

Suppose P : Ω → [0, 1] is a probability distribution. The support of P is defined
to be the set {ω ∈ Ω : P(ω) 6= 0}. Now consider another probability distribution
P′ : Ω′ → [0, 1]. Of course, these two distributions are equal if and only if Ω = Ω′

and P(ω) = P′(ω) for all ω ∈ Ω. However, it is natural and convenient to have a
more relaxed notion of equality. We shall say that P and P′ are essentially equal if
the restriction of P to its support is equal to the restriction of P′ to its support. For
example, if P is the probability distribution on {1, 2, 3, 4} that assigns probability
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1/3 to 1, 2, and 3, and probability 0 to 4, we may say that P is essentially the
uniform distribution on {1, 2, 3}.

EXERCISE 8.1. Show that P[A ∩ B] P[A ∪ B] ≤ P[A] P[B] for all eventsA,B.

EXERCISE 8.2. Suppose A,B,C are events such that A ∩ C = B ∩ C. Show that
|P[A] − P[B]| ≤ P[C].

EXERCISE 8.3. Let m be a positive integer, and let α(m) be the probability that a
number chosen at random from {1, . . . ,m} is divisible by either 4, 5, or 6. Write
down an exact formula for α(m), and also show that α(m) = 14/30 + O(1/m).

EXERCISE 8.4. This exercise asks you to generalize Boole’s inequality (8.6),
proving Bonferroni’s inequalities. Let {Ai}i∈I be a finite family of events, where
n := |I |. For m = 0, . . . , n, define

αm :=
m
∑

k=1

(−1)k−1
∑

J⊆I
|J |=k

P
[

⋂

j∈J
Aj

]

.

Also, define

α := P
[

⋃

i∈I
Ai

]

.

Show that α ≤ αm if m is odd, and α ≥ αm if m is even. Hint: use induction on n.

8.2 Conditional probability and independence
Let P be a probability distribution on a sample space Ω.

For a given event B ⊆ Ω with P[B] 6= 0, and for ω ∈ Ω, let us define

P(ω | B) :=
{

P(ω)/P[B] if ω ∈ B,
0 otherwise.

Viewing B as fixed, the function P(· | B) is a new probability distribution on the
sample space Ω, called the conditional distribution (derived from P) given B.

Intuitively, P(· | B) has the following interpretation. Suppose a random exper-
iment produces an outcome according to the distribution P. Further, suppose we
learn that the event B has occurred, but nothing else about the outcome. Then the
distribution P(· | B) assigns new probabilities to all possible outcomes, reflecting
the partial knowledge that the event B has occurred.
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For a given event A ⊆ Ω, its probability with respect to the conditional distri-
bution given B is

P[A | B] =
∑

ω∈A

P(ω | B) =
P[A ∩ B]

P[B]
.

The value P[A | B] is called the conditional probability of A given B. Again,
the intuition is that this is the probability that the event A occurs, given the partial
knowledge that the event B has occurred.

For events A and B, if P[A ∩ B] = P[A] P[B], then A and B are called inde-
pendent events. If P[B] 6= 0, one easily sees that A and B are independent if
and only if P[A | B] = P[A]; intuitively, independence means that the partial
knowledge that event B has occurred does not affect the likelihood thatA occurs.

Example 8.9. Suppose P is the uniform distribution on Ω, and that B ⊆ Ω with
P[B] 6= 0. Then the conditional distribution given B is essentially the uniform
distribution on B. 2

Example 8.10. Consider again Example 8.4, where A is the event that the value
on the die is odd, and B is the event that the value of the die exceeds 2. Then as
we calculated, P[A] = 1/2, P[B] = 2/3, and P[A ∩ B] = 1/3; thus, P[A ∩ B] =
P[A] P[B], and we conclude that A and B are independent. Indeed, P[A | B] =
(1/3)/(2/3) = 1/2 = P[A]; intuitively, given the partial knowledge that the value
on the die exceeds 2, we know it is equally likely to be either 3, 4, 5, or 6, and so
the conditional probability that it is odd is 1/2.

However, consider the event C that the value on the die exceeds 3. We have
P[C] = 1/2 and P[A ∩ C] = 1/6 6= 1/4, from which we conclude that A and C
are not independent. Indeed, P[A | C] = (1/6)/(1/2) = 1/3 6= P[A]; intuitively,
given the partial knowledge that the value on the die exceeds 3, we know it is
equally likely to be either 4, 5, or 6, and so the conditional probability that it is odd
is just 1/3, and not 1/2. 2

Example 8.11. In Example 8.6, suppose that Alice tells Bob the sum of the two
dice before Bob makes his guess. The following table is useful for visualizing the
situation:

6 7 8 9 10 11 12
5 6 7 8 9 10 11
4 5 6 7 8 9 10
3 4 5 6 7 8 9
2 3 4 5 6 7 8
1 2 3 4 5 6 7

1 2 3 4 5 6

For example, suppose Alice tells Bob the sum is 4. Then what is Bob’s best strategy
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in this case? Let D` be the event that the sum is `, for ` = 2, . . . , 12, and consider
the conditional distribution given D4. This conditional distribution is essentially
the uniform distribution on the set {(1, 3), (2, 2), (3, 1)}. The numbers 1 and 3 both
appear in two pairs, while the number 2 appears in just one pair. Therefore,

P[C1 | D4] = P[C3 | D4] = 2/3,

while

P[C2 | D4] = 1/3

and

P[C4 | D4] = P[C5 | D4] = P[C6 | D4] = 0.

Thus, if the sum is 4, Bob’s best strategy is to guess either 1 or 3, which will be
correct with probability 2/3.

Similarly, if the sum is 5, then we consider the conditional distribution givenD5,
which is essentially the uniform distribution on {(1, 4), (2, 3), (3, 2), (4, 1)}. In this
case, Bob should choose one of the numbers k = 1, . . . , 4, each of which will be
correct with probability P[Ck | D5] = 1/2. 2

Suppose {Bi}i∈I is a finite, pairwise disjoint family of events, whose union is
Ω. Now consider an arbitrary event A. Since {A ∩ Bi}i∈I is a pairwise disjoint
family of events whose union isA, Boole’s equality (8.7) implies

P[A] =
∑

i∈I
P[A ∩ Bi]. (8.9)

Furthermore, if each Bi occurs with non-zero probability (so that, in particular,
{Bi}i∈I is a partition of Ω), then we have

P[A] =
∑

i∈I
P[A | Bi] P[Bi]. (8.10)

If, in addition, P[A] 6= 0, then for each j ∈ I , we have

P[Bj | A] =
P[A ∩ Bj]

P[A]
=

P[A | Bj] P[Bj]
∑

i∈I P[A | Bi] P[Bi]
. (8.11)

Equations (8.9) and (8.10) are sometimes called the law of total probability, while
equation (8.11) is known as Bayes’ theorem. Equation (8.10) (resp., (8.11)) is
useful for computing or estimating P[A] (resp., P[Bj | A]) by conditioning on the
events Bi.

Example 8.12. Let us continue with Example 8.11, and compute Bob’s overall
probability of winning, assuming he follows an optimal strategy. If the sum is 2 or
12, clearly there is only one sensible choice for Bob to make, and it will certainly
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be correct. If the sum is any other number `, and there are N` pairs in the sample
space that sum to that number, then there will always be a value that appears in
exactly 2 of these N` pairs, and Bob should choose such a value (see the diagram
in Example 8.11). Indeed, this is achieved by the simple rule of choosing the value
1 if ` ≤ 7, and the value 6 if ` > 7. This is an optimal strategy for Bob, and if C is
the event that Bob wins following this strategy, then by total probability (8.10), we
have

P[C] =
12
∑

`=2

P[C | D`] P[D`].

Moreover,

P[C | D2] P[D2] = 1 ·
1

36
=

1
36

, P[C | D12] P[D12] = 1 ·
1

36
=

1
36

,

and for ` = 3, . . . , 11, we have

P[C | D`] P[D`] =
2
N`
·
N`
36

=
1
18

.

Therefore,

P[C] =
1
36

+
1

36
+

9
18

=
10
18

. 2

Example 8.13. Suppose that the rate of incidence of disease X in the overall pop-
ulation is 1%. Also suppose that there is a test for disease X; however, the test is
not perfect: it has a 5% false positive rate (i.e., 5% of healthy patients test positive
for the disease), and a 2% false negative rate (i.e., 2% of sick patients test negative
for the disease). A doctor gives the test to a patient and it comes out positive. How
should the doctor advise his patient? In particular, what is the probability that the
patient actually has disease X, given a positive test result?

Amazingly, many trained doctors will say the probability is 95%, since the test
has a false positive rate of 5%. However, this conclusion is completely wrong.

LetA be the event that the test is positive and let B be the event that the patient
has disease X. The relevant quantity that we need to estimate is P[B | A]; that is,
the probability that the patient has disease X, given a positive test result. We use
Bayes’ theorem to do this:

P[B | A] =
P[A | B] P[B]

P[A | B] P[B] + P[A | B] P[B]
=

0.98 · 0.01
0.98 · 0.01 + 0.05 · 0.99

≈ 0.17.

Thus, the chances that the patient has disease X given a positive test result are just
17%. The correct intuition here is that it is much more likely to get a false positive
than it is to actually have the disease.

Of course, the real world is a bit more complicated than this example suggests:
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the doctor may be giving the patient the test because other risk factors or symp-
toms may suggest that the patient is more likely to have the disease than a random
member of the population, in which case the above analysis does not apply. 2

Example 8.14. This example is based on the TV game show “Let’s make a deal,”
which was popular in the 1970’s. In this game, a contestant chooses one of three
doors. Behind two doors is a “zonk,” that is, something amusing but of little or
no value, such as a goat, and behind one of the doors is a “grand prize,” such
as a car or vacation package. We may assume that the door behind which the
grand prize is placed is chosen at random from among the three doors, with equal
probability. After the contestant chooses a door, the host of the show, Monty Hall,
always reveals a zonk behind one of the two doors not chosen by the contestant.
The contestant is then given a choice: either stay with his initial choice of door, or
switch to the other unopened door. After the contestant finalizes his decision on
which door to choose, that door is opened and he wins whatever is behind it. The
question is, which strategy is better for the contestant: to stay or to switch?

Let us evaluate the two strategies. If the contestant always stays with his initial
selection, then it is clear that his probability of success is exactly 1/3.

Now consider the strategy of always switching. Let B be the event that the
contestant’s initial choice was correct, and let A be the event that the contestant
wins the grand prize. On the one hand, if the contestant’s initial choice was correct,
then switching will certainly lead to failure (in this case, Monty has two doors to
choose from, but his choice does not affect the outcome). Thus, P[A | B] = 0.
On the other hand, suppose that the contestant’s initial choice was incorrect, so
that one of the zonks is behind the initially chosen door. Since Monty reveals the
other zonk, switching will lead with certainty to success. Thus, P[A | B] = 1.
Furthermore, it is clear that P[B] = 1/3. So using total probability (8.10), we
compute

P[A] = P[A | B] P[B] + P[A | B] P[B] = 0 · (1/3) + 1 · (2/3) = 2/3.

Thus, the “stay” strategy has a success probability of 1/3, while the “switch”
strategy has a success probability of 2/3. So it is better to switch than to stay.

Of course, real life is a bit more complicated. Monty did not always reveal a
zonk and offer a choice to switch. Indeed, if Monty only revealed a zonk when
the contestant had chosen the correct door, then switching would certainly be the
wrong strategy. However, if Monty’s choice itself was a random decision made
independently of the contestant’s initial choice, then switching is again the pre-
ferred strategy. 2

We next generalize the notion of independence from pairs of events to families
of events. Let {Ai}i∈I be a finite family of events. For a given positive integer k,
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we say that the family {Ai}i∈I is k-wise independent if the following holds:

P
[

⋂

j∈J
Aj

]

=
∏

j∈J
P[Aj] for all J ⊆ I with |J | ≤ k.

The family {Ai}i∈I is called pairwise independent if it is 2-wise independent.
Equivalently, pairwise independence means that for all i, j ∈ I with i 6= j, we have
P[Ai ∩ Aj] = P[Ai] P[Aj], or put yet another way, that for all i, j ∈ I with i 6= j,
the eventsAi andAj are independent.

The family {Ai}i∈I is called mutually independent if it is k-wise independent
for all positive integers k. Equivalently, mutual independence means that

P
[

⋂

j∈J
Aj

]

=
∏

j∈J
P[Aj] for all J ⊆ I .

If n := |I | > 0, mutual independence is equivalent to n-wise independence; more-
over, if 0 < k ≤ n, then {Ai}i∈I is k-wise independent if and only if {Aj}j∈J is
mutually independent for every J ⊆ I with |J | = k.

In defining independence, the choice of the index set I plays no real role, and
we can rename elements of I as convenient.

Example 8.15. Suppose we toss a fair coin three times, which we formally model
using the uniform distribution on the set of all 8 possible outcomes of the three
coin tosses: (heads, heads, heads), (heads, heads, tails), etc., as in Example 8.8.
For i = 1, 2, 3, let Ai be the event that the ith toss comes up heads. Then {Ai}3

i=1
is a mutually independent family of events, where each individual Ai occurs with
probability 1/2.

Now let B12 be the event that the first and second tosses agree (i.e., both heads
or both tails), let B13 be the event that the first and third tosses agree, and let B23

be the event that the second and third tosses agree. Then the family of events
B12,B13,B23 is pairwise independent, but not mutually independent. Indeed, the
probability that any given individual event occurs is 1/2, and the probability that
any given pair of events occurs is 1/4; however, the probability that all three events
occur is also 1/4, since if any two events occur, then so does the third. 2

We close this section with some simple facts about independence of events and
their complements.

Theorem 8.2. If A and B are independent events, then so are A and B.

Proof. We have

P[A] = P[A ∩ B] + P[A ∩ B] (by total probability (8.9))

= P[A] P[B] + P[A ∩ B] (sinceA and B are independent).
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Therefore,

P[A ∩ B] = P[A] − P[A] P[B] = P[A](1 − P[B]) = P[A] P[B]. 2

This theorem implies that

A and B are independent ⇐⇒ A and B are independent

⇐⇒ A and B " "

⇐⇒ A and B " " .

The following theorem generalizes this result to families of events. It says that
if a family of events is k-wise independent, then the family obtained by comple-
menting any number of members of the given family is also k-wise independent.

Theorem 8.3. Let {Ai}i∈I be a finite, k-wise independent family of events. Let
J be a subset of I , and for each i ∈ I , define A′i := Ai if i ∈ J , and A′i := Ai if
i /∈ J . Then {A′i}i∈I is also k-wise independent.

Proof. It suffices to prove the theorem for the case where J = I \ {d}, for an
arbitrary d ∈ I: this allows us to complement any single member of the family
that we wish, without affecting independence; by repeating the procedure, we can
complement any number of them.

To this end, it will suffice to show the following: if J ⊆ I , |J | < k, d ∈ I \ J ,
andAJ :=

⋂

j∈J Aj, we have

P[Ad ∩ AJ ] = (1 − P[Ad])
∏

j∈J
P[Aj]. (8.12)

Using total probability (8.9), along with the independence hypothesis (twice), we
have

∏

j∈J
P[Aj] = P[AJ ] = P[Ad ∩ AJ ] + P[Ad ∩ AJ ]

= P[Ad] ·
∏

j∈J
P[Aj] + P[Ad ∩ AJ ],

from which (8.12) follows immediately. 2

EXERCISE 8.5. For events A1, . . . ,An, define α1 := P[A1], and for i = 2, . . . , n,
define αi := P[Ai | A1 ∩ · · · ∩ Ai−1] (assume that P[A1 ∩ · · · ∩ An−1] 6= 0). Show
that P[A1 ∩ · · · ∩ An] = α1 · · · αn.

EXERCISE 8.6. Let B be an event, and let {Bi}i∈I be a finite, pairwise disjoint
family of events whose union is B. Generalizing the law of total probability
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(equations (8.9) and (8.10)), show that for every event A, we have P[A ∩ B] =
∑

i∈I P[A ∩ Bi], and if P[B] 6= 0 and I∗ := {i ∈ I : P[Bi] 6= 0}, then

P[A | B] P[B] =
∑

i∈I∗
P[A | Bi] P[Bi].

Also show that if P[A | Bi] ≤ α for each i ∈ I∗, then P[A | B] ≤ α.

EXERCISE 8.7. Let B be an event with P[B] 6= 0, and let {Ci}i∈I be a finite, pair-
wise disjoint family of events whose union containsB. Again, generalizing the law
of total probability, show that for every event A, if I∗ := {i ∈ I : P[B ∩ Ci] 6= 0},
then we have

P[A | B] =
∑

i∈I∗
P[A | B ∩ Ci] P[Ci | B].

EXERCISE 8.8. Three fair coins are tossed. Let A be the event that at least two
coins are heads. Let B be the event that the number of heads is odd. Let C be the
event that the third coin is heads. AreA and B independent? A and C? B and C?

EXERCISE 8.9. Consider again the situation in Example 8.11, but now suppose
that Alice only tells Bob the value of the sum of the two dice modulo 6. Describe
an optimal strategy for Bob, and calculate his overall probability of winning.

EXERCISE 8.10. Consider again the situation in Example 8.13, but now suppose
that the patient is visiting the doctor because he has symptom Y . Furthermore, it
is known that everyone who has disease X exhibits symptom Y , while 10% of the
population overall exhibits symptom Y . Assuming that the accuracy of the test
is not affected by the presence of symptom Y , how should the doctor advise his
patient should the test come out positive?

EXERCISE 8.11. This exercise develops an alternative proof, based on probability
theory, of Theorem 2.11. Let n be a positive integer and consider an experiment
in which a number a is chosen uniformly at random from {0, . . . , n − 1}. If
n = p

e1
1 · · · p

er
r is the prime factorization of n, let Ai be the event that a is divisible

by pi, for i = 1, . . . , r.

(a) Show that ϕ(n)/n = P[A1 ∩ · · · ∩ Ar], where ϕ is Euler’s phi function.

(b) Show that if J ⊆ {1, . . . , r}, then

P
[

⋂

j∈J
Aj

]

= 1
/

∏

j∈J
pj.

Conclude that {Ai}ri=1 is mutually independent, and that P[Ai] = 1/pi for
each i = 1, . . . , r.
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(c) Using part (b), deduce that

P[A1 ∩ · · · ∩ Ar] =
r
∏

i=1

(1 − 1/pi).

(d) Combine parts (a) and (c) to derive the result of Theorem 2.11 that

ϕ(n) = n

r
∏

i=1

(1 − 1/pi).

8.3 Random variables
It is sometimes convenient to associate a real number, or other mathematical object,
with each outcome of a random experiment. The notion of a random variable
formalizes this idea.

Let P be a probability distribution on a sample space Ω. A random variable
X is a function X : Ω → S, where S is some set, and we say that X takes values
in S. We do not require that the values taken by X are real numbers, but if this
is the case, we say that X is real valued. For s ∈ S, “X = s” denotes the event
{ω ∈ Ω : X(ω) = s}. It is immediate from this definition that

P[X = s] =
∑

ω∈X−1({s})

P(ω).

More generally, for any predicateφ onS, we may write “φ(X)” as shorthand for the
event {ω ∈ Ω : φ(X(ω))}. When we speak of the image of X, we simply mean its
image in the usual function-theoretic sense, that is, the set X(Ω) = {X(ω) :ω ∈Ω}.
While a random variable is simply a function on the sample space, any discussion
of its properties always takes place relative to a particular probability distribution,
which may be implicit from context.

One can easily combine random variables to define new random variables. Sup-
pose X1, . . . ,Xn are random variables, where Xi : Ω → Si for i = 1, . . . , n. Then
(X1, . . . ,Xn) denotes the random variable that mapsω ∈ Ω to (X1(ω), . . . ,Xn(ω)) ∈
S1×· · ·×Sn. If f : S1×· · ·×Sn → T is a function, then f (X1, . . . ,Xn) denotes the
random variable that maps ω ∈ Ω to f (X1(ω), . . . ,Xn(ω)). If f is applied using a
special notation, the same notation may be applied to denote the resulting random
variable; for example, if X and Y are random variables taking values in a set S,
and ? is a binary operation on S, then X ? Y denotes the random variable that maps
ω ∈ Ω to X(ω) ? Y(ω) ∈ S.

Let X be a random variable whose image is S. The variable X determines a
probability distribution PX : S → [0, 1] on the set S, where PX(s) := P[X = s] for
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each s ∈ S. We call PX the distribution of X. If PX is the uniform distribution on
S, then we say that X is uniformly distributed over S.

Suppose X and Y are random variables that take values in a set S. If P[X = s] =
P[Y = s] for all s ∈ S, then the distributions of X and Y are essentially equal even
if their images are not identical.

Example 8.16. Again suppose we roll two dice, and model this experiment as the
uniform distribution on Ω := {1, . . . , 6} × {1, . . . , 6}. We can define the random
variable X that takes the value of the first die, and the random variable Y that takes
the value of the second; formally, X and Y are functions on Ω, where

X(s, t) := s and Y(s, t) := t for (s, t) ∈ Ω.

For each value s ∈ {1, . . . , 6}, the event X = s is {(s, 1), . . . , (s, 6)}, and so
P[X = s] = 6/36 = 1/6. Thus, X is uniformly distributed over {1, . . . , 6}. Like-
wise, Y is uniformly distributed over {1, . . . , 6}, and the random variable (X, Y) is
uniformly distributed over Ω. We can also define the random variable Z := X + Y,
which formally is the function on the sample space defined by

Z(s, t) := s + t for (s, t) ∈ Ω.

The image of Z is {2, . . . , 12}, and its distribution is given by the following table:

u 2 3 4 5 6 7 8 9 10 11 12
P[Z = u] 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 . 2

Example 8.17. If A is an event, we may define a random variable X as follows:
X := 1 if the event A occurs, and X := 0 otherwise. The variable X is called the
indicator variable for A. Formally, X is the function that maps ω ∈ A to 1, and
ω ∈ Ω\A to 0; that is, X is simply the characteristic function ofA. The distribution
of X is that of a Bernoulli trial: P[X = 1] = P[A] and P[X = 0] = 1 − P[A].

It is not hard to see that 1 − X is the indicator variable forA. Now suppose B is
another event, with indicator variable Y. Then it is also not hard to see that XY is
the indicator variable for A ∩ B, and that X + Y − XY is the indicator variable for
A∪B; in particular, ifA∩B = ∅, then X+Y is the indicator variable forA∪B. 2

Example 8.18. Consider again Example 8.8, where we have a coin that comes up
heads with probability p, and tails with probability q := 1−p, and we toss it n times.
For each i = 1, . . . , n, let Ai be the event that the ith toss comes up heads, and let
Xi be the corresponding indicator variable. Let us also define X := X1 + · · · + Xn,
which represents the total number of tosses that come up heads. The image of X
is {0, . . . , n}. By the calculations made in Example 8.8, for each k = 0, . . . , n, we
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have

P[X = k] =
(

n

k

)

pkqn−k.

The distribution of the random variable X is called a binomial distribution. Such
a distribution is parameterized by the success probability p of the underlying
Bernoulli trial, and by the number of times n the trial is repeated. 2

Uniform distributions are very nice, simple distributions. It is therefore good to
have simple criteria that ensure that certain random variables have uniform distri-
butions. The next theorem provides one such criterion. We need a definition: if S
and T are finite sets, then we say that a given function f : S → T is a regular
function if every element in the image of f has the same number of pre-images
under f .

Theorem 8.4. Suppose f : S → T is a surjective, regular function, and that X
is a random variable that is uniformly distributed over S. Then f (X) is uniformly
distributed over T .

Proof. The assumption that f is surjective and regular implies that for every t ∈ T ,
the set St := f−1({t}) has size |S|/|T |. So, for each t ∈ T , working directly from
the definitions, we have

P[f (X) = t] =
∑

ω∈X−1(St)

P(ω) =
∑

s∈St

∑

ω∈X−1({s})

P(ω) =
∑

s∈St

P[X = s]

=
∑

s∈St

1/|S| = (|S|/|T |)/|S| = 1/|T |. 2

As a corollary, we have:

Theorem 8.5. Suppose that ρ : G → G′ is a surjective homomorphism of finite
abelian groups G and G′, and that X is a random variable that is uniformly dis-
tributed over G. Then ρ(X) is uniformly distributed over G′.

Proof. It suffices to show that ρ is regular. Recall that the kernel K of ρ is a
subgroup of G, and that for every g′ ∈ G′, the set ρ−1({g′}) is a coset of K (see
Theorem 6.19); moreover, every coset of K has the same size (see Theorem 6.14).
These facts imply that ρ is regular. 2

Example 8.19. Let us continue with Example 8.16. Recall that for a given integer
a, and positive integer n, [a]n ∈ Zn denotes the residue class of a modulo n. Let
us define X′ := [X]6 and Y ′ := [Y]6. It is not hard to see that both X′ and Y ′ are
uniformly distributed over Z6, while (X′, Y ′) is uniformly distributed over Z6 ×Z6.
Let us define Z′ := X′ + Y ′ (where addition here is in Z6). We claim that Z′ is
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uniformly distributed over Z6. This follows immediately from the fact that the map
that sends (a, b) ∈ Z6 ×Z6 to a+ b ∈ Z6 is a surjective group homomorphism (see
Example 6.45). Further, we claim that (X′,Z′) is uniformly distributed over Z6×Z6.
This follows immediately from the fact that the map that sends (a, b) ∈ Z6 × Z6

to (a, a + b) ∈ Z6 × Z6 is a surjective group homomorphism (indeed, it is a group
isomorphism). 2

Let X be a random variable whose image is S. Let B be an event with P[B] 6= 0.
The conditional distribution of X givenB is defined to be the distribution of X rel-
ative to the conditional distribution P(·|B), that is, the distribution PX|B :S→ [0, 1]
defined by PX|B(s) := P[X = s | B] for s ∈ S.

Suppose X and Y are random variables, with images S and T , respectively. We
say X and Y are independent if for all s ∈ S and all t ∈ T , the events X = s and
Y = t are independent, which is to say,

P[(X = s) ∩ (Y = t)] = P[X = s] P[Y = t].

Equivalently, X and Y are independent if and only if the distribution of (X, Y) is
essentially equal to the product of the distribution of X and the distribution of Y. As
a special case, if X is uniformly distributed over S, and Y is uniformly distributed
over T , then X and Y are independent if and only if (X, Y) is uniformly distributed
over S × T .

Independence can also be characterized in terms of conditional probabilities.
From the definitions, it is immediate that X and Y are independent if and only if for
all values t taken by Y with non-zero probability, we have

P[X = s | Y = t] = P[X = s]

for all s ∈ S; that is, the conditional distribution of X given Y = t is the same
as the distribution of X. From this point of view, an intuitive interpretation of
independence is that information about the value of one random variable does not
reveal any information about the value of the other.

Example 8.20. Let us continue with Examples 8.16 and 8.19. The random vari-
ables X and Y are independent: each is uniformly distributed over {1, . . . , 6}, and
(X, Y) is uniformly distributed over {1, . . . , 6} × {1, . . . , 6}. Let us calculate the
conditional distribution of X given Z = 4. We have P[X = s | Z = 4] = 1/3
for s = 1, 2, 3, and P[X = s | Z = 4] = 0 for s = 4, 5, 6. Thus, the con-
ditional distribution of X given Z = 4 is essentially the uniform distribution on
{1, 2, 3}. Let us calculate the conditional distribution of Z given X = 1. We have
P[Z = u | X = 1] = 1/6 for u = 2, . . . , 7, and P[Z = u | X = 1] = 0 for
u = 8, . . . , 12. Thus, the conditional distribution of Z given X = 1 is essentially
the uniform distribution on {2, . . . , 7}. In particular, it is clear that X and Z are
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not independent. The random variables X′ and Y ′ are independent, as are X′ and
Z′: each of X′, Y ′, and Z′ is uniformly distributed over Z6, and each of (X′, Y ′) and
(X′,Z′) is uniformly distributed over Z6 × Z6. 2

We now generalize the notion of independence to families of random variables.
Let {Xi}i∈I be a finite family of random variables. Let us call a corresponding
family of values {si}i∈I an assignment to {Xi}i∈I if si is in the image of Xi for
each i ∈ I . For a given positive integer k, we say that the family {Xi}i∈I is k-
wise independent if for every assignment {si}i∈I to {Xi}i∈I , the family of events
{Xi = si}i∈I is k-wise independent.

The notions of pairwise and mutual independence for random variables are
defined following the same pattern that was used for events. The family {Xi}i∈I is
called pairwise independent if it is 2-wise independent, which means that for all
i, j ∈ I with i 6= j, the variables Xi and Xj are independent. The family {Xi}i∈I is
called mutually independent if it is k-wise independent for all positive integers
k. Equivalently, and more explicitly, mutual independence means that for every
assignment {si}i∈I to {Xi}i∈I , we have

P
[

⋂

j∈J
(Xj = sj)

]

=
∏

j∈J
P[Xj = sj] for all J ⊆ I . (8.13)

If n := |I | > 0, mutual independence is equivalent to n-wise independence; more-
over, if 0 < k ≤ n, then {Xi}i∈I is k-wise independent if and only if {Xj}j∈J is
mutually independent for every J ⊆ I with |J | = k.

Example 8.21. Returning again to Examples 8.16, 8.19, and 8.20, we see that
the family of random variables X′, Y ′,Z′ is pairwise independent, but not mutually
independent; for example,

P
[

(X′ = [0]6) ∩ (Y ′ = [0]6) ∩ (Z′ = [0]6)
]

= 1/62,

but

P
[

X′ = [0]6
]

· P
[

Y ′ = [0]6
]

· P
[

Z′ = [0]6
]

= 1/63. 2

Example 8.22. Suppose {Ai}i∈I is a finite family of events. Let {Xi}i∈I be the
corresponding family of indicator variables, so that for each i ∈ I , Xi = 1 if Ai

occurs, and Xi = 0, otherwise. Theorem 8.3 immediately implies that for every
positive integer k, {Ai}i∈I is k-wise independent if and only if {Xi}i∈I is k-wise
independent. 2

Example 8.23. Consider again Example 8.15, where we toss a fair coin 3 times.
For i = 1, 2, 3, let Xi be the indicator variable for the event Ai that the ith toss
comes up heads. Then {Xi}3

i=1 is a mutually independent family of random vari-
ables. Let Y12 be the indicator variable for the event B12 that tosses 1 and 2 agree;
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similarly, let Y13 be the indicator variable for the event B13, and Y23 the indicator
variable for B23. Then the family of random variables Y12, Y13, Y23 is pairwise
independent, but not mutually independent. 2

We next present a number of useful tools for establishing independence.

Theorem 8.6. Let X be a random variable with image S, and Y be a random
variable with image T . Further, suppose that f : S → [0, 1] and g : T → [0, 1]
are functions such that

∑

s∈S

f (s) =
∑

t∈T
g(t) = 1, (8.14)

and that for all s ∈ S and t ∈ T , we have

P[(X = s) ∩ (Y = t)] = f (s)g(t). (8.15)

Then X and Y are independent, the distribution of X is f , and the distribution of
Y is g.

Proof. Since {Y = t}t∈T is a partition of the sample space, making use of total
probability (8.9), along with (8.15) and (8.14), we see that for all s ∈ S, we have

P[X = s] =
∑

t∈T
P[(X = s) ∩ (Y = t)] =

∑

t∈T
f (s)g(t) = f (s)

∑

t∈T
g(t) = f (s).

Thus, the distribution of X is indeed f . Exchanging the roles of X and Y in the
above argument, we see that the distribution of Y is g. Combining this with (8.15),
we see that X and Y are independent. 2

The generalization of Theorem 8.6 to families of random variables is a bit messy,
but the basic idea is the same:

Theorem 8.7. Let {Xi}i∈I be a finite family of random variables, where each Xi
has image Si. Also, let {fi}i∈I be a family of functions, where for each i ∈ I ,
fi : Si → [0, 1] and

∑

si∈Si fi(si) = 1. Further, suppose that

P
[

⋂

i∈I
(Xi = si)

]

=
∏

i∈I
fi(si)

for each assignment {si}i∈I to {Xi}i∈I . Then the family {Xi}i∈I is mutually inde-
pendent, and for each i ∈ I , the distribution of Xi is fi.

Proof. To prove the theorem, it suffices to prove the following statement: for every
subset J of I , and every assignment {sj}j∈J to {Xj}j∈J , we have

P
[

⋂

j∈J
(Xj = sj)

]

=
∏

j∈J
fj(sj).
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Moreover, it suffices to prove this statement for the case where J = I \ {d}, for
an arbitrary d ∈ I: this allows us to eliminate any one variable from the family,
without affecting the hypotheses, and by repeating this procedure, we can eliminate
any number of variables.

Thus, let d ∈ I be fixed, let J := I \ {d}, and let {sj}j∈J be a fixed assignment
to {Xj}j∈J . Then, since {Xd = sd}sd∈Sd is a partition of the sample space, we have

P
[

⋂

j∈J
(Xj = sj)

]

= P
[

⋃

sd∈Sd

(

⋂

i∈I
(Xi = si)

)]

=
∑

sd∈Sd

P
[

⋂

i∈I
(Xi = si)

]

=
∑

sd∈Sd

∏

i∈I
fi(si) =

∏

j∈J
fj(sj) ·

∑

sd∈Sd

fd(sd) =
∏

j∈J
fj(sj). 2

This theorem has several immediate consequences. First of all, mutual inde-
pendence may be more simply characterized:

Theorem 8.8. Let {Xi}i∈I be a finite family of random variables. Suppose that for
every assignment {si}i∈I to {Xi}i∈I , we have

P
[

⋂

i∈I
(Xi = si)

]

=
∏

i∈I
P[Xi = si].

Then {Xi}i∈I is mutually independent.

Theorem 8.8 says that to check for mutual independence, we only have to con-
sider the index set J = I in (8.13). Put another way, it says that a family of
random variables {Xi}ni=1 is mutually independent if and only if the distribution of
(X1, . . . ,Xn) is essentially equal to the product of the distributions of the individual
Xi’s.

Based on the definition of mutual independence, and its characterization in The-
orem 8.8, the following is also immediate:

Theorem 8.9. Suppose {Xi}ni=1 is a family of random variables, and that m is an
integer with 0 < m < n. Then the following are equivalent:

(i) {Xi}ni=1 is mutually independent;

(ii) {Xi}mi=1 is mutually independent, {Xi}ni=m+1 is mutually independent, and
the two variables (X1, . . . ,Xm) and (Xm+1, . . . ,Xn) are independent.

The following is also an immediate consequence of Theorem 8.7 (it also follows
easily from Theorem 8.4).

Theorem 8.10. Suppose that X1, . . . ,Xn are random variables, and that S1, . . . ,Sn
are finite sets. Then the following are equivalent:

(i) (X1, . . . ,Xn) is uniformly distributed over S1 × · · · × Sn;
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(ii) {Xi}ni=1 is mutually independent, with each Xi uniformly distributed over
Si.

Another immediate consequence of Theorem 8.7 is the following:

Theorem 8.11. Suppose P is the product distribution P1 · · ·Pn, where each Pi
is a probability distribution on a sample space Ωi, so that the sample space of P
is Ω = Ω1 × · · · × Ωn. For each i = 1, . . . , n, let Xi be the random variable
that projects on the ith coordinate, so that Xi(ω1, . . . ,ωn) = ωi. Then {Xi}ni=1 is
mutually independent, and for each i = 1, . . . , n, the distribution of Xi is Pi.

Theorem 8.11 is often used to synthesize independent random variables “out
of thin air,” by taking the product of appropriate probability distributions. Other
arguments may then be used to prove the independence of variables derived from
these.

Example 8.24. Theorem 8.11 immediately implies that in Example 8.18, the fam-
ily of indicator variables {Xi}ni=1 is mutually independent. 2

The following theorem gives us yet another way to establish independence.

Theorem 8.12. Suppose {Xi}ni=1 is a mutually independent family of random vari-
ables. Further, suppose that for i = 1, . . . , n, Yi := gi(Xi) for some function gi.
Then {Yi}ni=1 is mutually independent.

Proof. It suffices to prove the theorem for n = 2. The general case follows easily
by induction, using Theorem 8.9. For i = 1, 2, let ti be any value in the image of
Yi, and let S ′i := g−1

i ({ti}). We have

P[(Y1 = t1) ∩ (Y2 = t2)] = P
[(

⋃

s1∈S ′1

(X1 = s1)
)

∩
(

⋃

s2∈S ′2

(X2 = s2)
)]

= P
[

⋃

s1∈S ′1

⋃

s2∈S ′2

(

(X1 = s1) ∩ (X2 = s2)
)]

=
∑

s1∈S ′1

∑

s2∈S ′2

P[(X1 = s1) ∩ (X2 = s2)]

=
∑

s1∈S ′1

∑

s2∈S ′2

P[X1 = s1] P[X2 = s2]

=
(

∑

s1∈S ′1

P[X1 = s1]
)(

∑

s2∈S ′2

P[X2 = s2]
)

= P
[

⋃

s1∈S ′1

(X1 = s1)
]

P
[

⋃

s2∈S ′2

(X2 = s2)
]

= P[Y1 = t1] P[Y2 = t2]. 2
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As a special case of the above theorem, if each gi is the characteristic function
for some subset S ′i of the image of Xi, then X1 ∈ S ′1, . . . ,Xn ∈ S ′n form a mutually
independent family of events.

The next theorem is quite handy in proving the independence of random vari-
ables in a variety of algebraic settings.

Theorem 8.13. Suppose that G is a finite abelian group, and that W is a random
variable uniformly distributed over G. Let Z be another random variable, tak-
ing values in some finite set U , and suppose that W and Z are independent. Let
σ : U → G be some function, and define Y := W + σ(Z). Then Y is uniformly
distributed over G, and Y and Z are independent.

Proof. Consider any fixed values t ∈ G and u ∈ U . Evidently, the events
(Y = t) ∩ (Z = u) and (W = t − σ(u)) ∩ (Z = u) are the same, and therefore,
because W and Z are independent, we have

P[(Y = t) ∩ (Z = u)] = P[W = t − σ(u)] P[Z = u] =
1
|G|

P[Z = u]. (8.16)

Since this holds for every u ∈ U , making use of total probability (8.9), we have

P[Y = t] =
∑

u∈U
P[(Y = t) ∩ (Z = u)] =

1
|G|

∑

u∈U
P[Z = u] =

1
|G|

.

Thus, Y is uniformly distributed over G, and by (8.16), Y and Z are independent.
(This conclusion could also have been deduced directly from (8.16) using Theo-
rem 8.6—we have repeated the argument here.) 2

Note that in the above theorem, we make no assumption about the distribution
of Z, or any properties of the function σ.

Example 8.25. Theorem 8.13 may be used to justify the security of the one-time
pad encryption scheme. Here, the variable W represents a random, secret key —
the “pad”—that is shared between Alice and Bob; U represents a space of possible
messages; Z represents a “message source,” from which Alice draws her message
according to some distribution; finally, the function σ : U → G represents some
invertible “encoding transformation” that maps messages into group elements.

To encrypt a message drawn from the message source, Alice encodes the mes-
sage as a group element, and then adds the pad. The variable Y := W + σ(Z)
represents the resulting ciphertext. Since Z = σ−1(Y −W), when Bob receives the
ciphertext, he decrypts it by subtracting the pad, and converting the resulting group
element back into a message. Because the message source Z and ciphertext Y are
independent, an eavesdropping adversary who learns the value of Y does not learn
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anything about Alice’s message: for any particular ciphertext t, the conditional
distribution of Z given Y = t is the same as the distribution of Z.

The term “one time” comes from the fact that a given encryption key should
be used only once; otherwise, security may be compromised. Indeed, suppose the
key is used a second time, encrypting a message drawn from a second source Z′.
The second ciphertext is represented by the random variable Y ′ := W + σ(Z′). In
general, the random variables (Z,Z′) and (Y, Y ′) will not be independent, since
Y − Y ′ = σ(Z) − σ(Z′). To illustrate this more concretely, suppose Z is uniformly
distributed over a set of 1000 messages, Z′ is uniformly distributed over a set of
two messages, say, {u′1, u′2}, and that Z and Z′ are independent. Now, without
any further information about Z, an adversary would have at best a 1-in-a-1000
chance of guessing its value. However, if he sees that Y = t and Y ′ = t′, for
particular values t, t′ ∈ G, then he has a 1-in-2-chance, since the value of Z is
equally likely to be one of just two messages, namely, u1 := σ−1(t− t′+σ(u′1)) and
u2 := σ−1(t − t′ + σ(u′2)); more formally, the conditional distribution of Z given
(Y = t) ∩ (Y ′ = t′) is essentially the uniform distribution on {u1, u2}.

In practice, it is convenient to define the group G to be the group of all bit
strings of some fixed length, with bit-wise exclusive-or as the group operation.
The encoding function σ simply “serializes” a message as a bit string. 2

Example 8.26. Theorem 8.13 may also be used to justify a very simple type of
secret sharing. A colorful, if militaristic, motivating scenario is the following.
To launch a nuclear missile, two officers who carry special keys must insert their
keys simultaneously into the “authorization device” (at least, that is how it works in
Hollywood). In the digital version of this scenario, an authorization device contains
a secret, digital “launch code,” and each officer holds a digital “share” of this code,
so that (i) individually, each share reveals no information about the launch code,
but (ii) collectively, the two shares may be combined in a simple way to derive the
launch code. Thus, to launch the missile, both officers must input their shares into
the authorization device; hardware in the authorization device combines the two
shares, and compares the resulting code against the launch code it stores—if they
match, the missile flies.

In the language of Theorem 8.13, the launch code is represented by the random
variable Z, and the two shares by W and Y := W + σ(Z), where (as in the previous
example) σ : U → G is some simple, invertible encoding function. Because W and
Z are independent, information about the share W leaks no information about the
launch code Z; likewise, since Y and Z are independent, information about Y leaks
no information about Z. However, by combining both shares, the launch code is
easily constructed as Z = σ−1(Y −W). 2
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Example 8.27. Let k be a positive integer. This example shows how we can take a
mutually independent family of k random variables, and, from it, construct a much
larger, k-wise independent family of random variables.

Let p be a prime, with p ≥ k. Let {Hi}k−1
i=0 be a mutually independent fam-

ily of random variables, each of which is uniformly distributed over Zp. Let us
set H := (H0, . . . ,Hk−1), which, by assumption, is uniformly distributed over
Z×kp . For each s ∈ Zp, we define the function ρs : Z×kp → Zp as follows: for
r = (r0, . . . , rk−1) ∈ Z×kp , ρs(r) :=

∑k−1
i=0 ris

i; that is, ρs(r) is the value obtained by
evaluating the polynomial r0 + r1X + · · · + rk−1X

k−1 ∈ Zp[X ] at the point s.
Each s ∈ Zp defines a random variable ρs(H) = H0 +H1s+ · · ·+Hk−1s

k−1. We
claim that the family of random variables {ρs(H)}s∈Zp is k-wise independent, with
each individual ρs(H) uniformly distributed over Zp. By Theorem 8.10, it suffices
to show the following: for all distinct points s1, . . . , sk ∈ Zp, the random variable
W := (ρs1 (H), . . . , ρsk (H)) is uniformly distributed over Z×kp . So let s1, . . . , sk be
fixed, distinct elements of Zp, and define the function

ρ : Z×kp → Z×kp
r 7→ (ρs1 (r), . . . , ρsk (r)).

(8.17)

Thus, W = ρ(H), and by Lagrange interpolation (Theorem 7.15), the function ρ is
a bijection; moreover, since H is uniformly distributed over Z×kp , so is W.

Of course, the field Zp may be replaced by an arbitrary finite field. 2

Example 8.28. Consider again the secret sharing scenario of Example 8.26. Sup-
pose at the critical moment, one of the officers is missing in action. The military
planners would perhaps like a more flexible secret sharing scheme; for example,
perhaps shares of the launch code should be distributed to three officers, in such a
way that no single officer can authorize a launch, but any two can. More generally,
for positive integers k and `, with ` ≥ k + 1, the scheme should distribute shares
among ` officers, so that no coalition of k (or fewer) officers can authorize a launch,
yet any coalition of k + 1 officers can. Using the construction of the previous
example, this is easily achieved, as follows.

Let us model the secret launch code as a random variable Z, taking values in
a finite set U . Assume that p is prime, with p ≥ `, and that σ : U → Zp is
a simple, invertible encoding function. To construct the shares, we make use of
random variables H0, . . . ,Hk−1, where each Hi is uniformly distributed over Zp,
and the family of random variables H0, . . . ,Hk−1,Z is mutually independent. For
each s ∈ Zp, we define the random variable

Ys := H0 + H1s + · · · + Hk−1s
k−1 + σ(Z)sk.
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We can pick any subset S ⊆ Zp of size ` that we wish, so that for each s ∈ S, an
officer gets the secret share Ys (along with the public value s).

First, we show how any coalition of k+1 officers can reconstruct the launch code
from their collection of shares, say, Ys1 , . . . , Ysk+1 . This is easily done by means of
the Lagrange interpolation formula (again, Theorem 7.15). Indeed, we only need
to recover the high-order coefficient, σ(Z), which we can obtain via the formula

σ(Z) =
k+1
∑

i=1

Ysi
∏

j 6=i(si − sj)
.

Second, we show that no coalition of k officers learn anything about the launch
code, even if they pool their shares. Formally, this means that if s1, . . . , sk are
fixed, distinct points, then Ys1 , . . . , Ysk ,Z form a mutually independent family of
random variables. This is easily seen, as follows. Define H := (H0, . . . ,Hk−1), and
W := ρ(H), where ρ : Z×kp →Z×kp is as defined in (8.17), and set Y := (Ys1 , . . . , Ysk ).
Now, by hypothesis, H and Z are independent, and H is uniformly distributed over
Z×kp . As we noted in Example 8.27, ρ is a bijection, and hence, W is uniformly
distributed over Z×kp ; moreover (by Theorem 8.12), W and Z are independent.
Observe that Y = W + σ′(Z), where σ′ maps u ∈ U to (σ(u)sk1 , . . . , σ(u)skk) ∈ Z×kp ,
and so applying Theorem 8.13 (with the group Z×kp , the random variables W and
Z, and the function σ′), we see that Y and Z are independent, where Y is uniformly
distributed over Z×kp . From this, it follows (using Theorems 8.9 and 8.10) that the
family of random variables Ys1 , . . . , Ysk ,Z is mutually independent, with each Ysi
uniformly distributed over Zp.

Finally, we note that when k = 1, ` = 2, and S = {0, 1}, this construction
degenerates to the construction in Example 8.26 (with the additive group Zp). 2

EXERCISE 8.12. Suppose X and X′ are random variables that take values in a set
S and that have essentially the same distribution. Show that if f : S → T is a
function, then f (X) and f (X′) have essentially the same distribution.

EXERCISE 8.13. Let {Xi}ni=1 be a family of random variables, and let Si be the
image of Xi for i = 1, . . . , n. Show that {Xi}ni=1 is mutually independent if and only
if for each i = 2, . . . , n, and for all s1 ∈ S1, . . . , si ∈ Si, we have

P[Xi = si | (X1 = s1) ∩ · · · ∩ (Xi−1 = si−1)] = P[Xi = si].

EXERCISE 8.14. Suppose that ρ : G → G′ is a surjective group homomor-
phism, where G and G′ are finite abelian groups. Show that if g′, h′ ∈ G′, and
X and Y are independent random variables, where X is uniformly distributed over
ρ−1({g′}), and Y takes values in ρ−1({h′}), then X+Y is uniformly distributed over
ρ−1({g′ + h′}).
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EXERCISE 8.15. Suppose X and Y are random variables, where X takes values in
S, and Y takes values in T . Further suppose that Y ′ is uniformly distributed over
T , and that (X, Y) and Y ′ are independent. Let φ be a predicate on S × T . Show
that P[φ(X, Y) ∩ (Y = Y ′)] = P[φ(X, Y)]/|T |.

EXERCISE 8.16. Let X and Y be independent random variables, where X is uni-
formly distributed over a set S, and Y is uniformly distributed over a set T ⊆ S.
Define a third random variable Z as follows: if X ∈ T , then Z := X; otherwise,
Z := Y. Show that Z is uniformly distributed over T .

EXERCISE 8.17. Let n be a positive integer, and let X be a random variable, uni-
formly distributed over {0, . . . , n−1}. For each positive divisor d of n, let us define
the random variable Xd := X mod d. Show that:

(a) if d is a divisor of n, then the variable Xd is uniformly distributed over
{0, . . . , d − 1};

(b) if d1, . . . , dk are divisors of n, then {Xdi}
k
i=1 is mutually independent if and

only if {di}ki=1 is pairwise relatively prime.

EXERCISE 8.18. Suppose X and Y are random variables, each uniformly dis-
tributed over Z2, but not necessarily independent. Show that the distribution of
(X, Y) is the same as the distribution of (X + 1, Y + 1).

EXERCISE 8.19. Let I := {1, . . . , n}, where n ≥ 2, let B := {0, 1}, and let G be a
finite abelian group, with |G| > 1. Suppose that {Xib}(i,b)∈I×B is a mutually inde-
pendent family of random variables, each uniformly distributed over G. For each
β = (b1, . . . , bn) ∈ B×n, let us define the random variable Yβ := X1b1 + · · · + Xnbn .
Show that each Yβ is uniformly distributed over G, and that {Yβ}β∈B×n is 3-wise
independent, but not 4-wise independent.

8.4 Expectation and variance
Let P be a probability distribution on a sample space Ω. If X is a real-valued
random variable, then its expected value, or expectation, is

E[X] :=
∑

ω∈Ω

X(ω) P(ω). (8.18)

If S is the image of X, and if for each s ∈ S we group together the terms in (8.18)
with X(ω) = s, then we see that

E[X] =
∑

s∈S

sP[X = s]. (8.19)
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From (8.19), it is clear that E[X] depends only on the distribution of X: if X′ is
another random variable with the same (or essentially the same) distribution as X,
then E[X] = E[X′].

More generally, suppose X is an arbitrary random variable (not necessarily real
valued) whose image is S, and f is a real-valued function on S. Then again, if for
each s ∈ S we group together the terms in (8.18) with X(ω) = s, we see that

E[f (X)] =
∑

s∈S

f (s) P[X = s]. (8.20)

We make a few trivial observations about expectation, which the reader may
easily verify. First, if X is equal to a constant c (i.e., X(ω) = c for every ω ∈ Ω),
then E[X] = E[c] = c. Second, if X and Y are random variables such that X ≥ Y

(i.e., X(ω) ≥ Y(ω) for every ω ∈ Ω), then E[X] ≥ E[Y]. Similarly, if X > Y, then
E[X] > E[Y].

In calculating expectations, one rarely makes direct use of (8.18), (8.19), or
(8.20), except in rather trivial situations. The next two theorems develop tools that
are often quite effective in calculating expectations.

Theorem 8.14 (Linearity of expectation). If X and Y are real-valued random
variables, and a is a real number, then

E[X + Y] = E[X] + E[Y] and E[aX] = aE[X].

Proof. It is easiest to prove this using the defining equation (8.18) for expectation.
Forω ∈ Ω, the value of the random variable X+Y atω is by definition X(ω)+Y(ω),
and so we have

E[X + Y] =
∑

ω

(X(ω) + Y(ω)) P(ω)

=
∑

ω

X(ω) P(ω) +
∑

ω

Y(ω) P(ω)

= E[X] + E[Y].

For the second part of the theorem, by a similar calculation, we have

E[aX] =
∑

ω

(aX(ω)) P(ω) = a
∑

ω

X(ω) P(ω) = aE[X]. 2

More generally, the above theorem implies (using a simple induction argument)
that if {Xi}i∈I is a finite family of real-valued random variables, then we have

E
[

∑

i∈I
Xi

]

=
∑

i∈I
E[Xi]. (8.21)

So we see that expectation is linear; however, expectation is not in general mul-
tiplicative, except in the case of independent random variables:
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Theorem 8.15. If X and Y are independent, real-valued random variables, then
E[XY] = E[X] E[Y].

Proof. It is easiest to prove this using (8.20), with the function f (s, t) := st applied
to the random variable (X, Y). We have

E[XY] =
∑

s,t

stP[(X = s) ∩ (Y = t)]

=
∑

s,t

stP[X = s] P[Y = t]

=
(

∑

s

sP[X = s]
)(

∑

t

tP[Y = t]
)

= E[X] E[Y]. 2

More generally, the above theorem implies (using a simple induction argument)
that if {Xi}i∈I is a finite, mutually independent family of real-valued random vari-
ables, then

E
[

∏

i∈I
Xi

]

=
∏

i∈I
E[Xi]. (8.22)

The following simple facts are also sometimes quite useful in calculating expec-
tations:

Theorem 8.16. Let X be a 0/1-valued random variable. Then E[X] = P[X = 1].

Proof. E[X] = 0 · P[X = 0] + 1 · P[X = 1] = P[X = 1]. 2

Theorem 8.17. If X is a random variable that takes only non-negative integer
values, then

E[X] =
∑

i≥1

P[X ≥ i].

Note that since X has a finite image, the sum appearing above is finite.

Proof. Suppose that the image of X is contained in {0, . . . , n}, and for i = 1, . . . , n,
let Xi be the indicator variable for the event X ≥ i. Then X = X1 + · · · + Xn, and
by linearity of expectation and Theorem 8.16, we have

E[X] =
n
∑

i=1

E[Xi] =
n
∑

i=1

P[X ≥ i]. 2

Let X be a real-valued random variable with µ := E[X]. The variance of X is
Var[X] := E[(X−µ)2]. The variance provides a measure of the spread or dispersion
of the distribution of X around its expected value. Note that since (X − µ)2 takes
only non-negative values, variance is always non-negative.
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Theorem 8.18. Let X be a real-valued random variable, with µ := E[X], and let a
and b be real numbers. Then we have

(i) Var[X] = E[X2] − µ2,

(ii) Var[aX] = a2 Var[X], and

(iii) Var[X + b] = Var[X].

Proof. For part (i), observe that

Var[X] = E[(X − µ)2] = E[X2 − 2µX + µ2]

= E[X2] − 2µE[X] + E[µ2] = E[X2] − 2µ2 + µ2

= E[X2] − µ2,

where in the third equality, we used the fact that expectation is linear, and in the
fourth equality, we used the fact that E[c] = c for constant c (in this case, c = µ2).

For part (ii), observe that

Var[aX] = E[a2X2] − E[aX]2 = a2 E[X2] − (aµ)2

= a2(E[X2] − µ2) = a2 Var[X],

where we used part (i) in the first and fourth equality, and the linearity of expecta-
tion in the second.

Part (iii) follows by a similar calculation:

Var[X + b] = E[(X + b)2] − (µ + b)2

= (E[X2] + 2bµ + b2) − (µ2 + 2bµ + b2)

= E[X2] − µ2 = Var[X]. 2

The following is an immediate consequence of part (i) of Theorem 8.18, and the
fact that variance is always non-negative:

Theorem 8.19. If X is a real-valued random variable, then E[X2] ≥ E[X]2.

Unlike expectation, the variance of a sum of random variables is not equal to the
sum of the variances, unless the variables are pairwise independent:

Theorem 8.20. If {Xi}i∈I is a finite, pairwise independent family of real-valued
random variables, then

Var
[

∑

i∈I
Xi

]

=
∑

i∈I
Var[Xi].



8.4 Expectation and variance 237

Proof. We have

Var
[

∑

i∈I
Xi

]

= E
[(

∑

i∈I
Xi

)2]

−
(

E
[

∑

i∈I
Xi

])2

=
∑

i∈I
E[X2

i ] +
∑

i,j∈I
i6=j

(

E[XiXj] − E[Xi] E[Xj]
)

−
∑

i∈I
E[Xi]2

(by linearity of expectation and rearranging terms)

=
∑

i∈I
E[X2

i ] −
∑

i∈I
E[Xi]2

(by pairwise independence and Theorem 8.15)

=
∑

i∈I
Var[Xi]. 2

Corresponding to Theorem 8.16, we have:

Theorem 8.21. Let X be a 0/1-valued random variable, with p := P[X = 1] and
q := P[X = 0] = 1 − p. Then Var[X] = pq.

Proof. We have E[X] = p and E[X2] = P[X2 = 1] = P[X = 1] = p. Therefore,

Var[X] = E[X2] − E[X]2 = p − p2 = p(1 − p) = pq. 2

Let B be an event with P[B] 6= 0, and let X be a real-valued random variable.
We define the conditional expectation of X given B, denoted E[X | B], to be the
expected value of the X relative to the conditional distribution P(· | B), so that

E[X | B] =
∑

ω∈Ω

X(ω) P(ω | B) = P[B]−1
∑

ω∈B

X(ω) P(ω).

Analogous to (8.19), if S is the image of X, we have

E[X | B] =
∑

s∈S

sP[X = s | B]. (8.23)

Furthermore, suppose I is a finite index set, and {Bi}i∈I is a partition of the sample
space, where each Bi occurs with non-zero probability. If for each i ∈ I we group
together the terms in (8.18) with ω ∈ Bi, we obtain the law of total expectation:

E[X] =
∑

i∈I
E[X | Bi] P[Bi]. (8.24)

Example 8.29. Let X be uniformly distributed over {1, . . . ,m}. Let us compute
E[X] and Var[X]. We have

E[X] =
m
∑

s=1

s ·
1
m

=
m(m + 1)

2
·

1
m

=
m + 1

2
.
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We also have

E[X2] =
m
∑

s=1

s2 ·
1
m

=
m(m + 1)(2m + 1)

6
·

1
m

=
(m + 1)(2m + 1)

6
.

Therefore,

Var[X] = E[X2] − E[X]2 =
m2 − 1

12
. 2

Example 8.30. Let X denote the value of a roll of a die. Let A be the event that X
is even. Then the conditional distribution of X given A is essentially the uniform
distribution on {2, 4, 6}, and hence

E[X | A] =
2 + 4 + 6

3
= 4.

Similarly, the conditional distribution of X given A is essentially the uniform dis-
tribution on {1, 3, 5}, and so

E[X | A] =
1 + 3 + 5

3
= 3.

Using the law of total expectation, we can compute the expected value of X as
follows:

E[X] = E[X | A] P[A] + E[X | A] P[A] = 4 ·
1
2
+ 3 ·

1
2
=

7
2

,

which agrees with the calculation in the previous example. 2

Example 8.31. Let X be a random variable with a binomial distribution, as in
Example 8.18, that counts the number of successes among n Bernoulli trials, each
of which succeeds with probability p. Let us compute E[X] and Var[X]. We can
write X as the sum of indicator variables, X =

∑n
i=1 Xi, where Xi is the indicator

variable for the event that the ith trial succeeds; each Xi takes the value 1 with
probability p and 0 with probability q := 1− p, and the family of random variables
{Xi}ni=1 is mutually independent (see Example 8.24). By Theorems 8.16 and 8.21,
we have E[Xi] = p and Var[Xi] = pq for i = 1, . . . , n. By linearity of expectation,
we have

E[X] =
n
∑

i=1

E[Xi] = np.

By Theorem 8.20, and the fact that {Xi}ni=1 is mutually independent (and hence
pairwise independent), we have

Var[X] =
n
∑

i=1

Var[Xi] = npq. 2
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Example 8.32. Our proof of Theorem 8.1 could be elegantly recast in terms of
indicator variables. For B ⊆ Ω, let XB be the indicator variable for B, so that
XB(ω) = δω[B] for each ω ∈ Ω. Equation (8.8) then becomes

XA =
∑

∅(J⊆I
(−1)|J |−1XAJ ,

and by Theorem 8.16 and linearity of expectation, we have

P[A] = E[XA] =
∑

∅(J⊆I
(−1)|J |−1 E[XAJ ] =

∑

∅(J⊆I
(−1)|J |−1 P[XAJ ]. 2

EXERCISE 8.20. Suppose X is a real-valued random variable. Show that |E[X]| ≤
E[|X|] ≤ E[X2]1/2.

EXERCISE 8.21. Suppose X and Y take non-negative real values, and that Y ≤ c
for some constant c. Show that E[XY] ≤ c E[X]

EXERCISE 8.22. Let X be a 0/1-valued random variable. Show that Var[X] ≤ 1/4.

EXERCISE 8.23. Let B be an event with P[B] 6= 0, and let {Bi}i∈I be a finite,
pairwise disjoint family of events whose union is B. Generalizing the law of
total expectation (8.24), show that for every real-valued random variable X, if
I∗ := {i ∈ I : P[Bi] 6= 0}, then we have

E[X | B] P[B] =
∑

i∈I∗
E[X | Bi] P[Bi].

Also show that if E[X | Bi] ≤ α for each i ∈ I∗, then E[X | B] ≤ α.

EXERCISE 8.24. Let B be an event with P[B] 6= 0, and let {Ci}i∈I be a finite,
pairwise disjoint family of events whose union contains B. Again, generalizing
the law of total expectation, show that for every real-valued random variable X, if
I∗ := {i ∈ I : P[B ∩ Ci] 6= 0}, then we have

E[X | B] =
∑

i∈I∗
E[X | B ∩ Ci] P[Ci | B].

EXERCISE 8.25. This exercise makes use of the notion of convexity (see §A8).

(a) Prove Jensen’s inequality: if f is convex on an interval, and X is a random
variable taking values in that interval, then E[f (X)] ≥ f (E[X]). Hint: use
induction on the size of the image of X. (Note that Theorem 8.19 is a special
case of this, with f (s) := s2.)

(b) Using part (a), show that if X takes non-negative real values, and α is a
positive number, then E[Xα] ≥ E[X]α if α ≥ 1, and E[Xα] ≤ E[X]α if
α ≤ 1.



240 Finite and discrete probability distributions

(c) Using part (a), show that if X takes positive real values, then E[X]≥ eE[logX].

(d) Using part (c), derive the arithmetic/geometric mean inequality: for all
positive numbers x1, . . . , xn, we have

(x1 + · · · + xn)/n ≥ (x1 · · · xn)1/n.

EXERCISE 8.26. For real-valued random variables X and Y, their covariance is
defined as Cov[X, Y] := E[XY] − E[X] E[Y]. Show that:

(a) if X, Y, and Z are real-valued random variables, and a is a real number, then
Cov[X + Y,Z] = Cov[X,Z] + Cov[Y,Z] and Cov[aX,Z] = aCov[X,Z];

(b) if {Xi}i∈I is a finite family of real-valued random variables, then

Var
[

∑

i∈I
Xi

]

=
∑

i∈I
Var[Xi] +

∑

i,j∈I
i6=j

Cov[Xi,Xj].

EXERCISE 8.27. Let f : [0, 1] → R be a function that is “nice” in the following
sense: for some constant c, we have |f (s)−f (t)| ≤ c|s− t| for all s, t ∈ [0, 1]. This
condition is implied, for example, by the assumption that f has a derivative that
is bounded in absolute value by c on the interval [0, 1]. For each positive integer
n, define the polynomial Bn,f :=

∑n
k=0
(n
k

)

f (k/n)T k(1 − T )n−k ∈ R[T ]. Show
that |Bn,f (p) − f (p)| ≤ c/2

√
n for all positive integers n and all p ∈ [0, 1]. Hint:

let X be a random variable with a binomial distribution that counts the number of
successes among n Bernoulli trials, each of which succeeds with probability p, and
begin by observing that Bn,f (p) = E[f (X/n)]. The polynomial Bn,f is called the
nth Bernstein approximation to f , and this result proves a classical result that
any “nice” function can approximated to arbitrary precision by a polynomial of
sufficiently high degree.

EXERCISE 8.28. Consider again the game played between Alice and Bob in
Example 8.11. Suppose that to play the game, Bob must place a one dollar bet.
However, after Alice reveals the sum of the two dice, Bob may elect to double his
bet. If Bob’s guess is correct, Alice pays him his bet, and otherwise Bob pays Alice
his bet. Describe an optimal playing strategy for Bob, and calculate his expected
winnings.

EXERCISE 8.29. A die is rolled repeatedly until it comes up “1,” or until it is rolled
n times (whichever comes first). What is the expected number of rolls of the die?
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8.5 Some useful bounds
In this section, we present several theorems that can be used to bound the prob-
ability that a random variable deviates from its expected value by some specified
amount.

Theorem 8.22 (Markov’s inequality). Let X be a random variable that takes only
non-negative real values. Then for every α > 0, we have

P[X ≥ α] ≤ E[X]/α.

Proof. We have

E[X] =
∑

s

sP[X = s] =
∑

s<α

sP[X = s] +
∑

s≥α
sP[X = s],

where the summations are over elements s in the image of X. Since X takes only
non-negative values, all of the terms are non-negative. Therefore,

E[X] ≥
∑

s≥α
sP[X = s] ≥

∑

s≥α
α P[X = s] = α P[X ≥ α]. 2

Markov’s inequality may be the only game in town when nothing more about
the distribution of X is known besides its expected value. However, if the variance
of X is also known, then one can get a better bound.

Theorem 8.23 (Chebyshev’s inequality). Let X be a real-valued random variable,
with µ := E[X] and ν := Var[X]. Then for every α > 0, we have

P[|X − µ| ≥ α] ≤ ν/α2.

Proof. Let Y := (X−µ)2. Then Y is always non-negative, and E[Y] = ν. Applying
Markov’s inequality to Y, we have

P[|X − µ| ≥ α] = P[Y ≥ α2] ≤ ν/α2. 2

An important special case of Chebyshev’s inequality is the following. Suppose
that {Xi}i∈I is a finite, non-empty, pairwise independent family of real-valued ran-
dom variables, each with the same distribution. Let µ be the common value of
E[Xi], ν be the common value of Var[Xi], and n := |I |. Set

X :=
1
n

∑

i∈I
Xi.

The variable X is called the sample mean of {Xi}i∈I . By the linearity of expecta-
tion, we have E[X] = µ, and since {Xi}i∈I is pairwise independent, it follows from
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Theorem 8.20 (along with part (ii) of Theorem 8.18) that Var[X] = ν/n. Applying
Chebyshev’s inequality, for every ε > 0, we have

P[|X − µ| ≥ ε] ≤
ν

nε2
. (8.25)

The inequality (8.25) says that for all ε > 0, and for all δ > 0, there exists n0

(depending on ε and δ, as well as the variance ν) such that n ≥ n0 implies

P[|X − µ| ≥ ε] ≤ δ. (8.26)

In words:

As n gets large, the sample mean closely approximates the expected
value µ with high probability.

This fact, known as the law of large numbers, justifies the usual intuitive interpre-
tation given to expectation.

Let us now examine an even more specialized case of the above situation, where
each Xi is a 0/1-valued random variable, taking the value 1 with probability p, and
0 with probability q := 1−p. By Theorems 8.16 and 8.21, the Xi’s have a common
expected value p and variance pq. Therefore, by (8.25), for every ε > 0, we have

P[|X − p| ≥ ε] ≤
pq

nε2
. (8.27)

The bound on the right-hand side of (8.27) decreases linearly in n. If one makes
the stronger assumption that the family {Xi}i∈I is mutually independent (so that
X :=

∑

i Xi has a binomial distribution), one can obtain a much better bound that
decreases exponentially in n:

Theorem 8.24 (Chernoff bound). Let {Xi}i∈I be a finite, non-empty, and mutu-
ally independent family of random variables, such that each Xi is 1 with probability
p and 0 with probability q := 1− p. Assume that 0 < p < 1. Also, let n := |I | and
X be the sample mean of {Xi}i∈I . Then for every ε > 0, we have:

(i) P[X − p ≥ ε] ≤ e−nε
2/2q;

(ii) P[X − p ≤ −ε] ≤ e−nε
2/2p;

(iii) P[|X − p| ≥ ε] ≤ 2e−nε
2/2.

Proof. First, we observe that (ii) follows directly from (i) by replacing Xi by 1−Xi
and exchanging the roles of p and q. Second, we observe that (iii) follows directly
from (i) and (ii). Thus, it suffices to prove (i).

Let α > 0 be a parameter, whose value will be determined later. Define the
random variable Z := eαn(X−p). Since the function x 7→ eαnx is strictly increasing,
we have X − p ≥ ε if and only if Z ≥ eαnε. By Markov’s inequality, it follows that

P[X − p ≥ ε] = P[Z ≥ eαnε] ≤ E[Z]e−αnε. (8.28)
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So our goal is to bound E[Z] from above.
For each i ∈ I , define the random variable Zi := eα(Xi−p). Observe that

Z =
∏

i∈I Zi, that {Zi}i∈I is a mutually independent family of random variables
(see Theorem 8.12), and that for each i ∈ I , we have

E[Zi] = eα(1−p)p + eα(0−p)q = peαq + qe−αp.

It follows that

E[Z] = E
[

∏

i∈I
Zi

]

=
∏

i∈I
E[Zi] = (peαq + qe−αp)n.

We will prove below that

peαq + qe−αp ≤ eα
2q/2. (8.29)

From this, it follows that

E[Z] ≤ eα
2qn/2. (8.30)

Combining (8.30) with (8.28), we obtain

P[X − p ≥ ε] ≤ eα
2qn/2−αnε. (8.31)

Now we choose the parameter α so as to minimize the quantity α2qn/2− αnε. The
optimal value of α is easily seen to be α = ε/q, and substituting this value of α into
(8.31) yields (i).

To finish the proof of the theorem, it remains to prove the inequality (8.29). Let

β := peαq + qe−αp.

We want to show that β ≤ eα2q/2, or equivalently, that log β ≤ α2q/2. We have

β = eαq(p + qe−α) = eαq(1 − q(1 − e−α)),

and taking logarithms and applying parts (i) and (ii) of §A1, we obtain

log β = αq + log(1 − q(1 − e−α)) ≤ αq − q(1 − e−α) = q(e−α + α − 1) ≤ qα2/2.

This establishes (8.29) and completes the proof of the theorem. 2

Thus, the Chernoff bound is a quantitatively superior version of the law of large
numbers, although its range of application is clearly more limited.

Example 8.33. Suppose we toss a fair coin 10,000 times. The expected number
of heads is 5,000. What is an upper bound on the probability α that we get 6,000
or more heads? Using Markov’s inequality, we get α ≤ 5/6. Using Chebyshev’s
inequality, and in particular, the inequality (8.27), we get

α ≤
1/4

10410−2
=

1
400

.
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Finally, using the Chernoff bound, we obtain

α ≤ e−10410−2/2(0.5) = e−100 ≈ 10−43.4. 2

EXERCISE 8.30. With notation and assumptions as in Theorem 8.24, and with
p := q := 1/2, show that there exist constants c1 and c2 such that

P[|X − 1/2| ≥ c1/
√
n] ≤ 1/2 and P[|X − 1/2| ≥ c2/

√
n] ≥ 1/2.

Hint: for the second inequality, use Exercise 5.16.

EXERCISE 8.31. In each step of a random walk, we toss a coin, and move either
one unit to the right, or one unit to the left, depending on the outcome of the
coin toss. The question is, after n steps, what is our expected distance from the
starting point? Let us model this using a mutually independent family of ran-
dom variables {Yi}ni=1, with each Yi uniformly distributed over {−1, 1}, and define
Y := Y1 + · · · + Yn. Show that the c1

√
n ≤ E[|Y|] ≤ c2

√
n, for some constants c1

and c2.

EXERCISE 8.32. The goal of this exercise is to prove that with probability very
close to 1, a random number between 1 and m has very close to log logm prime
factors. To prove this result, you will need to use appropriate theorems from Chap-
ter 5. Suppose N is a random variable that is uniformly distributed over {1, . . . ,m},
where m ≥ 3. For i = 1, . . . ,m, let Di be the indicator variable for the event that i
divides N. Also, define X :=

∑

p≤m Dp, where the sum is over all primes p ≤ m, so
that X counts the number of distinct primes dividing N. Show that:

(a) 1/i − 1/m < E[Di] ≤ 1/i, for each i = 1, . . . ,m;

(b) |E[X] − log logm| ≤ c1 for some constant c1;

(c) for all primes p, q, where p ≤ m, q ≤ m, and p 6= q, we have

Cov[Dp,Dq] ≤
1
m

(1
p
+

1
q

)

,

where Cov is the covariance, as defined in Exercise 8.26;

(d) Var[X] ≤ log logm + c2 for some constant c2;

(e) for some constant c3, and for every α ≥ 1, we have

P
[

|X − log logm| ≥ α(log logm)1/2
]

≤ α−2
(

1 + c3(log logm)−1/2
)

.

EXERCISE 8.33. For each positive integer n, let τ(n) denote the number of positive
divisors of n. Suppose that N is uniformly distributed over {1, . . . ,m}. Show that
E[τ(N)] = logm + O(1).
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EXERCISE 8.34. You are given three biased coins, where for i = 1, 2, 3, coin i
comes up heads with probability pi. The coins look identical, and all you know is
the following: (1) |p1 − p2| > 0.01 and (2) either p3 = p1 or p3 = p2. Your goal
is to determine whether p3 is equal to p1, or to p2. Design a random experiment
to determine this. The experiment may produce an incorrect result, but this should
happen with probability at most 10−12. Try to use a reasonable number of coin
tosses.

EXERCISE 8.35. Consider the following game, parameterized by a positive integer
n. One rolls a pair of dice, and records the value of their sum. This is repeated until
some value ` is recorded n times, and this value ` is declared the “winner.” It is
intuitively clear that 7 is the most likely winner. Let αn be the probability that 7
does not win. Give a careful argument that αn → 0 as n → ∞. Assume that the
rolls of the dice are mutually independent.

8.6 Balls and bins
This section and the next discuss applications of the theory developed so far.

Our first application is a brief study of “balls and bins.” Suppose you throw n

balls into m bins. A number of questions naturally arise, such as:

• What is the probability that a collision occurs, that is, two balls land in the
same bin?

• What is the expected value of the maximum number of balls that land in
any one bin?

To formalize these questions, we introduce some notation that will be used
throughout this section. Let I be a finite set of size n > 0, and S a finite set
of size m > 0. Let {Xi}i∈I be a family of random variables, where each Xi is
uniformly distributed over the set S. The idea is that I represents a set of labels
for our n balls, S represents the set of m bins, and Xi represents the bin into which
ball i lands.

We define C to be the event that a collision occurs; formally, this is the event that
Xi = Xj for some i, j ∈ I with i 6= j. We also define M to be the random variable
that measures that maximum number of balls in any one bin; formally,

M := max{Ns : s ∈ S},

where for each s ∈ S, Ns is the number of balls that land in bin s; that is,

Ns := |{i ∈ I : Xi = s}|.

The questions posed above can now be stated as the problems of estimating P[C]
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and E[M]. However, to estimate these quantities, we have to make some assump-
tions about the independence of the Xi’s. While it is natural to assume that the
family of random variables {Xi}i∈I is mutually independent, it is also interesting
and useful to estimate these quantities under weaker independence assumptions.
We shall therefore begin with an analysis under the weaker assumption that {Xi}i∈I
is pairwise independent. We start with a simple observation:

Theorem 8.25. Suppose {Xi}i∈I is pairwise independent. Then for all i, j ∈ I
with i 6= j, we have P[Xi = Xj] = 1/m.

Proof. The event Xi = Xj occurs if and only if Xi = s and Xj = s for some s ∈ S.
Therefore,

P[Xi = Xj] =
∑

s∈S

P[(Xi = s) ∩ (Xj = s)] (by Boole’s equality (8.7))

=
∑

s∈S

1/m2 (by pairwise independence)

= 1/m. 2

Theorem 8.26. Suppose {Xi}i∈I is pairwise independent. Then

P[C] ≤
n(n − 1)

2m
.

Proof. Let I (2) := {J ⊆ I : |J | = 2}. Then using Boole’s inequality (8.6) and
Theorem 8.25, we have

P[C] ≤
∑

{i,j}∈I (2)

P[Xi = Xj] =
∑

{i,j}∈I (2)

1
m

=
|I (2)|
m

=
n(n − 1)

2m
. 2

Theorem 8.27. Suppose {Xi}i∈I is pairwise independent. Then

E[M] ≤
√

n2/m + n.

Proof. To prove this, we use the fact that E[M]2 ≤ E[M2] (see Theorem 8.19), and
that M2 ≤ Z :=

∑

s∈S N
2
s . It will therefore suffice to show that

E[Z] ≤ n2/m + n. (8.32)

To this end, for i ∈ I and s ∈ S, let Lis be the indicator variable for the event that
ball i lands in bin s (i.e., Xi = s), and for i, j ∈ I , let Cij be the indicator variable
for the event that balls i and j land in the same bin (i.e., Xi = Xj). Observing that
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Cij =
∑

s∈S LisLjs, we have

Z =
∑

s∈S

N2
s =

∑

s∈S

(

∑

i∈I
Lis
)2

=
∑

s∈S

(

∑

i∈I
Lis
)(

∑

j∈I
Ljs
)

=
∑

i,j∈I

∑

s∈S

LisLjs

=
∑

i,j∈I
Cij.

For i, j ∈ I , we have E[Cij] = P[Xi = Xj] (see Theorem 8.16), and so by The-
orem 8.25, we have E[Cij] = 1/m if i 6= j, and clearly, E[Cij] = 1 if i = j. By
linearity of expectation, we have

E[Z] =
∑

i,j∈I
E[Cij] =

∑

i,j∈I
i6=j

E[Cij] +
∑

i∈I
E[Cii] =

n(n − 1)
m

+ n ≤ n2/m + n,

which proves (8.32). 2

We next consider the situation where {Xi}i∈I is mutually independent. Of
course, Theorem 8.26 is still valid in this case, but with our stronger assumption,
we can derive a lower bound on P[C].

Theorem 8.28. Suppose {Xi}i∈I is mutually independent. Then

P[C] ≥ 1 − e−n(n−1)/2m.

Proof. Let α := P[C]. We want to show α ≤ e−n(n−1)/2m. We may assume that
I = {1, . . . , n} (the labels make no difference) and that n ≤ m (otherwise, α = 0).
Under the hypothesis of the theorem, the random variable (X1, . . . ,Xn) is uniformly
distributed over S×n. Among all mn sequences (s1, . . . , sn) ∈ S×n, there are a total
of m(m − 1) · · · (m − n + 1) that contain no repetitions: there are m choices for s1,
and for any fixed value of s1, there are m − 1 choices for s2, and so on. Therefore

α = m(m − 1) · · · (m − n + 1)/mn =
(

1 −
1
m

)(

1 −
2
m

)

· · ·
(

1 −
n − 1
m

)

.

Using part (i) of §A1, we obtain

α ≤ e−
∑n−1
i=1 i/m = e−n(n−1)/2m. 2

Theorem 8.26 implies that if n(n − 1) ≤ m, then the probability of a collision is
at most 1/2; moreover, Theorem 8.28 implies that if n(n − 1) ≥ (2 log 2)m, then
the probability of a collision is at least 1/2. Thus, for n near

√
m, the probability

of a collision is roughly 1/2. A colorful illustration of this is the following fact: in
a room with 23 or more people, the odds are better than even that two people in the
room have birthdays on the same day of the year. This follows by setting n = 23
and m = 365 in Theorem 8.28. Here, we are ignoring leap years, and the fact that
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birthdays are not uniformly distributed over the calendar year (however, any skew
in the birthday distribution only increases the odds that two people share the same
birthday — see Exercise 8.40 below). Because of this fact, Theorem 8.28 is often
called the birthday paradox (the “paradox” being the perhaps surprisingly small
number of people in the room).

The hypothesis that {Xi}i∈I is mutually independent is crucial in Theorem 8.28.
Indeed, assuming just pairwise independence, we may have P[C] = 1/m, even
when n = m (see Exercise 8.42 below). However, useful, non-trivial lower bounds
on P[C] can still be obtained under assumptions weaker than mutual independence
(see Exercise 8.43 below).

Assuming {Xi}i∈I is mutually independent, we can get a much sharper upper
bound on E[M] than that provided by Theorem 8.27. For simplicity, we only
consider the case where m = n; in this case, Theorem 8.27 gives us the bound
E[M] ≤

√
2n (which cannot be substantially improved assuming only pairwise

independence—see Exercise 8.44 below).

Theorem 8.29. Suppose {Xi}i∈I is mutually independent and that m = n. Then

E[M] ≤ (1 + o(1))
log n

log log n
.

Proof. We use Theorem 8.17, which says that E[M] =
∑

k≥1 P[M ≥ k].
Claim 1. For k ≥ 1, we have P[M ≥ k] ≤ n/k!.
To prove Claim 1, we may assume that k ≤ n (as otherwise, P[M ≥ k] = 0).

Let I (k) := {J ⊆ I : |J | = k}. Now, M ≥ k if and only if there is an s ∈ S and a
subset J ∈ I (k), such that Xj = s for all j ∈ J . Therefore,

P[M ≥ k] ≤
∑

s∈S

∑

J∈I (k)

P
[

⋂

j∈J
(Xj = s)

]

(by Boole’s inequality (8.6))

=
∑

s∈S

∑

J∈I (k)

∏

j∈J
P[Xj = s] (by mutual independence)

= n

(

n

k

)

n−k ≤ n/k!.

That proves Claim 1.
Of course, Claim 1 is only interesting when n/k! ≤ 1, since P[M ≥ k] is always

at most 1. Define F (n) to be the smallest positive integer k such that k! ≥ n.
Claim 2. F (n) ∼ log n/ log log n.
To prove this, let us set k := F (n). It is clear that n ≤ k! ≤ nk, and taking
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logarithms, log n ≤ log k! ≤ log n + log k. Moreover, we have

log k! =
k
∑

`=1

log ` =
∫k

1
log x dx + O(log k) = k log k − k + O(log k) ∼ k log k,

where we have estimated the sum by an integral (see §A5). Thus,

log n = log k! + O(log k) ∼ k log k.

Taking logarithms again, we see that

log log n = log k + log log k + o(1) ∼ log k,

and so log n ∼ k log k ∼ k log log n, from which Claim 2 follows.
Finally, observe that each term in the sequence {n/k!}∞k=1 is at most half the

previous term. Combining this observation with Claims 1 and 2, and the fact that
P[M ≥ k] is always at most 1, we have

E[M] =
∑

k≥1

P[M ≥ k] =
∑

k≤F (n)

P[M ≥ k] +
∑

k>F (n)

P[M ≥ k]

≤ F (n) +
∑

`≥1

2−` = F (n) + 1 ∼ log n/ log log n. 2

EXERCISE 8.36. Let α1, . . . , αm be real numbers that sum to 1. Show that 0 ≤
∑m
s=1(αs − 1/m)2 =

∑m
s=1 α

2
s − 1/m, and in particular,

∑m
s=1 α

2
s ≥ 1/m.

EXERCISE 8.37. Let X and X′ be independent random variables, both having the
same distribution on a set S of size m. Show that P[X = X′] =

∑

s∈S P[X = s]2 ≥
1/m.

EXERCISE 8.38. Suppose that the family of random variables X, Y, Y ′ is mutually
independent, where X has image S, and where Y and Y ′ have the same distribution
on a set T . Let φ be a predicate on S × T , and let α := P[φ(X, Y)]. Show that
P[φ(X, Y) ∩ φ(X, Y ′)] ≥ α2. In addition, show that if Y and Y ′ are both uniformly
distributed over T , then P[φ(X, Y) ∩ φ(X, Y ′) ∩ (Y 6= Y ′)] ≥ α2 − α/|T |.

EXERCISE 8.39. Let α1, . . . , αm be non-negative real numbers that sum to 1. Let
S := {1, . . . ,m}, and for n = 1, . . . ,m, let S (n) := {T ⊆ S : |T | = n}, and define

Pn(α1, . . . , αm) :=
∑

T∈S (n)

∏

t∈T
αt.

Show that Pn(α1, . . . , αm) is maximized when α1 = · · · = αm = 1/m. Hint: first
argue that if αs < αt, then for every ε ∈ [0, αt − αs], replacing the pair (αs, αt) by
(αs + ε, αt − ε) does not decrease the value of Pn(α1, . . . , αm).
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EXERCISE 8.40. Suppose that {Xi}i∈I is a finite, non-empty, mutually independ-
ent family of random variables, where each Xi is uniformly distributed over a finite
set S. Suppose that {Yi}i∈I is another finite, non-empty, mutually independent
family of random variables, where each Yi has the same distribution and takes
values in the set S. Let α be the probability that the Xi’s are distinct, and β be the
probability that the Yi’s are distinct. Using the previous exercise, show that β ≤ α.

EXERCISE 8.41. Suppose n balls are thrown into m bins. Let A be the event that
there is some bin that is empty. Assuming that the throws are mutually independent,
and that n ≥ m(logm + t) for some t ≥ 0, show that P[A] ≤ e−t.

EXERCISE 8.42. Show that for every prime p, there exists a pairwise independent
family of random variables {Xi}i∈Zp , where each Xi is uniformly distributed over
Zp, and yet the probability that all the Xi’s are distinct is 1 − 1/p.

EXERCISE 8.43. Let {Xi}ni=1 be a finite, non-empty, 4-wise independent family of
random variables, each uniformly distributed over a set S. Let α be the probability
that the Xi’s are distinct. For i, j = 1, . . . , n, let Cij be the indicator variable for the
event that Xi = Xj, and define K := {(i, j) : 1 ≤ i ≤ n − 1, i + 1 ≤ j ≤ n} and
Z :=

∑

(i,j)∈K Cij. Show that:

(a) {Cij}(i,j)∈K is pairwise independent;

(b) E[Z] = n(n − 1)/2m and Var[Z] = (1 − 1/m) E[Z];

(c) α ≤ 1/E[Z];

(d) α ≤ 1/2, provided n(n − 1) ≥ 2m (hint: Exercise 8.4).

EXERCISE 8.44. Let k be a positive integer, let n := k2−k+1, let I and S be sets
of size n, and let s0 be a fixed element of S. Also, let I (k) := {J ⊆ I : |J | = k},
and let Π be the set of all permutations on S. For each J ∈ I (k), let fJ be some
function that maps J to s0, and maps I \ J injectively into S \ {s0}. For π ∈ Π,
J ∈ I (k), and i ∈ I , define ρi(π, J ) := π(fJ (i)). Finally, let Y be uniformly
distributed over Π × I (k), and for i ∈ I , define Xi := ρi(Y). Show that {Xi}i∈I
is pairwise independent, with each Xi uniformly distributed over S, and yet the
number of Xi’s with the same value is always at least

√
n.

EXERCISE 8.45. Let S be a set of size m ≥ 1, and let s0 be an arbitrary, fixed
element of S. Let F be a random variable that is uniformly distributed over the
set of all mm functions from S into S. Let us define random variables Xi, for
i = 0, 1, 2, . . . , as follows:

X0 := s0, Xi+1 := F(Xi) (i = 0, 1, 2, . . .).

Thus, the value of Xi is obtained by applying the function F a total of i times to the
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starting value s0. Since S has size m, the sequence {Xi}∞i=0 must repeat at some
point; that is, there exists a positive integer n (with n ≤ m) such that Xn = Xi for
some i = 0, . . . , n − 1. Define the random variable Y to be the smallest such value
n.

(a) Show that for every i ≥ 0 and for all s1, . . . , si ∈ S such that s0, s1, . . . , si
are distinct, the conditional distribution of Xi+1 given the event (X1 = s1) ∩
· · · ∩ (Xi = si) is the uniform distribution on S.

(b) Show that for every integer n ≥ 1, we have Y ≥ n if and only if the random
variables X0,X1, . . . ,Xn−1 take on distinct values.

(c) From parts (a) and (b), show that for each n = 1, . . . ,m, we have

P[Y ≥ n | Y ≥ n − 1] = 1 − (n − 1)/m,

and conclude that

P[Y ≥ n] =
n−1
∏

i=1

(1 − i/m) ≤ e−n(n−1)/2m.

(d) Using part (c), show that

E[Y] =
∑

n≥1

P[Y ≥ n] ≤
∑

n≥1

e−n(n−1)/2m = O(m1/2).

(e) Modify the above argument to show that E[Y] = Ω(m1/2).

EXERCISE 8.46. The setup for this exercise is identical to that of the previous
exercise, except that now, F is uniformly distributed over the set of all m! permuta-
tions of S.

(a) Show that if Y = n, then Xn = X0.

(b) Show that for every i ≥ 0 and all s1, . . . , si ∈ S such that s0, s1, . . . , si are
distinct, the conditional distribution of Xi+1 given (X1 = s1)∩· · ·∩(Xi = si)
is essentially the uniform distribution on S \ {s1, . . . , si}.

(c) Show that for each n = 2, . . . ,m, we have

P[Y ≥ n | Y ≥ n − 1] = 1 −
1

m − n + 2
,

and conclude that for all n = 1, . . . ,m, we have

P[Y ≥ n] =
n−2
∏

i=0

(

1 −
1

m − i

)

= 1 −
n − 1
m

.

(d) From part (c), show that Y is uniformly distributed over {1, . . . ,m}, and in
particular, E[Y] = (m + 1)/2.
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8.7 Hash functions
In this section, we apply the tools we have developed thus far to a particularly
important area of computer science: the theory and practice of hashing.

Let R, S, and T be finite, non-empty sets. Suppose that for each r ∈ R, we have
a function Φr : S → T . We call Φr a hash function (from S to T ). Elements of
R are called keys, and if Φr(s) = t, we say that s hashes to t under r.

In applications of hash functions, we are typically interested in what happens
when various inputs are hashed under a randomly chosen key. To model such
situations, let H be a random variable that is uniformly distributed over R, and for
each s ∈ S, let us define the random variable ΦH(s), which takes the value Φr(s)
when H = r.

• We say that the family of hash functions {Φr}r∈R is pairwise independent
if the family of random variables {ΦH(s)}s∈S is pairwise independent, with
each ΦH(s) uniformly distributed over T .

• We say that {Φr}r∈R is universal if

P[ΦH(s) = ΦH(s′)] ≤ 1/|T |

for all s, s′ ∈ S with s 6= s′.

We make a couple of simple observations. First, by Theorem 8.25, if the family
of hash functions {Φr}r∈R is pairwise independent, then it is universal. Second, by
Theorem 8.10, if |S| > 1, then {Φr}r∈R is pairwise independent if and only if the
following condition holds:

the random variable (ΦH(s),ΦH(s′)) is uniformly distributed over
T × T , for all s, s′ ∈ S with s 6= s′;

or equivalently,

P[ΦH(s) = t ∩ ΦH(s′) = t′] = 1/|T |2 for all s, s′ ∈ S with s 6= s′,
and for all t, t′ ∈ T .

Before looking at constructions of pairwise independent and universal families
of hash functions, we briefly discuss two important applications.

Example 8.34. Suppose {Φr}r∈R is a universal family of hash functions from S

to T . One can implement a “dictionary” using a so-called hash table, which is
basically an array A indexed by T , where each entry in A is a list. Entries in the
dictionary are drawn from the set S. To insert a word s ∈ S into the dictionary, s
is first hashed to an index t, and then s is appended to the list A[t]; likewise, to see
if an arbitrary word s ∈ S is in the dictionary, s is first hashed to an index t, and
then the list A[t] is searched for s.

Usually, the set of entries in the dictionary is much smaller than the set S. For
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example, S may consist of all bit strings of length up to, say 2048, but the dic-
tionary may contain just a few thousand, or a few million, entries. Also, to be
practical, the set T should not be too large.

Of course, all entries in the dictionary could end up hashing to the same index,
in which case, looking up a word in the dictionary degenerates into linear search.
However, we hope that this does not happen, and that entries hash to indices that
are nicely spread out over T . As we will now see, in order to ensure reasonable
performance (in an expected sense), T needs to be of size roughly equal to the
number of entries in the dictionary,

Suppose we create a dictionary containing n entries. Let m := |T |, and let I ⊆ S
be the set of entries (so n = |I |). These n entries are inserted into the hash table
using a randomly chosen hash key, which we model as a random variable H that
is uniformly distributed over R. For each s ∈ S, we define the random variable
Ls to be the number of entries in I that hash to the same index as s under the key
H; that is, Ls := |{i ∈ I : ΦH(s) = ΦH(i)}|. Intuitively, Ls measures the cost of
looking up the particular word s in the dictionary. We want to bound E[Ls]. To this
end, we write Ls as a sum of indicator variables: Ls =

∑

i∈I Csi, where Csi is the
indicator variable for the event that ΦH(s) = ΦH(i). By Theorem 8.16, we have
E[Csi] = P[ΦH(s) = ΦH(i)]; moreover, by the universal property, E[Csi] ≤ 1/m if
s 6= i, and clearly, E[Csi] = 1 if s = i. By linearity of expectation, we have

E[Ls] =
∑

i∈I
E[Csi].

If s /∈ I , then each term in the sum is ≤ 1/m, and so E[Ls] ≤ n/m. If s ∈ I ,
then one term in the sum is 1, and the other n − 1 terms are ≤ 1/m, and so
E[Ls] ≤ 1 + (n − 1)/m. In any case, we have

E[Ls] ≤ 1 + n/m.

In particular, this means that if m ≥ n, then the expected cost of looking up any
particular word in the dictionary is bounded by a constant. 2

Example 8.35. Suppose Alice wants to send a message to Bob in such a way that
Bob can be reasonably sure that the message he receives really came from Alice,
and was not modified in transit by some malicious adversary. We present a solution
to this problem here that works assuming that Alice and Bob share a randomly
generated secret key, and that this key is used to authenticate just a single message
(multiple messages can be authenticated using multiple keys).

Suppose that {Φr}r∈R is a pairwise independent family of hash functions from
S to T . We model the shared random key as a random variable H, uniformly
distributed over R. We also model Alice’s message as a random variable X, taking
values in the set S. We make no assumption about the distribution of X, but we do
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assume that X and H are independent. When Alice sends the message X to Bob,
she also sends the “authentication tag” Y := ΦH(X). Now, when Bob receives a
message X′ and tag Y ′, he checks that ΦH(X′) = Y ′; if this holds, he accepts the
message X′ as authentic; otherwise, he rejects it. Here, X′ and Y ′ are also random
variables; however, they may have been created by a malicious adversary who may
have even created them after seeing X and Y. We can model such an adversary as
a pair of functions f : S × T → S and g : S × T → T , so that X′ := f (X, Y) and
Y ′ := g(X, Y). The idea is that after seeing X and Y, the adversary computes X′ and
Y ′ and sends X′ and Y ′ to Bob instead of X and Y. Let us say that the adversary
fools Bob if ΦH(X′) = Y ′ and X′ 6= X. We will show that P[F] ≤ 1/m, where F is
the event that the adversary fools Bob, and m := |T |. Intuitively, this bound holds
because the pairwise independence property guarantees that after seeing the value
of ΦH at one input, the value of ΦH at any other input is completely unpredictable,
and cannot be guessed with probability any better than 1/m. If m is chosen to be
suitably large, the probability that Bob gets fooled can be made acceptably small.
For example, S may consist of all bit strings of length up to, say, 2048, while the set
T may be encoded using much shorter bit strings, of length, say, 64. This is nice,
as it means that the authentication tags consume very little additional bandwidth.

A straightforward calculation justifies the claim that P[F] ≤ 1/m:

P[F] =
∑

s∈S

∑

t∈T
P
[

(X = s) ∩ (Y = t) ∩ F
]

(law of total probability (8.9))

=
∑

s∈S

∑

t∈T
P
[

(X = s) ∩ (ΦH(s) = t) ∩ (ΦH(f (s, t)) = g(s, t)) ∩

(f (s, t) 6= s)
]

=
∑

s∈S

∑

t∈T
P[X = s] P

[

(ΦH(s) = t) ∩ (ΦH(f (s, t)) = g(s, t)) ∩

(f (s, t) 6= s)
]

(since X and H are independent)

≤
∑

s∈S

∑

t∈T
P[X = s] · (1/m2) (since {Φr}r∈R is pairwise independent)

= (1/m)
∑

s∈S

P[X = s] = 1/m. 2

We now present several constructions of pairwise independent and universal
families of hash functions.

Example 8.36. By setting k := 2 in Example 8.27, for each prime p, we immedi-
ately get a pairwise independent family of hash functions {Φr}r∈R from Zp to Zp,
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where R = Zp × Zp, and for r = (r0, r1) ∈ R, the hash function Φr is given by

Φr : Zp → Zp
s 7→ r0 + r1s. 2

While very simple and elegant, the family of hash functions in Example 8.36 is
not very useful in practice. As we saw in Examples 8.34 and 8.35, what we would
really like are families of hash functions that hash long inputs to short outputs. The
next example provides us with a pairwise independent family of hash functions that
satisfies this requirement.

Example 8.37. Let p be a prime, and let ` be a positive integer. Let S := Z×`p and
R := Z×(`+1)

p . For each r = (r0, r1, . . . , r`) ∈ R, we define the hash function

Φr : S → Zp
(s1, . . . , s`) 7→ r0 + r1s1 + · · · + r`s`.

We will show that {Φr}r∈R is a pairwise independent family of hash functions
from S to Zp. To this end, let H be a random variable uniformly distributed over
R. We want to show that for each s, s′ ∈ S with s 6= s′, the random variable
(ΦH(s),ΦH(s′)) is uniformly distributed over Zp × Zp. So let s 6= s′ be fixed, and
define the function

ρ : R → Zp × Zp
r 7→ (Φr(s),Φr(s′)).

Because ρ is a group homomorphism, it will suffice to show that ρ is surjective (see
Theorem 8.5). Suppose s = (s1, . . . , s`) and s′ = (s′1, . . . , s′`). Since s 6= s′, we
must have sj 6= s′j for some j = 1, . . . , `. For this j, consider the function

ρ′ : R → Zp × Zp
(r0, r1, . . . , r`) 7→ (r0 + rjsj, r0 + rjs

′
j).

Evidently, the image of ρ includes the image of ρ′, and by Example 8.36, the func-
tion ρ′ is surjective. 2

To use the construction in Example 8.37 in applications where the set of inputs
consists of bit strings of a given length, one can naturally split such a bit string up
into short bit strings which, when viewed as integers, lie in the set {0, . . . , p − 1},
and which can in turn be viewed as elements of Zp. This gives us a natural, injective
map from bit strings to elements of Z×`p . The appropriate choice of the prime p
depends on the application. Of course, the requirement that p is prime limits our
choice in the size of the output set; however, this is usually not a severe restric-
tion, as Bertrand’s postulate (Theorem 5.8) tells us that we can always choose p
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to within a factor of 2 of any desired value of the output set size. Nevertheless,
the construction in the following example gives us a universal (but not pairwise
independent) family of hash functions with an output set of any size we wish.

Example 8.38. Let p be a prime, and let m be an arbitrary positive integer. Let
us introduce some convenient notation: for α ∈ Zp, let [[α]]m := [rep(α)]m ∈ Zm
(recall that rep(α) denotes the unique integer a ∈ {0, . . . , p−1} such that α = [a]p).
Let R := Zp × Z∗p, and for each r = (r0, r1) ∈ R, define the hash function

Φr : Zp → Zm
s 7→ [[r0 + r1s]]m.

Our goal is to show that {Φr}r∈R is a universal family of hash functions from Zp to
Zm. So let s, s′ ∈ Zp with s 6= s′, let H0 and H1 be independent random variables,
with H0 uniformly distributed over Zp and H1 uniformly distributed over Z∗p, and let
H := (H0,H1). Also, let C be the event that ΦH(s) = ΦH(s′). We want to show that
P[C] ≤ 1/m. Let us define random variables Y := H0 + H1s and Y ′ := H0 + H1s

′.
Also, let ŝ := s′ − s 6= 0. Then we have

P[C] = P
[

[[Y]]m = [[Y ′]]m
]

= P
[

[[Y]]m = [[Y + H1ŝ]]m
]

(since Y ′ = Y + H1ŝ)

=
∑

α∈Zp

P
[

(

[[Y]]m = [[Y + H1ŝ]]m
)

∩ (Y = α)
]

(law of total probability (8.9))

=
∑

α∈Zp

P
[

(

[[α]]m = [[α + H1ŝ]]m
)

∩ (Y = α)
]

=
∑

α∈Zp

P
[

[[α]]m = [[α + H1ŝ]]m
]

P[Y = α]

(by Theorem 8.13, Y and H1 are independent).

It will suffice to show that

P
[

[[α]]m = [[α + H1ŝ]]m
]

≤ 1/m (8.33)

for each α ∈ Zp, since then

P[C] ≤
∑

α∈Zp

(1/m) P[Y = α] = (1/m)
∑

α∈Zp

P[Y = α] = 1/m.

So consider a fixed α ∈ Zp. As ŝ 6= 0 and H1 is uniformly distributed over Z∗p, it
follows that H1ŝ is uniformly distributed over Z∗p, and hence α + H1ŝ is uniformly
distributed over the set Zp \ {α}. Let Mα := {β ∈ Zp : [[α]]m = [[β]]m}. To prove
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(8.33), we need to show that |Mα \ {α}| ≤ (p − 1)/m. But it is easy to see that
|Mα| ≤ dp/me, and since Mα certainly contains α, we have

|Mα \ {α}| ≤
⌈ p

m

⌉

− 1 ≤
p

m
+
m − 1
m

− 1 =
p − 1
m

. 2

One drawback of the family of hash functions in the previous example is that the
prime p may need to be quite large (at least as large as the size of the set of inputs)
and so to evaluate a hash function, we have to perform modular multiplication of
large integers. In contrast, in Example 8.37, the prime p can be much smaller
(only as large as the size of the set of outputs), and so these hash functions can be
evaluated much more quickly.

Another consideration in designing families of hash functions is the size of key
set. The following example gives a variant of the family in Example 8.37 that uses
somewhat a smaller key set (relative to the size of the input), but is only a universal
family, and not a pairwise independent family.

Example 8.39. Let p be a prime, and let ` be a positive integer. Let S := Z×(`+1)
p

and R := Z×`p . For each r = (r1, . . . , r`) ∈ R, we define the hash function

Φr : S → Zp
(s0, s1, . . . , s`) 7→ s0 + r1s1 + · · · + r`s`.

Our goal is to show that {Φr}r∈R is a universal family of hash functions from
S to Zp. So let s, s′ ∈ S with s 6= s′, and let H be a random variable that is
uniformly distributed overR. We want to show that P[ΦH(s) = ΦH(s′)] ≤ 1/p. Let
s = (s0, s1, . . . , s`) and s′ = (s′0, s′1, . . . , s′`), and set ŝi := s′i − si for i = 0, 1, . . . , `.
Let us define the function

ρ : R → Zp
(r1, . . . , r`) 7→ r1ŝ1 + · · · + r`ŝ`.

Clearly, ΦH(s) = ΦH(s′) if and only if ρ(H) = −ŝ0. Moreover, ρ is a group
homomorphism. There are two cases to consider. In the first case, ŝi = 0 for all
i = 1, . . . , `; in this case, the image of ρ is {0}, but ŝ0 6= 0 (since s 6= s′), and
so P[ρ(H) = −ŝ0] = 0. In the second case, ŝi 6= 0 for some i = 1, . . . , `; in
this case, the image of ρ is Zp, and so ρ(H) is uniformly distributed over Zp (see
Theorem 8.5); thus, P[ρ(H) = −ŝ0] = 1/p. 2

One can get significantly smaller key sets, if one is willing to relax the defini-
tions of universal and pairwise independence. Let {Φr}r∈R be a family of hash
functions from S to T , where m := |T |. Let H be a random variable that is
uniformly distributed over R. We say that {Φr}r∈R is ε-almost universal if for
all s, s′ ∈ S with s 6= s′, we have P[ΦH(s) = ΦH(s′)] ≤ ε. Thus, {Φr}r∈R is
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universal if and only if it is 1/m-almost universal. We say that {Φr}r∈R is ε-almost
strongly universal if ΦH(s) is uniformly distributed over T for each s ∈ S, and
P[(ΦH(s) = t) ∩ (ΦH(s′) = t′)] ≤ ε/m for all s, s′ ∈ S with s 6= s′ and all t, t′ ∈ T .
Constructions, properties, and applications of these types of hash functions are
developed in some of the exercises below.

EXERCISE 8.47. For each positive integer n, let In denote {0, . . . , n − 1}. Let m
be a power of a prime, ` be a positive integer, S := I×`m , and R := I

×(`+1)
m2 . For

each r = (r0, r1, . . . , r`) ∈ R, define the hash function

Φr : S → Im

(s1, . . . , s`) 7→
⌊(

(r0 + r1s1 + · · · + r`s`) mod m2
)

/

m
⌋

.

Using the result from Exercise 2.13, show that {Φr}r∈R is a pairwise independent
family of hash functions from S to Im. Note that on a typical computer, if m is a
suitable power of 2, then it is very easy to evaluate these hash functions, using just
multiplications, additions, shifts, and masks (no divisions).

EXERCISE 8.48. Let {Φr}r∈R be an ε-almost universal family of hash functions
from S to T . Also, let H,X,X′ be random variables, where H is uniformly dis-
tributed over R, and both X and X′ take values in S. Moreover, assume H and
(X,X′) are independent. Show that P[ΦH(X) = ΦH(X′)] ≤ P[X = X′] + ε.

EXERCISE 8.49. Let {Φr}r∈R be an ε-almost universal a family of hash functions
from S to T , and let H be a random variable that is uniformly distributed over R.
Let I be a subset of S of size n > 0. Let C be the event that ΦH(i) = ΦH(j)
for some i, j ∈ I with i 6= j. We define several random variables: for each
t ∈ T , Nt := |{i ∈ I : ΦH(i) = t}|; M := max{Nt : t ∈ T}; for each s ∈ S,
Ls := |{i ∈ I : ΦH(s) = ΦH(i)}|. Show that:

(a) P[C] ≤ εn(n − 1)/2;

(b) E[M] ≤
√

εn2 + n;

(c) for each s ∈ S, E[Ls] ≤ 1 + εn.

The results of the previous exercise show that for many applications, the ε-
almost universal property is good enough, provided ε is suitably small. The next
three exercises develop ε-almost universal families of hash functions with very
small sets of keys, even when ε is quite small.

EXERCISE 8.50. Let p be a prime, and let ` be a positive integer. Let S := Z×(`+1)
p .
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For each r ∈ Zp, define the hash function

Φr : S → Zp
(s0, s1, . . . , s`) 7→ s0 + s1r + · · · + s`r`.

Show that {Φr}r∈Zp is an `/p-almost universal family of hash functions from S to
Zp.

EXERCISE 8.51. Let {Φr}r∈R be an ε-almost universal family of hash functions
from S to T . Let {Φ′r′}r′∈R′ be an ε′-almost universal family of hash functions from
S ′ to T ′, where T ⊆ S ′. Show that

{Φ′r′ ◦ Φr}(r,r′)∈R×R′

is an (ε + ε′)-almost universal family of hash functions from S to T ′ (here, “◦”
denotes function composition).

EXERCISE 8.52. Let m and ` be positive integers, and let 0 < α < 1. Given these
parameters, show how to construct an ε-almost universal family of hash functions
{Φr}r∈R from Z×`m to Zm, such that

ε ≤ (1 + α)/m and log|R| = O(logm + log ` + log(1/α)).

Hint: use the previous two exercises, and Example 8.38.

EXERCISE 8.53. Let {Φr}r∈R be an ε-almost universal family of hash functions
from S to T . Show that ε ≥ 1/|T | − 1/|S|.

EXERCISE 8.54. Let {Φr}r∈R be a family of hash functions from S to T , with
m := |T |. Show that:

(a) if {Φr}r∈R is ε-almost strongly universal, then it is ε-almost universal;

(b) if {Φr}r∈R is pairwise independent, then it is 1/m-almost strongly univer-
sal;

(c) if {Φr}r∈R is ε-almost universal, and {Φ′r′}r′∈R′ is an ε′-almost strongly
universal family of hash functions from S ′ to T ′, where T ⊆ S ′, then
{Φ′r′ ◦Φr}(r,r′)∈R×R′ is an (ε+ ε′)-almost strongly universal family of hash
functions from S to T ′.

EXERCISE 8.55. Show that if an ε-almost strongly universal family of hash func-
tions is used in Example 8.35, then Bob gets fooled with probability at most ε.

EXERCISE 8.56. Show how to construct an ε-almost strongly universal family of
hash functions satisfying the same bounds as in Exercise 8.52, under the restriction
that m is a prime power.
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EXERCISE 8.57. Let p be a prime, and let ` be a positive integer. Let S := Z×`p
and R := Zp × Zp. For each (r0, r1) ∈ R, define the hash function

Φr : S → Zp
(s1, . . . , s`) 7→ r0 + s1r1 + · · · + s`r`1.

Show that {Φr}r∈R is an `/p-almost strongly universal family of hash functions
from S to Zp.

8.8 Statistical distance
This section discusses a useful measure of “distance” between two random vari-
ables. Although important in many applications, the results of this section (and the
next) will play only a very minor role in the remainder of the text.

Let X and Y be random variables which both take values in a finite set S. We
define the statistical distance between X and Y as

∆[X; Y] :=
1
2

∑

s∈S

∣

∣P[X = s] − P[Y = s]
∣

∣.

Theorem 8.30. For random variables X, Y,Z, we have

(i) 0 ≤ ∆[X; Y] ≤ 1,

(ii) ∆[X;X] = 0,

(iii) ∆[X; Y] = ∆[Y;X], and

(iv) ∆[X;Z] ≤ ∆[X; Y] + ∆[Y;Z].

Proof. Exercise. 2

It is also clear from the definition that ∆[X; Y] depends only on the distributions
of X and Y, and not on any other properties. As such, we may sometimes speak of
the statistical distance between two distributions, rather than between two random
variables.

Example 8.40. Suppose X has the uniform distribution on {1, . . . ,m}, and Y has
the uniform distribution on {1, . . . ,m − δ}, where δ ∈ {0, . . . ,m − 1}. Let us
compute ∆[X; Y]. We could apply the definition directly; however, consider the
following graph of the distributions of X and Y:
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m − δ m

1/m

1/(m − δ)
A

B C

0

The statistical distance between X and Y is just 1/2 times the area of regions A
and C in the diagram. Moreover, because probability distributions sum to 1, we
must have

area of B + area of A = 1 = area of B + area of C,

and hence, the areas of region A and region C are the same. Therefore,

∆[X; Y] = area of A = area of C = δ/m. 2

The following characterization of statistical distance is quite useful:

Theorem 8.31. Let X and Y be random variables taking values in a set S. For
every S ′ ⊆ S, we have

∆[X; Y] ≥ |P[X ∈ S ′] − P[Y ∈ S ′]|,

and equality holds for some S ′ ⊆ S, and in particular, for the set

S ′ := {s ∈ S : P[X = s] < P[Y = s]},

as well as its complement.

Proof. Suppose we split the set S into two disjoint subsets: the set S0 consisting
of those s ∈ S such that P[X = s] < P[Y = s], and the set S1 consisting of those
s ∈ S such that P[X = s] ≥ P[Y = s]. Consider the following rough graph of
the distributions of X and Y, where the elements of S0 are placed to the left of the
elements of S1:

Y

X
B

C

S1S0

A
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Now, as in Example 8.40,

∆[X; Y] = area of A = area of C.

Now consider any subset S ′ of S, and observe that

P[X ∈ S ′] − P[Y ∈ S ′] = area of C ′ − area of A′,

where C ′ is the subregion of C that lies above S ′, and A′ is the subregion of A that
lies above S ′. It follows that |P[X ∈ S ′] − P[Y ∈ S ′]| is maximized when S ′ = S0

or S ′ = S1, in which case it is equal to ∆[X; Y]. 2

We can restate Theorem 8.31 as follows:

∆[X; Y] = max{|P[φ(X)] − P[φ(Y)]| : φ is a predicate on S}.

This implies that when ∆[X; Y] is very small, then for every predicate φ, the events
φ(X) and φ(Y) occur with almost the same probability. Put another way, there is no
“statistical test” that can effectively distinguish between the distributions of X and
Y. For many applications, this means that the distribution of X is “for all practical
purposes” equivalent to that of Y, and hence in analyzing the behavior of X, we can
instead analyze the behavior of Y, if that is more convenient.

Theorem 8.32. If S and T are finite sets, X and Y are random variables taking
values in S, and f : S → T is a function, then ∆[f (X); f (Y)] ≤ ∆[X; Y].

Proof. We have

∆[f (X); f (Y)] = |P[f (X) ∈ T ′] − P[f (Y) ∈ T ′]| for some T ′ ⊆ T
(by Theorem 8.31)

= |P[X ∈ f−1(T ′)] − P[Y ∈ f−1(T ′)]|
≤ ∆[X; Y] (again by Theorem 8.31). 2

Example 8.41. Let X be uniformly distributed over the set {0, . . . ,m−1}, and let Y
be uniformly distributed over the set {0, . . . , n−1}, for n ≥ m. Let f (t) := t mod m.
We want to compute an upper bound on the statistical distance between X and f (Y).
We can do this as follows. Let n = qm − r, where 0 ≤ r < m, so that q = dn/me.
Also, let Z be uniformly distributed over {0, . . . , qm− 1}. Then f (Z) is uniformly
distributed over {0, . . . ,m−1}, since every element of {0, . . . ,m−1} has the same
number (namely, q) of pre-images under f which lie in the set {0, . . . , qm − 1}.
Since statistical distance depends only on the distributions of the random variables,
by the previous theorem, we have

∆[X; f (Y)] = ∆[f (Z); f (Y)] ≤ ∆[Z; Y],
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and as we saw in Example 8.40,

∆[Z; Y] = r/qm < 1/q ≤ m/n.

Therefore,

∆[X; f (Y)] < m/n. 2

We close this section with two useful theorems.

Theorem 8.33. Suppose X, Y, and Z are random variables, where X and Z are
independent, and Y and Z are independent. Then ∆[X,Z; Y,Z] = ∆[X, Y].

Note that ∆[X,Z; Y,Z] is shorthand for ∆[(X,Z); (Y,Z)].

Proof. Suppose X and Y take values in a finite set S, and Z takes values in a finite
set T . From the definition of statistical distance,

2∆[X,Z; Y,Z] =
∑

s,t

∣

∣P[(X = s) ∩ (Z = t)] − P[(Y = s) ∩ (Z = t)]
∣

∣

=
∑

s,t

∣

∣P[X = s] P[Z = t] − P[Y = s] P[Z = t]
∣

∣

(by independence)

=
∑

s,t

P[Z = t]
∣

∣P[X = s] − P[Y = s]
∣

∣

=
(

∑

t

P[Z = t]
)(

∑

s

∣

∣P[X = s] − P[Y = s]
∣

∣

)

= 1 · 2∆[X; Y]. 2

Theorem 8.34. Let X1, . . . ,Xn, Y1, . . . , Yn be random variables, where {Xi}ni=1 is
mutually independent, and {Yi}ni=1 is mutually independent. Then we have

∆[X1, . . . ,Xn; Y1, . . . , Yn] ≤
n
∑

i=1

∆[Xi; Yi].

Proof. Since ∆[X1, . . . ,Xn; Y1, . . . , Yn] depends only on the individual distributions
of the random variables (X1, . . . ,Xn) and (Y1, . . . , Yn), without loss of general-
ity, we may assume that (X1, . . . ,Xn) and (Y1, . . . , Yn) are independent, so that
X1, . . . ,Xn, Y1, . . . , Yn form a mutually independent family of random variables.
We introduce random variables Z0, . . . ,Zn, defined as follows:

Z0 := (X1, . . . ,Xn),

Zi := (Y1, . . . , Yi,Xi+1, . . . ,Xn) for i = 1, . . . , n − 1, and

Zn := (Y1, . . . , Yn).
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By definition, ∆[X1, . . . ,Xn; Y1, . . . , Yn] = ∆[Z0;Zn]. Moreover, by part (iv) of
Theorem 8.30, we have ∆[Z0;Zn] ≤

∑n
i=1 ∆[Zi−1;Zi]. Now consider any fixed

index i = 1, . . . , n. By Theorem 8.33, we have

∆[Zi−1;Zi] = ∆[ Xi, (Y1, . . . , Yi−1,Xi+1, . . . ,Xn);

Yi, (Y1, . . . , Yi−1,Xi+1, . . . ,Xn)]

= ∆[Xi; Yi].

The theorem now follows immediately. 2

The technique used in the proof of the previous theorem is sometimes called
a hybrid argument, as one considers the sequence of “hybrid” random variables
Z0,Z1, . . . ,Zn, and shows that the distance between each consecutive pair of vari-
ables is small.

EXERCISE 8.58. Let X and Y be independent random variables, each uniformly
distributed over Zp, where p is prime. Calculate ∆[X, Y;X,XY].

EXERCISE 8.59. Let n be an integer that is the product of two distinct primes of
the same bit length. Let X be uniformly distributed over Zn, and let Y be uniformly
distributed over Z∗n. Show that ∆[X; Y] ≤ 3n−1/2.

EXERCISE 8.60. Let X and Y be 0/1-valued random variables. Show that

∆[X; Y] = |P[X = 1] − P[Y = 1]|.

EXERCISE 8.61. Let S be a finite set, and consider any function φ : S → {0, 1}.
Let B be a random variable uniformly distributed over {0, 1}, and for b = 0, 1,
let Xb be a random variable taking values in S, and assume that Xb and B are
independent. Show that

|P[φ(XB) = B] − 1
2 | =

1
2 |P[φ(X0) = 1] − P[φ(X1) = 1]| ≤ 1

2∆[X0;X1].

EXERCISE 8.62. Let X, Y be random variables taking values in a finite set S. For
an event B that occurs with non-zero probability, define the conditional statistical
distance

∆[X; Y | B] :=
1
2

∑

s∈S

∣

∣P[X = s | B] − P[Y = s | B]
∣

∣.

Let {Bi}i∈I be a finite, pairwise disjoint family of events whose union is B. Show
that

∆[X; Y | B] P[B] ≤
∑

P[Bi]6=0

∆[X; Y | Bi] P[Bi].
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EXERCISE 8.63. Let {Φr}r∈R be a family of hash functions from S to T , with
m := |T |. We say {Φr}r∈R is ε-variationally universal if ΦH(s) is uniformly
distributed over T for each s ∈ S, and ∆[ΦH(s′); Y | ΦH(s) = t] ≤ ε for each
s, s′ ∈ S with s 6= s′ and each t ∈ T ; here, H and Y are independent random
variables, with H uniformly distributed over R, and Y uniformly distributed over
T . Show that:

(a) if {Φr}r∈R is pairwise independent, then it is 0-variationally universal;

(b) if {Φr}r∈R is ε-variationally universal, then it is (1/m+ ε)-almost strongly
universal;

(c) if {Φr}r∈R is ε-almost universal, and {Φ′r′}r′∈R′ is an ε′-variationally uni-
versal family of hash functions from S ′ to T ′, where T ⊆ S ′, then
{Φ′r′ ◦ Φr}(r,r′)∈R×R′ is an (ε + ε′)-variationally universal family of hash
functions from S to T ′.

EXERCISE 8.64. Let {Φr}r∈R be a family hash functions from S to T such that
(i) each Φr maps S injectively into T , and (ii) there exists ε ∈ [0, 1] such that
∆[ΦH(s);ΦH(s′)] ≤ ε for all s, s′ ∈ S, where H is uniformly distributed over R.
Show that |R| ≥ (1 − ε)|S|.

EXERCISE 8.65. Let X and Y be random variables that take the same value
unless a certain event F occurs (i.e., X(ω) = Y(ω) for all ω ∈ F ). Show that
∆[X; Y] ≤ P[F].

EXERCISE 8.66. Let X and Y be random variables taking values in the interval
[0, t]. Show that |E[X] − E[Y]| ≤ t · ∆[X; Y].

EXERCISE 8.67. Show that Theorem 8.33 is not true if we drop the independence
assumptions.

EXERCISE 8.68. Let S be a set of size m ≥ 1. Let F be a random variable that
is uniformly distributed over the set of all functions from S into S. Let G be a
random variable that is uniformly distributed over the set of all permutations of S.
Let s1, . . . , sn be distinct, fixed elements of S. Show that

∆[F(s1), . . . , F(sn);G(s1), . . . ,G(sn)] ≤
n(n − 1)

2m
.

EXERCISE 8.69. Let m be a large integer. Consider three random experiments. In
the first, we generate a random integer X1 between 1 andm, and then a random inte-
ger Y1 between 1 and X1. In the second, we generate a random integer X2 between
2 and m, and then generate a random integer Y2 between 1 and X2. In the third,
we generate a random integer X3 between 2 and m, and then a random integer Y3
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between 2 and X3. Show that ∆[X1, Y1;X2, Y2] = O(1/m) and ∆[X2, Y2;X3, Y3] =
O(logm/m), and conclude that ∆[X1, Y1;X3, Y3] = O(logm/m).

8.9 Measures of randomness and the leftover hash lemma (∗)
In this section, we discuss different ways to measure “how random” the distribution
of a random variable is, and relations among them.

Let X be a random variable taking values in a finite set S of size m. We define
three measures of randomness:

1. the collision probability of X is
∑

s∈S P[X = s]2;

2. the guessing probability of X is max{P[X = s] : s ∈ S};
3. the distance of X from uniform on S is 1

2

∑

s∈S |P[X = s] − 1/m|.
Suppose X has collision probability β, guessing probability γ, and distance δ

from uniform on S. If X′ is another random variable with the same distribution
as X, where X and X′ independent, then β = P[X = X′] (see Exercise 8.37). If Y
is a random variable that is uniformly distributed over S, then δ = ∆[X; Y]. If X
itself is uniformly distributed over S, then β = γ = 1/m, and δ = 0. The quantity
log2(1/γ) is sometimes called the min entropy of X, and the quantity log2(1/β) is
sometimes called the Renyi entropy of X.

We first state some easy inequalities:

Theorem 8.35. Suppose X is a random variable that takes values in a finite set S
of size m. If X has collision probability β, guessing probability γ, and distance δ
from uniform on S, then:

(i) β ≥ 1/m;

(ii) γ2 ≤ β ≤ γ ≤ 1/m + δ.

Proof. Part (i) is immediate from Exercise 8.37. The other inequalities are left as
easy exercises. 2

This theorem implies that the collision and guessing probabilities are minimal
for the uniform distribution, which perhaps agrees with one’s intuition.

While the above theorem implies that β and γ are close to 1/m when δ is small,
the following theorem provides a converse:

Theorem 8.36. Suppose X is a random variable that takes values in a finite set S
of size m. If X has collision probability β, and distance δ from uniform on S, then
δ ≤ 1

2

√

mβ − 1.

Proof. We may assume that δ > 0, since otherwise the theorem is already true,
simply from the fact that β ≥ 1/m.
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For s ∈ S, let ps := P[X = s]. We have δ = 1
2

∑

s|ps − 1/m|, and hence
1 =

∑

s qs, where qs := |ps − 1/m|/2δ. So we have

1
m
≤
∑

s

q2
s (by Exercise 8.36)

=
1

4δ2

∑

s

(ps − 1/m)2

=
1

4δ2

(

∑

s

p2
s − 1/m

)

(again by Exercise 8.36)

=
1

4δ2
(β − 1/m),

from which the theorem follows immediately. 2

We are now in a position to state and prove a very useful result which, intuitively,
allows us to convert a “low quality” source of randomness into a “high quality”
source of randomness, making use of an almost universal family of hash functions
(see end of §8.7).

Theorem 8.37 (Leftover hash lemma). Let {Φr}r∈R be a (1 + α)/m-almost uni-
versal family of hash functions from S to T , where m := |T |. Let H and X be
independent random variables, where H is uniformly distributed over R, and X

takes values in S. If β is the collision probability of X, and δ′ is the distance of
(H,ΦH(X)) from uniform on R × T , then δ′ ≤ 1

2

√

mβ + α.

Proof. Let β′ be the collision probability of (H,ΦH(X)). Our goal is to bound β′

from above, and then apply Theorem 8.36 to the random variable (H,ΦH(X)). To
this end, let ` := |R|, and suppose H′ and X′ are random variables, where H′ has
the same distribution as H, X′ has the same distribution as X, and H,H′,X,X′ form
a mutually independent family of random variables. Then we have

β′ = P[(H = H′) ∩ (ΦH(X) = ΦH′ (X′))]

= P[(H = H′) ∩ (ΦH(X) = ΦH(X′))]

=
1
`

P[ΦH(X) = ΦH(X′)] (a special case of Exercise 8.15)

≤
1
`

(P[X = X′] + (1 + α)/m) (by Exercise 8.48)

=
1
`m

(mβ + 1 + α).

The theorem now follows immediately from Theorem 8.36. 2

In the previous theorem, if {Φr}r∈R is a universal family of hash functions, then
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we can take α = 0. However, it is convenient to allow α > 0, as this allows for the
use of families with a smaller key set (see Exercise 8.52).

Example 8.42. Suppose S := {0, 1}×1000, T := {0, 1}×64, and that {Φr}r∈R is
a universal family of hash functions from S to T . Suppose X and H are inde-
pendent random variables, where X is uniformly distributed over some subset S ′

of S of size ≥ 2160, and H is uniformly distributed over R. Then the collision and
guessing probabilities of X are at most 2−160, and so the leftover hash lemma (with
α = 0) says that the distance of (H,ΦH(X)) from uniform on R × T is δ′, where
δ′ ≤ 1

2

√

2642−160 = 2−49. By Theorem 8.32, it follows that the distance of ΦH(X)
from uniform on T is at most δ′ ≤ 2−49. 2

The leftover hash lemma allows one to convert “low quality” sources of ran-
domness into “high quality” sources of randomness. Suppose that to conduct an
experiment, we need to sample a random variable Y whose distribution is uniform
on a set T of size m, or at least, its distance from uniform on T is sufficiently small.
However, we may not have direct access to a source of “real” randomness whose
distribution looks anything like that of the desired uniform distribution, but rather,
only to a “low quality” source of randomness. For example, one could model
various characteristics of a person’s typing at the keyboard, or perhaps various
characteristics of the internal state of a computer (both its software and hardware)
as a random process. We cannot say very much about the probability distribu-
tions associated with such processes, but perhaps we can conservatively estimate
the collision or guessing probabilities associated with these distributions. Using
the leftover hash lemma, we can hash the output of this random process, using
a suitably generated random hash function. The hash function acts like a “mag-
nifying glass”: it “focuses” the randomness inherent in the “low quality” source
distribution onto the set T , obtaining a “high quality,” nearly uniform, distribution
on T .

Of course, this approach requires a random hash function, which may be just as
difficult to generate as a random element of T . The following theorem shows, how-
ever, that we can at least use the same “magnifying glass” many times over, with
the statistical distance from uniform of the output distribution increasing linearly
in the number of applications of the hash function.

Theorem 8.38. Let {Φr}r∈R be a (1 + α)/m-almost universal family of hash
functions from S to T , where m := |T |. Let H,X1, . . . ,Xn be random vari-
ables, where H is uniformly distributed over R, each Xi takes values in S, and
H,X1, . . . ,Xn form a mutually independent family of random variables. If β is
an upper bound on the collision probability of each Xi, and δ′ is the distance of
(H,ΦH(X1), . . . ,ΦH(Xn)) from uniform on R × T×n, then δ′ ≤ 1

2n
√

mβ + α.



8.9 Measures of randomness and the leftover hash lemma (∗) 269

Proof. Let Y1, . . . , Yn be random variables, each uniformly distributed over T , and
assume that H,X1, . . . ,Xn, Y1, . . . , Yn form a mutually independent family of ran-
dom variables. We shall make a hybrid argument (as in the proof of Theorem 8.34).
Define random variables Z0,Z1, . . . ,Zn as follows:

Z0 := (H,ΦH(X1), . . . ,ΦH(Xn)),

Zi := (H, Y1, . . . , Yi,ΦH(Xi+1), . . . ,ΦH(Xn)) for i = 1, . . . , n − 1, and

Zn := (H, Y1, . . . , Yn).

We have

δ′ = ∆[Z0;Zn]

≤
n
∑

i=1

∆[Zi−1;Zi] (by part (iv) of Theorem 8.30)

≤
n
∑

i=1

∆[ H, Y1, . . . , Yi−1,ΦH(Xi),Xi+1, . . . ,Xn;

H, Y1, . . . , Yi−1, Yi, Xi+1, . . . ,Xn ]

(by Theorem 8.32)

=
n
∑

i=1

∆[H,ΦH(Xi);H, Yi] (by Theorem 8.33)

≤ 1
2n
√

mβ + α (by Theorem 8.37). 2

Another source of “low quality” randomness arises in certain cryptographic
applications, where we have a “secret value” X, which is a random variable that
takes values in a set S, and which has small collision or guessing probability. We
want to derive from X a “secret key” whose distance from uniform on some speci-
fied “key space” T is small. Typically, T is the set of all bit strings of some given
length, as in Example 8.25. Theorem 8.38 allows us to do this using a “public”
hash function—generated at random once and for all, published for all to see, and
used over and over to derive secret keys as needed. However, to apply this theorem,
it is crucial that the secret values (and the hash key) are mutually independent.

EXERCISE 8.70. Consider again the situation in Theorem 8.37. Suppose that
T = {0, . . . ,m − 1}, but that we would rather have a nearly uniform distribution
on T ′ = {0, . . . ,m′ − 1}, for some m′ < m. While it may be possible to work with
a different family of hash functions, we do not have to if m is large enough with
respect to m′, in which case we can just use the value Y ′ := ΦH(X) mod m′. Show
that the distance of (H, Y ′) from uniform on R × T ′ is at most 1

2

√

mβ + α + m′/m.



270 Finite and discrete probability distributions

EXERCISE 8.71. Let {Φr}r∈R be a (1 + α)/m-almost universal family of hash
functions from S to T , where m := |T |. Suppose H,X, Y,Z are random variables,
where H is uniformly distributed over R, X takes values in S, Y is uniformly dis-
tributed over T , and U is the set of values taken by Z with non-zero probability.
Assume that the family of random variables H, Y, (X,Z) is mutually independent.

(a) For u ∈ U , define β(u) :=
∑

s∈S P[X = s | Z = u]2. Also, let β′ :=
∑

u∈U β(u) P[Z = u]. Show that ∆[H,ΦH(X),Z;H, Y,Z] ≤ 1
2

√

mβ′ + α.

(b) Suppose that X is uniformly distributed over a subset S ′ of S, and that Z =
f (X) for some function f : S → U . Show that ∆[H,ΦH(X),Z;H, Y,Z] ≤
1
2

√

m|U |/|S ′| + α.

8.10 Discrete probability distributions
In addition to working with probability distributions over finite sample spaces, one
can also work with distributions over infinite sample spaces. If the sample space is
countable, that is, either finite or countably infinite (see §A3), then the distribution
is called a discrete probability distribution. We shall not consider any other types
of probability distributions in this text. The theory developed in §§8.1–8.5 extends
fairly easily to the countably infinite setting, and in this section, we discuss how
this is done.

8.10.1 Basic definitions
To say that the sample space Ω is countably infinite simply means that there is a
bijection f from the set of positive integers onto Ω; thus, we can enumerate the
elements of Ω as ω1,ω2,ω3, . . . , where ωi := f (i).

As in the finite case, a probability distribution onΩ is a function P :Ω→ [0, 1],
where all the probabilities sum to 1, which means that the infinite series

∑∞
i=1 P(ωi)

converges to one. Luckily, the convergence properties of an infinite series whose
terms are all non-negative is invariant under a reordering of terms (see §A6), so it
does not matter how we enumerate the elements of Ω.

Example 8.43. Suppose we toss a fair coin repeatedly until it comes up heads, and
let k be the total number of tosses. We can model this experiment as a discrete
probability distribution P, where the sample space consists of the set of all positive
integers: for each positive integer k, P(k) := 2−k. We can check that indeed
∑∞
k=1 2−k = 1, as required.
One may be tempted to model this experiment by setting up a probability dis-

tribution on the sample space of all infinite sequences of coin tosses; however,
this sample space is not countably infinite, and so we cannot construct a discrete
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probability distribution on this space. While it is possible to extend the notion of a
probability distribution to such spaces, this would take us too far afield. 2

Example 8.44. More generally, suppose we repeatedly execute a Bernoulli trial
until it succeeds, where each execution succeeds with probability p > 0 independ-
ently of the previous trials, and let k be the total number of trials executed. Then
we associate the probability P(k) := qk−1p with each positive integer k, where
q := 1 − p, since we have k − 1 failures before the one success. One can easily
check that these probabilities sum to 1. Such a distribution is called a geometric
distribution. 2

Example 8.45. The series
∑∞
k=1 1/k3 converges to some positive number c. There-

fore, we can define a probability distribution on the set of positive integers, where
we associate with each k ≥ 1 the probability 1/ck3. 2

As in the finite case, an event is an arbitrary subsetA ofΩ. The probability P[A]
of A is defined as the sum of the probabilities associated with the elements of A.
This sum is treated as an infinite series whenA is infinite. This series is guaranteed
to converge, and its value does not depend on the particular enumeration of the
elements ofA.

Example 8.46. Consider the geometric distribution discussed in Example 8.44,
where p is the success probability of each Bernoulli trial, and q := 1 − p. For a
given integer i ≥ 1, consider the event A that the number of trials executed is at
least i. Formally, A is the set of all integers greater than or equal to i. Intuitively,
P[A] should be qi−1, since we perform at least i trials if and only if the first i − 1
trials fail. Just to be sure, we can compute

P[A] =
∑

k≥i

P(k) =
∑

k≥i

qk−1p = qi−1p
∑

k≥0

qk = qi−1p ·
1

1 − q
= qi−1. 2

It is an easy matter to check that all the statements and theorems in §8.1 carry
over verbatim to the case of countably infinite sample spaces. Moreover, Boole’s
inequality (8.6) and equality (8.7) are also valid for countably infinite families of
events:

Theorem 8.39. Suppose A :=
⋃∞
i=1Ai, where {Ai}∞i=1 is an infinite sequence of

events. Then

(i) P[A] ≤
∑∞
i=1 P[Ai], and

(ii) P[A] =
∑∞
i=1 P[Ai] if {Ai}∞i=1 is pairwise disjoint.

Proof. As in the proof of Theorem 8.1, for ω ∈ Ω and B ⊆ Ω, define δω[B] := 1 if
ω ∈ B, and δω[B] := 0 if ω /∈ B. First, suppose that {Ai}∞i=1 is pairwise disjoint.
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Evidently, δω[A] =
∑∞
i=1 δω[Ai] for each ω ∈ Ω, and so

P[A] =
∑

ω∈Ω

P(ω)δω[A] =
∑

ω∈Ω

P(ω)
∞
∑

i=1

δω[Ai]

=
∞
∑

i=1

∑

ω∈Ω

P(ω)δω[Ai] =
∞
∑

i=1

P[Ai],

where we use the fact that we may reverse the order of summation in an infinite
double summation of non-negative terms (see §A7). That proves (ii), and (i) fol-
lows from (ii), applied to the sequence {A′i}

∞
i=1, where A′i := Ai \

⋃i−1
j=1Ai, as

P[A] =
∑∞
i=1 P[A′i] ≤

∑∞
i=1 P[Ai]. 2

8.10.2 Conditional probability and independence
All of the definitions and results in §8.2 carry over verbatim to the countably
infinite case. The law of total probability (equations (8.9) and (8.10)), as well
as Bayes’ theorem (8.11), extend to families of events {Bi}i∈I indexed by any
countably infinite set I . The definitions of independent families of events (k-wise
and mutually) extend verbatim to infinite families.

8.10.3 Random variables
All of the definitions and results in §8.3 carry over verbatim to the countably infi-
nite case. Note that the image of a random variable may be either finite or countably
infinite. The definitions of independent families of random variables (k-wise and
mutually) extend verbatim to infinite families.

8.10.4 Expectation and variance
We define the expected value of a real-valued random variable X exactly as in
(8.18); that is, E[X] :=

∑

ω X(ω) P(ω), but where this sum is now an infinite
series. If this series converges absolutely (see §A6), then we say that X has finite
expectation, or that E[X] is finite. In this case, the series defining E[X] converges
to the same finite limit, regardless of the ordering of the terms.

If E[X] is not finite, then under the right conditions, E[X] may still exist, although
its value will be ±∞. Consider first the case where X takes only non-negative
values. In this case, if E[X] is not finite, then we naturally define E[X] :=∞, as the
series defining E[X] diverges to ∞, regardless of the ordering of the terms. In the
general case, we may define random variables X+ and X−, where

X+(ω) := max{0,X(ω)} and X−(ω) := max{0,−X(ω)},
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so that X = X+ − X−, and both X+ and X− take only non-negative values. Clearly,
X has finite expectation if and only if both X+ and X− have finite expectation.
Now suppose that E[X] is not finite, so that one of E[X+] or E[X−] is infinite. If
E[X+] = E[X−] = ∞, then we say that E[X] does not exist; otherwise, we define
E[X] := E[X+]−E[X−], which is±∞; in this case, the series defining E[X] diverges
to ±∞, regardless of the ordering of the terms.

Example 8.47. Let X be a random variable whose distribution is as in Exam-
ple 8.45. Since the series

∑∞
k=1 1/k2 converges and the series

∑∞
k=1 1/k diverges,

the expectation E[X] is finite, while E[X2] = ∞. One may also verify that the
random variable (−1)XX2 has no expectation. 2

All of the results in §8.4 carry over essentially unchanged, although one must
pay some attention to “convergence issues.”

If E[X] exists, then we can regroup the terms in the series
∑

ω X(ω) P(ω), with-
out affecting its value. In particular, equation (8.19) holds provided E[X] exists,
and equation (8.20) holds provided E[f (X)] exists.

Theorem 8.14 still holds, under the additional hypothesis that E[X] and E[Y] are
finite. Equation (8.21) also holds, provided the individual expectations E[Xi] are
finite. More generally, if E[X] and E[Y] exist, then E[X+ Y] = E[X]+E[Y], unless
E[X] = ∞ and E[Y] = −∞, or E[X] = −∞ and E[Y] = ∞. Also, if E[X] exists,
then E[aX] = aE[X], unless a = 0 and E[X] = ±∞.

One might consider generalizing (8.21) to countably infinite families of ran-
dom variables. To this end, suppose {Xi}∞i=1 is an infinite sequence of real-valued
random variables. The random variable X :=

∑∞
i=1 Xi is well defined, provided

the series
∑∞
i=1 Xi(ω) converges for each ω ∈ Ω. One might hope that E[X] =

∑∞
i=1 E[Xi]; however, this is not in general true, even if the individual expectations,

E[Xi], are non-negative, and even if the series defining X converges absolutely for
each ω; nevertheless, it is true when the Xi’s are non-negative:

Theorem 8.40. Let {Xi}∞i=1 be an infinite sequence of random variables. Suppose
that for each i ≥ 1, Xi takes non-negative values only, and has finite expectation.
Also suppose that

∑∞
i=1 Xi(ω) converges for each ω ∈ Ω, and define X :=

∑∞
i=1 Xi.

Then we have

E[X] =
∞
∑

i=1

E[Xi].

Proof. This is a calculation just like the one made in the proof of Theorem 8.39,
where, again, we use the fact that we may reverse the order of summation in an
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infinite double summation of non-negative terms:

E[X] =
∑

ω∈Ω

P(ω)X(ω) =
∑

ω∈Ω

P(ω)
∞
∑

i=1

Xi(ω)

=
∞
∑

i=1

∑

ω∈Ω

P(ω)Xi(ω) =
∞
∑

i=1

E[Xi]. 2

Theorem 8.15 holds under the additional hypothesis that E[X] and E[Y] are finite.
Equation (8.22) also holds, provided the individual expectations E[Xi] are finite.
Theorem 8.16 still holds, of course. Theorem 8.17 also holds, but where now the
sum may be infinite; it can be proved using essentially the same argument as in the
finite case, combined with Theorem 8.40.

Example 8.48. Suppose X is a random variable with a geometric distribution, as
in Example 8.44, with an associated success probability p and failure probabil-
ity q := 1 − p. As we saw in Example 8.46, for every integer i ≥ 1, we have
P[X ≥ i] = qi−1. We may therefore apply the infinite version of Theorem 8.17 to
easily compute the expected value of X:

E[X] =
∞
∑

i=1

P[X ≥ i] =
∞
∑

i=1

qi−1 =
1

1 − q
=

1
p

. 2

Example 8.49. To illustrate that Theorem 8.40 does not hold in general, consider
the geometric distribution on the positive integers, where P(j) = 2−j for j ≥ 1.
For i ≥ 1, define the random variable Xi so that Xi(i) = 2i, Xi(i + 1) = −2i+1,
and Xi(j) = 0 for all j /∈ {i, i + 1}. Then E[Xi] = 0 for all i ≥ 1, and so
∑

i≥1 E[Xi] = 0. Now define X :=
∑

i≥1 Xi. This is well defined, and in fact
X(1) = 2, while X(j) = 0 for all j > 1. Hence E[X] = 1. 2

The variance Var[X] of X exists only when µ := E[X] is finite, in which case
it is defined as usual as E[(X − µ)2], which may be either finite or infinite. Theo-
rems 8.18, 8.19, and 8.20 hold provided all the relevant expectations and variances
are finite.

The definition of conditional expectation carries over verbatim. Equation (8.23)
holds, provided E[X | B] exists, and the law of total expectation (8.24) holds, pro-
vided E[X] exists. The law of total expectation also holds for a countably infinite
partition {Bi}i∈I , provided E[X] exists, and each of the conditional expectations
E[X | Bi] is finite.
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8.10.5 Some useful bounds
All of the results in this section hold, provided the relevant expectations and vari-
ances are finite.

EXERCISE 8.72. Let {Ai}∞i=1 be a family of events, such thatAi ⊆ Ai+1 for each
i ≥ 1, and letA :=

⋃∞
i=1Ai. Show that P[A] = limi→∞ P[Ai].

EXERCISE 8.73. Generalize Exercises 8.6, 8.7, 8.23, and 8.24 to the discrete set-
ting, allowing a countably infinite index set I .

EXERCISE 8.74. Suppose X is a random variable taking positive integer values,
and that for some real number q, with 0 ≤ q ≤ 1, and for all integers i ≥ 1, we
have P[X ≥ i] = qi−1. Show that X has a geometric distribution with associated
success probability p := 1 − q.

EXERCISE 8.75. This exercise extends Jensen’s inequality (see Exercise 8.25) to
the discrete setting. Suppose that f is a convex function on an interval I . Let X
be a random variable whose image is a countably infinite subset of I , and assume
that both E[X] and E[f (X)] are finite. Show that E[f (X)] ≥ f (E[X]). Hint: use
continuity.

EXERCISE 8.76. A gambler plays a simple game in a casino: with each play of
the game, the gambler may bet any number m of dollars; a fair coin is tossed, and
if it comes up heads, the casino pays m dollars to the gambler, and otherwise, the
gambler pays m dollars to the casino. The gambler plays the game repeatedly,
using the following strategy: he initially bets a dollar, and with each subsequent
play, he doubles his bet; if he ever wins, he quits and goes home; if he runs out of
money, he also goes home; otherwise, he plays again. Show that if the gambler has
an infinite amount of money, then his expected winnings are one dollar, and if he
has a finite amount of money, his expected winnings are zero.

8.11 Notes
The idea of sharing a secret via polynomial evaluation and interpolation (see Exam-
ple 8.28) is due to Shamir [90].

Our Chernoff bound (Theorem 8.24) is one of a number of different types of
bounds that appear in the literature under the rubric of “Chernoff bound.”

Universal and pairwise independent hash functions, with applications to hash
tables and message authentication codes, were introduced by Carter and Weg-
man [25, 105]. The notions of ε-almost universal and ε-almost strongly universal
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hashing were developed by Stinson [101]. The notion of ε-variationally universal
hashing (see Exercise 8.63) is from Krovetz and Rogaway [57].

The leftover hash lemma (Theorem 8.37) was originally stated and proved by
Impagliazzo, Levin, and Luby [48], who use it to obtain an important result in the
theory of cryptography. Our proof of the leftover hash lemma is loosely based on
one by Impagliazzo and Zuckermann [49], who also present further applications.


	Shoup08ComputationalIntroNumberTheoryAlgebra.pdf
	Title
	Contents
	Preface
	Preliminaries
	1 Basic properties of the integers
	1.1 Divisibility and primality
	1.2 Ideals and greatest common divisors
	1.3 Some consequences of unique factorization

	2 Congruences
	2.1 Equivalence relations
	2.2 Definitions and basic properties of congruences
	2.3 Solving linear congruences
	2.4 The Chinese remainder theorem
	2.5 Residue classes
	2.6 Euler's phi function
	2.7 Euler's theorem and Fermat's little theorem
	2.8 Quadratic residues
	2.9 Summations over divisors

	3 Computing with large integers
	3.1 Asymptotic notation
	3.2 Machine models and complexity theory
	3.3 Basic integer arithmetic
	3.4 Computing in Zn
	3.5 Faster integer arithmetic (*)
	3.6 Notes

	4 Euclid's algorithm
	4.1 The basic Euclidean algorithm
	4.2 The extended Euclidean algorithm
	4.3 Computing modular inverses and Chinese remaindering
	4.4 Speeding up algorithms via modular computation
	4.5 An effective version of Fermat's two squares theorem
	4.6 Rational reconstruction and applications
	4.7 The RSA cryptosystem
	4.8 Notes

	5 The distribution of primes
	5.1 Chebyshev's theorem on the density of primes
	5.2 Bertrand's postulate
	5.3 Mertens' theorem
	5.4 The sieve of Eratosthenes
	5.5 The prime number theorem …and beyond
	5.6 Notes

	6 Abelian groups
	6.1 Definitions, basic properties, and examples
	6.2 Subgroups
	6.3 Cosets and quotient groups
	6.4 Group homomorphisms and isomorphisms
	6.5 Cyclic groups
	6.6 The structure of finite abelian groups (*)

	7 Rings
	7.1 Definitions, basic properties, and examples
	7.2 Polynomial rings
	7.3 Ideals and quotient rings
	7.4 Ring homomorphisms and isomorphisms
	7.5 The structure of Zn*

	8 Finite and discrete probability distributions
	8.1 Basic definitions
	8.2 Conditional probability and independence
	8.3 Random variables
	8.4 Expectation and variance
	8.5 Some useful bounds
	8.6 Balls and bins
	8.7 Hash functions
	8.8 Statistical distance
	8.9 Measures of randomness and the leftover hash lemma (*)
	8.10 Discrete probability distributions
	8.11 Notes

	9 Probabilistic algorithms
	9.1 Basic definitions
	9.2 Generating a random number from a given interval
	9.3 The generate and test paradigm
	9.4 Generating a random prime
	9.5 Generating a random non-increasing sequence
	9.6 Generating a random factored number
	9.7 Some complexity theory
	9.8 Notes

	10 Probabilistic primality testing
	10.1 Trial division
	10.2 The Miller--Rabin test
	10.3 Generating random primes using the Miller--Rabin test
	10.4 Factoring and computing Euler's phi function
	10.5 Notes

	11 Finding generators and discrete logarithms in Zp*
	11.1 Finding a generator for Zp*
	11.2 Computing discrete logarithms in Zp*
	11.3 The Diffie--Hellman key establishment protocol
	11.4 Notes

	12 Quadratic reciprocity and computing modular square roots
	12.1 The Legendre symbol
	12.2 The Jacobi symbol
	12.3 Computing the Jacobi symbol
	12.4 Testing quadratic residuosity
	12.5 Computing modular square roots
	12.6 The quadratic residuosity assumption
	12.7 Notes

	13 Modules and vector spaces
	13.1 Definitions, basic properties, and examples
	13.2 Submodules and quotient modules
	13.3 Module homomorphisms and isomorphisms
	13.4 Linear independence and bases
	13.5 Vector spaces and dimension

	14 Matrices
	14.1 Basic definitions and properties
	14.2 Matrices and linear maps
	14.3 The inverse of a matrix
	14.4 Gaussian elimination
	14.5 Applications of Gaussian elimination
	14.6 Notes

	15 Subexponential-time discrete logarithms and factoring
	15.1 Smooth numbers
	15.2 An algorithm for discrete logarithms
	15.3 An algorithm for factoring integers
	15.4 Practical improvements
	15.5 Notes

	16 More rings
	16.1 Algebras
	16.2 The field of fractions of an integral domain
	16.3 Unique factorization of polynomials
	16.4 Polynomial congruences
	16.5 Minimal polynomials
	16.6 General properties of extension fields
	16.7 Formal derivatives
	16.8 Formal power series and Laurent series
	16.9 Unique factorization domains (*)
	16.10 Notes

	17 Polynomial arithmetic and applications
	17.1 Basic arithmetic
	17.2 Computing minimal polynomials in F[X]/(f) (I)
	17.3 Euclid's algorithm
	17.4 Computing modular inverses and Chinese remaindering
	17.5 Rational function reconstruction and applications
	17.6 Faster polynomial arithmetic (*)
	17.7 Notes

	18 Linearly generated sequences and applications
	18.1 Basic definitions and properties
	18.2 Computing minimal polynomials: a special case
	18.3 Computing minimal polynomials: a more general case
	18.4 Solving sparse linear systems
	18.5 Computing minimal polynomials in F[X]/(f) (II)
	18.6 The algebra of linear transformations (*)
	18.7 Notes

	19 Finite fields
	19.1 Preliminaries
	19.2 The existence of finite fields
	19.3 The subfield structure and uniqueness of finite fields
	19.4 Conjugates, norms and traces

	20 Algorithms for finite fields
	20.1 Tests for and constructing irreducible polynomials
	20.2 Computing minimal polynomials in F[X]/(f) (III)
	20.3 Factoring polynomials: square-free decomposition
	20.4 Factoring polynomials: the Cantor--Zassenhaus algorithm
	20.5 Factoring polynomials: Berlekamp's algorithm
	20.6 Deterministic factorization algorithms (*)
	20.7 Notes

	21 Deterministic primality testing
	21.1 The basic idea
	21.2 The algorithm and its analysis
	21.3 Notes

	Appendix: Some useful facts
	Bibliography
	Index of notation
	Index


