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1 Basic Definition

Now we get into the exotic models. Say that there are k players who want to compute a
function f : ({−1,+1}n)k → {−1,+1}. To make things interesting, on input (x1, . . . , xk)
player i is given (x1, . . . , xi−1, xi+1, . . . , xk). That is, player i knows everything except xi,
which is figuratively written on his forehead. How much communication is needed to compute
f correctly (or with high probability) on every input in this case? Usually it is assumed that
messages are written “on the blackboard”, that is that every player sees every message. The
cost is the total number of bits written on the blackboard for the worst case input.

The overlap in information between the players is what makes showing lower bounds in
this model very challenging. We want to show lower bounds not just because it is difficult
but because there are a wealth of applications. Let’s see one of these first to motivate the
model.

2 Application to circuit complexity

One of the principal motivations for studying multiparty number-on-the-forehead communi-
cation complexity is that lower bounds in this model imply circuit complexity lower bounds.
A key observation in this connection is due to H̊astad and Goldmann.

Lemma 1 (H̊astad and Goldmann [HG91]). Suppose that a function f can be computed by
a depth-2 circuit whose top gate is an arbitrary symmetric function of fan-in s and whose
bottom gates compute arbitrary functions of fan-in at most k− 1. Then, under any partition
of the input variables, the k-party number-on-the-forehead complexity of f is at most k log(s).
Furthermore, this can be achieved by a simultaneous protocol.

Proof. As each bottom gate has fan-in at most k − 1, under any partition of the input vari-
ables, there is some player who sees the entire input to this gate. By a scheme arranged
beforehand, the players partition these gates among themselves so that each gate is com-
puted by some player. Each player then announces the number of gates assigned to him
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which evaluate to true. This takes log s bits of communication. Once the players know
the total number of bottom gates which evaluate to true, they can compute f . The total
communication is k log(s).

Functions that can be computed by quasipolynomial size depth-2 circuits with a sym-
metric top gate and bottom gates of polylogarithmic size fan-in is a surprisingly rich class.
Indeed, Allender [All89] shows that this class can compute all of AC0. Further work by Yao
[Yao90] shows that the probabilistic version of this class can compute all of ACC0 and Beigel
and Tarui [BT94] improve this to a deterministic simulation. We record this statement for
reference.

Theorem 2 (Beigel and Tarui). Any language in ACC0 can be computed by a depth-2 circuit

of size 2logO(1)(n) with a symmetric gate at the top and AND gates of fan-in logO(1) n at the
bottom.

As a consequence, showing that a function f requires super-polylogarithmic communi-
cation for super-polylogarithmic many players in the simultaneous number-on-the-forehead
model will show that f is not in ACC0. A recent major result showed that NEXP is not
contained in ACC0 [Wil11]. This was not shown via NOF communication complexity.

3 Grolmusz Protocol

The best lower bounds for explicit functions we have are of the form n/2k. For example for
the Generalized Inner Product Function

GIPk(x1, . . . , xk) =
⊕

(x1 ∧ · · · ∧ xk)

we have a lower bound of Ω(n/22k) as shown in the seminal paper of Babai, Nisan, and
Szegedy [BNS92]. In fact this lower bound is nearly tight, as shown by a very cool protocol
of Grolmusz [Gro94].

Let f : {0, 1}n → {0, 1} be a symmetric function. In other words, f(x) = f(y) whenever
x and y have the same number of ones. Let x1, . . . , xk ∈ {0, 1}n be the inputs to the k-
players. We will think of the input as being described by a k-by-n matrix X whose ith row
is xi. The key step in the protocol of Grolmusz is the following lemma:

Lemma 3 (Grolmusz [Gro94]). Let f be a symmetric function. Suppose the players know
that some string r ∈ {0, 1}k does not appear in the input matrix X. Then they can evaluate
f(x1 ∧ . . . ∧ xk) with k log n bits of communication.

Proof. Notice that if the players can count the number of all-one columns in X then they
can compute f . By rearranging the rows of X as necessary, we may assume that the missing
column r is of the form 0`1k−` where ` ∈ {1, . . . , k}. If ` = 0 then the all-one column does
not appear, and the players can immediately evaluate f .
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More generally, let ei = 0i1k−i for i ∈ {0, . . . , k}. Thus the players want to count the
number of times e0 appears as a column of X. Let Ei be the number of times the string ei
appears as a column of X.

Although the first player cannot distinguish between a column of the form e0 or e1 as he
does not see the first bit, he can exactly compute E0 +E1. Player 1 announces this number
with log n bits. Similarly, player 2 announces E1 + E2. The players continue this way until
they reach player `, who will announce E`−1 as by assumption e` does not appear as a column
of X. With this knowledge, the players can then solve for E0 and evaluate f .

Theorem 4 (Grolmusz [Gro94]). Let f be a symmetric function. Then

Dk(f(x1 ∧ . . . ∧ xk)) ≤ k(log(n) + 1)

⌈
n

2k−1 − 1

⌉
.

Proof. The first player will play a special role in the protocol. He (mentally) partitions the

input matrix X into
⌈

n
2k−1−1

⌉
many blocks of columns of size 2k−1 − 1. By counting, in

each of these blocks of columns, there is some k − 1 bit string which does not appear, and
can be identified by the first player. The first player announces these strings, and then the
players perform the protocol given in the lemma. The total communication is for each block
is k(log(n) + 1 and overall is

k(log(n) + 1)

⌈
n

2k−1 − 1

⌉
.

In the special case where f is the parity function, this communication can be reduced to

k

⌈
n

2k−1 − 1

⌉
as in the lemma the players do not need to say Ei +Ei+1 but just the parity of this number.

Notice that the protocol of Grolmusz is nearly simultaneous, but not quite as the first
player must announce the missing columns to the other players. Babai et al. [BGKL03]
have shown that any function f(x1 ∧ . . . ∧ xk) for symmetric f indeed has a simultaneous
protocol with O(logO(1)(n)) bits of communication whenever the number of players is larger
than log n+ 1.

4 Lower Bounds

Yesterday we considered an XOR game G = (f, µ) and looked at the maximum bias achiev-
able by Alice and Bob for G. We denoted this as

β(f,µ) = max
a∈{−1,+1}|X|
b∈{−1,+1}|Y |

∑
x,y

f(x, y)µ(x, y)a(x)b(y).
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Later on, we argued that it was more natural to consider the object Q(x, y) = f(x, y)µ(x, y)
which can be an arbitrary function Q : X ×Y → R with the property that `1(Q) = 1. (Here
`1(Q) =

∑
x,y |Q(x, y)|.) It will be useful to extend our notation for this. Define

β(Q) = max
a∈{−1,+1}|X|
b∈{−1,+1}|Y |

Q(x, y)a(x)b(y).

The same argument that we gave yesterday works in the multiplayer number-on-the-
forehead model as well. In other words,

2Rε(f) ≥ max
Q

`1(Q)=1

〈f,Q〉 − 2ε

β(Q)
,

where now β(Q) looks at the maximal correlation of Q with a strategy in a number-on-the-
forehead XOR game. Here the strategy of player i is a function Ci(x1, . . . , xi−1, xi+1, . . . , xk) ∈
{−1,+1}. This is known as a cylinder and the product of cylinders is known as a cylinder
intersection. Cylinder intersections in the number-on-the-forehead world are the analog of
rectangles in normal 2-party communication complexity.

It gets pretty unwieldy so let’s just look at the correlation of Q with a cylinder intersection
for 3-players.

β(Q) = max
C1,C2,C3

∑
x1,x2,x3

Q(x1, x2, x3)C1(x2, x3)C2(x1, x3)C3(x1, x2)

Now we don’t know how to turn to matrix (or tensor) theory to help us bound this thing
like we did yesterday. Babai, Nisan, and Szegedy [BNS92] came up with a way of upper
bounding this correlation, and 20 years later it is basically still the only thing we know how
to do. It’s called apply Cauchy-Schwarz! We will use Cauchy-Schwarz in the form that
E[ab] ≤

√
E[a2]

√
E[b2].

Fix C1, C2, C3 which realize the maximum in β(Q).

β(Ψ)

size(Ψ)
= Ex1,x2,x3Ψ(x1, x2, x3)C1(x2, x3)C2(x1, x3)C3(x1, x2)

= Ex1,x2C3(x1, x2)Ex3Ψ(x1, x2, x3)C1(x2, x3)C2(x1, x3)

≤
√

Ex1,x2C3(x1, x2)2
√

Ex1,x2,x03,x13
∏

`∈{0,1}

Ψ(x1, x2, x`3)C1(x2, x`3)C2(x1, x`3)

Note that the first term is at most one, so we forget about it. Now we move on to round 2
of Cauchy-Schwarz!
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(
β(Ψ)

size(Ψ)

)2

≤ Ex1,x2,x03,x13
∏

`∈{0,1}

Ψ(x1, x2, x
`
3)C1(x2, x

`
3)C2(x1, x

`
3)

= Ex1,x03,x13C2(x1, x
0
3)C2(x1, x

1
3)Ex2

∏
`∈{0,1}

Ψ(x1, x2, x
`
3)C1(x2, x

`
3)

≤

Ex1,x02,x12,x03,x13
∏

`∈{0,1}2
Ψ(x1, x

`1
2 , x

`2
3 )C1(x

`1
2 , x

`2
3 )

1/2

Finally we get our bound!(
β(Ψ)

size(Ψ)

)4

≤ Ex02,x12,x03,x13

∣∣∣∣∣∣Ex1
∏

`∈{0,1}2
Ψ(x1, x

`1
2 , x

`2
3 )

∣∣∣∣∣∣ (1)

In the general k-player case we will have to do k − 1 rounds of Cauchy-Schwarz, and so the
left hand side will be raised to the power 2k−1. This is why all the bounds we have decay
like 1/2k.

4.1 Pattern Tensors

We will again study the communication complexity of composed functions. The outer func-
tion f : {−1,+1}n → {−1,+1} can be arbitrary, but the inner function g will be of a very
particular type. The inner function will take k arguments g : {−1,+1}Nk−1× [N ]×· · ·× [N ].
The first argument can be thought of as a k − 1 dimensional tensor, and the other k − 1
arguments as indices into the sides of this tensor. We define

g(x, y1, . . . , yk−1) = x[y1, . . . , yk−1].

Definition 5 (Pattern Tensor). Fix an integer N . As a whole, the pattern tensor Af,N is
then defined such that Af,N [x, y1, . . . , yk−1] is equal to

f(g(x1, y11, . . . , y
1
k−1), . . . , g(xn, yn1 , . . . , y

n
k−1)).

Here x = (x1, . . . , xn) is a k-dimensional sign tensor with dimensions n × N × · · · × N , xi

is the k− 1 dimensional tensor achieved by constraining the first index of x to be equal to i.
The yj’s are vectors of indices in [N ]n, and yij is the ith element of the jth vector.

Here is the main theorem we will talk about today.

Theorem 6 ([LS09, CA08]). Let f : {−1,+1}n → {−1,+1} be a boolean function, then

Rε(Af,N) ≥ deg3ε(f)

2k−1
−O(1),

provided N ≥ 2e(k−1)22k−1
n

deg3ε(f)
.
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This theorem has the following application to Disjointness.

Theorem 7 ([LS09, CA08]). For every k and n

R1/4(DISJk,n) ≥ Ω

(
n1/(k+1)

22k

)
.

Proof. By Theorem 6 R1/4(AORn,N) ≥
√
n/2k provided N > 2e(k − 1)22k−1√

n. If we can
solve DISJk,m on instances of size m = nNk−1 then we can solve AORn,N . Solving shows that√
n = Ω(m1/(k+1)/22k).

The proof of Theorem 6 is similar to what we saw yesterday. Let ψ be a witness to the
fact that f cannot be approximated to within less than ε by degree d polynomials. That is,
let ψ satisfy the following properties:

1. 〈ψ, f〉 ≥ ε

2. `1(ψ) = 1

3. 〈χT , ψ〉 = 0 for all characters |T | ≤ d

Our witness Q to the hardness of the pattern tensor Af,N will be the pattern tensor of
ψ, that is Q = Aψ,N .

Let us check what 〈Af,N , Q〉 is.

〈Af,N , Q〉 =
∑

x1,y1,...,yk−1

Af,N(x1, y1, . . . , yk−1)Q(x1, y1, . . . , yk−1)

=
∑

z∈{−1,+1}n
f(z)ψ(z)

n∏
i=1

∑
xi1,y

i
1,...,y

i
k−1

[xi1(y
i
1, . . . , y

i
k−1) = zi]

=
size(Q)

2n

∑
z∈{−1,+1}n

f(z)ψ(z) ≥ ε
size(Q)

2n

A similar calculation shows that `1(Q) = size(Q)
2n

. Now we turn to the interesting part—the
upper bound on β(Q).

Binomial coefficient bound We will need the following quick upper bound on binomial
coefficients in the proof: (

n

t

)
≤
(en
t

)t
(2)

Of course we have a lower bound of (n/t)t so this is not too bad. Here is a simple way to
see it. (

n

t

)
≤ nt

t!
.

Now plug in t! ≥ (t/e)t. A nice way to see this is that et =
∑

s t
s/s!. All the terms in the

sum are positive so et ≥ tt/t!.
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Lemma 8 ([Cha07, LS09, CA08]). Let v : {−1,+1}n → R be a function satisfying:

1. ‖v‖1 ≤ 1,

2. v̂T = 0 for every T ⊂ [n] with cardinality |T | ≤ d.

Take Q = Qv,N be the pattern k-tensor corresponding to v. Then

µ∗(Q) ≤ size(Q)

2n+d/2k−1 ,

provided that N ≥ 2e(k−1)22k−1
n

d
.

Proof. We will just prove the k = 2 case. The general case follows in the same way, with a
bit more involved combinatorics.

Consider the definition of a pattern tensor. In the two dimensional (matrix) case, the
input x is an n×N sign matrix, and y is a vector in [N ]n. As in Equation (1) we have(

β(Q)

size(Q)

)2

≤ Ey0,y1
∣∣ExQ[x, y0]Q[x, y1]

∣∣ . (3)

To estimate the inner expectations over x, we use the Fourier representation v =
∑

T v̂TχT
of v.

We can express Q as a linear combination Q =
∑

T v̂TχT,N , where χT,N is the pattern
matrix corresponding to the character χT . Now the right hand side of (3) becomes

Ey0,y1

∣∣∣∣∣Ex∑
T,T ′

v̂T v̂T ′χT,N [x, y0]χT ′,N [x, y1]

∣∣∣∣∣ .
By linearity of expectation and the triangle inequality this is bounded by∑

T,T ′

|v̂T v̂T ′|Ey0,y1
∣∣ExχT,N [x, y0]χT ′,N [x, y1]

∣∣ .
We now use the properties of v. First, ‖v‖1 ≤ 1 and therefore |v̂T | ≤ 1

2n
. In addition v̂T = 0

for every set T with |T | ≤ d. We therefore arrive at the following expression

1

22n

∑
T,T ′:|T |,|T ′|>d

Ey0,y1
∣∣ExχT,N [x, y0]χT ′,N [x, y1]

∣∣ .
This is equal to

1

22n

∑
T,T ′:|T |,|T ′|>d

Ey0,y1

∣∣∣∣∣Ex∏
i∈T

x[i, y0[i]]
∏
j∈T ′

x[j, y1[j]]

∣∣∣∣∣ .
7



The expectation inside the absolute value is equal to 0 if T 6= T ′, and also if T = T ′ but
there is an element i ∈ T such that y0[i] 6= y1[i]. The value of this expectation is 1 in all
other cases. Our expression is therefore equal to

1

22n

∑
T :|T |>d

Pr
y0,y1

[
∀i ∈ T , y0[i] = y1[i]

]
For a set T of cardinality |T | = t, we have

Pr
y0,y1

[
∀i ∈ T , y0[i] = y1[i]

]
≤ N−t.

Therefore, the sum of these probabilities above can be bounded as follows

1

22n

n∑
t=d+1

(
n

t

)
N−t ≤ 1

22n

n∑
t=d+1

( en
dN

)t
≤ 1

22n+d
,

assuming N ≥ 2en/d. Plugging this back into (3) we get the desired result.

Putting everything together Let’s now see how we get Theorem 6. We have established
the following properties of our witness Q:

1. 〈Af,N , Q〉 ≥ ε size(Q)
2n

2. `1(Q) = size(Q)
2n

3. β(Q) ≤ size(Q)
2n

2−d/2
k−1

provided that N ≥ 2e(k − 1)22k−1
n/d.

Putting these three items into the generalized discrepancy bound gives the result!

5 More recent results

The bound on disjointness whose proof we sketched becomes trivial for log log nmany players.
Beame and Huynh showed lower bounds on k-party disjointness that are non-trivial up to
(log n)1/3 many players [BHN08]. More recently Sherstov has shown a bound of (n/4k)1/4

[She12].

Open Problem Show that the 3-party NOF complexity of Disjointness is Ω(n).
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