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The SAT Problem

Cnf
∧c

i=1

∨di
j=1 `i,j `i,j =

{
x

¬x
for some variable x

Sat (¬x ∨ ¬y ∨ z) ∧ (x ∨ z) ∧ (¬x ∨ y)
e.g. x = ⊥, y = >, z = >

Unsat (¬x ∨ y) ∧ ¬y ∧ (x ∨ ¬z) ∧ (y ∨ z)
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The SAT Problem in Theory and Practice

SAT NP-complete and so probably intractable in worst case

But enormous progress on applied algorithms last 10-15 years

Surprising fact: State-of-the-art SAT solvers can deal with real-world
instances containing millions of variables
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SAT solvers

Sat satisfying assignment

Unsat proof of unsatisfiability

Key computational resources for modern solvers are:

Running Time

Memory
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Propositional proof systems

Deterministic polynomial time P (·, ·)

if F ∈ Unsat then P (F, π) = 1 for some π ∈ {0, 1}∗

if F 6∈ Unsat then P (F, π) = 0 for all π ∈ {0, 1}∗
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Propositional proof systems: example

�

x

x ∨ y

x ∨ zy ∨ ¬z

x ∨ ¬y

¬x

¬x ∨ z

¬x ∨ y¬x ∨ ¬y ∨ z

¬x ∨ ¬z

Deduction rule:

x ∨ C ¬x ∨D

C ∨D

Massimo Lauria (KTH) CC applications to Proof Complexity Lecture 14, Oct 14 ’12 6/58



SAT solver −→ Proof system

SAT-Solver(F )=unsat −→ refutation of F

Resolution based
DPLL −→ tree-like resolution
Clause Learning −→ fragments of (regular) resolution
CL + Restarts −→ resolution

Algebraic
CryptoMiniSat −→ fragments of PCR on GF (2)
Polybori −→ PC on GF (2)

Geometric
Gomory Cuts −→ cutting planes
Cplex −→ cutting planes+others
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SAT solver −→ Proof system

Constructive (almost
deterministic) algorithms

Key resources for solvers:
time and memory

Ideally minimize
simultaneously

Study proofs, i.e.,
nondeterministic algorithms

Complexity measures:
proof size and proof space

Lower bounds for optimal
algorithms

Hope to understand potential and limitation of SAT solvers by studying
corresponding proof systems
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In this and next lecture

Objective

We want to analyse the relation between memory and time in SAT solving.

can we solve SAT quickly?

can we solve SAT with little memory?

can we do both simultaneously?

Main Idea

Go to proof complexity: a short proof in small space gives an efficient
protocol for an hard communication problem.
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Based on research paper:

The content of this and next lecture is based on the paper

On the Virtue of Succinct Proofs: Amplifying Communication
Complexity Hardness to Time-Space Trade-offs in Proof
Complexity.

— by Trinh Huynh and Jakob Nordström (STOC ’12)
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Outline
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Computational model
Proof Systems
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4 Conclusion
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Intro to proof Complexity

1. Intro to Proof Complexity
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Intro to proof Complexity Computational model

Computational model
for small space proofs
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Intro to proof Complexity Computational model

Some Terminology and Notation

Literal a: variable x or its negation x

Clause C = a1 ∨ · · · ∨ ak: disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

k-CNF formula: all clauses of size ≤ k = O(1)

Goal: Refute given CNF formula (i.e., prove it is unsatisfiable)

Refer to clauses of CNF formula as axioms
(as opposed to conclusions derived from these clauses)

All formulas in this talk are k-CNFs
(cleanest and most interesting case)
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Intro to proof Complexity Computational model

The Theoretical Model

Proof system operates with lines of some syntactic form

Proof/refutation is “presented on blackboard”

Derivation steps:
I Write down axiom clauses of CNF formula being refuted

(as encoded by proof system)
I Infer new lines by deductive rules of proof system
I Erase lines not currently needed (to save space on blackboard)

Refutation ends when contradiction is derived

x ∨ y ∨ z
z ∨ u ∨ w
x ∨ y ∨ u ∨ w
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Intro to proof Complexity Computational model

Complexity Measures: Length, Size and Space

Length
# derivation steps

Size
≈ total # symbols in proof counted with repetitions

Space
≈ max size of blackboard to carry out proof
(e.g., space 3 for this blackboard)

x ∨ y ∨ z
z ∨ u ∨ w
x ∨ y ∨ u ∨ w
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Intro to proof Complexity Proof Systems

Proof Systems
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Intro to proof Complexity Proof Systems

Resolution

Basis for the most successful SAT solvers to date
(DPLL method plus clause learning; a.k.a. CDCL)

Lines in refutation are disjunctive clauses

Resolution rule C ∨ x D ∨ x
C ∨D
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Intro to proof Complexity Proof Systems

Polynomial Calculus (or PCR)

Clauses interpreted as polynomial equations over finite field
E.g., x ∨ y ∨ z translated to x′y′z = 0
Show no common root by deriving 1 = 0

Boolean axioms
x2 − x = 0

Linear combination
p = 0 q = 0

αp+ βq = 0

Negation
x+ x′ = 1

Multiplication
p = 0
xp = 0
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Intro to proof Complexity Proof Systems

Cutting Planes

Clauses interpreted as linear inequalities
E.g., x ∨ y ∨ z translated to x+ y + (1− z) ≥ 1
Show inconsistent by deriving 0 ≥ 1

Variable axioms
0 ≤ x ≤ 1

Addition ∑
aixi ≥ A

∑
bixi ≥ B∑

(ai+bi)xi ≥ A+B

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

Division

∑
caixi ≥ A∑

aixi ≥ dA/ce
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Intro to proof Complexity Proof Systems

ȳz

xz

z

1− x

1− z − z̄ xz̄ x̄y

1

x̄

ȳ 1− y − ȳyz

x̄y + x̄ȳ

x̄ȳ

x

yz + ȳz z − yz − ȳz

x− xz − xz̄

x− xz

x̄− x̄y − x̄ȳ

1− x− x̄

E.g. a PCR
refutation.
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Intro to proof Complexity Proof Systems

E.g. a PCR proof in the blackboard model

∅ · · · →

xz + yz
xz − 1

 →
xz + yz
xz − 1
1 + yz

 →
xz + yz

1 + yz

 →
xz + yz
x2 − x
1 + yz

 · · · → [
1
]

Massimo Lauria (KTH) CC applications to Proof Complexity Lecture 14, Oct 14 ’12 22/58



Intro to proof Complexity Proof Systems
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Intro to proof Complexity Proof Systems

Length, Size and Space

Length
is the number of lines in the proof, or equivalently the number of vertices
in the directed acyclic graph representing the proof.

Size
≈ sum over all proof lines of the number of symbols in a line (counted
with repetitions). In PCR a line can have a super-polynomial number of
symbols, while it is not the case in Resolution or CP.

Space

Resolution: max # of clauses in a blackboard during a proof.

Cutting Planes: max # of inequalities in a blackboard during a proof.

PCR: max # of monomials in a blackboard during a proof.
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Intro to proof Complexity Proof Systems

Known results

Resolution

Length several lower bounds [U ’87; CS ’88]
Space optimal lower bounds [T ’99; ABRW ’00; BG ’03]

Trade-offs strong size-space trade-offs [BN ’11; BBI ’12]

Cutting Planes

Length one lower bound [P ’97]
Space nothing is known

Trade-offs very limited trade-offs [HN ’12]

Polynomial Calculus

Length exponential lower bounds on size [AR ’01]
Space recent progress [ABRW ’00; FLNRT ’12; BG ’13]

Trade-offs limited size-space trade-offs [HN ’12; BNT ’12]

Massimo Lauria (KTH) CC applications to Proof Complexity Lecture 14, Oct 14 ’12 24/58



Intro to proof Complexity Proof Systems

2. Main Theorem
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Main Theorem

Main Theorem

Theorem (Huynh, Nordström (STOC ’12))

There are k-CNF formulas {Fn}∞n=1 of size Θ(n) such that

resolution can refute Fn in length O(n) (and hence so can
polynomial calculus and cutting planes)

any polynomial calculus or cutting planes refutation of Fn in
length L and space s must have

s logL ' 4
√
n
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Proof Ingredients

3. Proof Ingredients
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Proof Ingredients

Proof Ingredients

A communication problem based on UNSAT CNFs.

Lifting of search problem (to make it harder)

Critical block sensitivity (source of hardness)

Pebbling formulas (large block sensitivity)
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Proof Ingredients Search problem for UNSAT

Search problem on UNSAT CNF

Given

F = ∧iCi an unsatisfiable CNF;

α an assignment;

find:

Ci such that α falsifies Ci

Basic intuition

An “efficient refutation” for F gives an “efficient method” to solve the
search problem on F .

Massimo Lauria (KTH) CC applications to Proof Complexity Lecture 14, Oct 14 ’12 29/58



Proof Ingredients Search problem for UNSAT

Search problem on UNSAT CNF

Given

F = ∧iCi an unsatisfiable CNF;

α an assignment;

find:

Ci such that α falsifies Ci

Basic intuition

An “efficient refutation” for F gives an “efficient method” to solve the
search problem on F .

Massimo Lauria (KTH) CC applications to Proof Complexity Lecture 14, Oct 14 ’12 29/58



Proof Ingredients Search problem for UNSAT

From proofs to search procedures (example)

�

x

x ∨ y

x ∨ z

0

y ∨ ¬z

1

0

x ∨ ¬y

1

0

¬x

¬x ∨ z

¬x ∨ y

0

¬x ∨ ¬y ∨ z

1

0

¬x ∨ ¬z

1

1
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Proof Ingredients Search problem for UNSAT

From proofs to search procedures (example)

x

y

z

x ∨ z

0

y ∨ ¬z

1

0

x ∨ ¬y

1

0

z

y

¬x ∨ y

0

¬x ∨ ¬y ∨ z

1

0

¬x ∨ ¬z

1

1
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Proof Ingredients Search problem for UNSAT

Search problem as a Communication problem

Alice gets part of the assignment α and her own private randomness

Bob gets the other part of α, and his own private randomness

Falsified clause search problem Search(F )

Input: Assignment α to Vars(F ) split between Alice and Bob

Output: Clause C ∈ F such that α(C) = 0

CC point of view

How many bit do they need to exchange to solve the search Problem?
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Proof Ingredients Search problem for UNSAT

Succinct Refutations Yield Efficient Protocols

Evaluate blackboard configurations of a refutation of F under α

∅ ⊥

Use binary search to find transition from true to false blackboard

Must happen when C ∈ F written down — answer to Search(F )

Refutation length L ⇒ evaluate logL blackboards

Refutation space s ⇒ max ≈ s bits of communication per blackboard
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Proof Ingredients Search problem for UNSAT

How to evaluate blackboards (Polynomial Calculus)

For each monomial Alice and Bob evaluate their part and send the values
to each other.

Observation

A polynomial calculus refutation of length L and monomial space s implies
a deterministic communication protocol for Search(F ) of cost

O
(
s logL

)
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Proof Ingredients Search problem for UNSAT

How to evaluate blackboards (Cutting Planes I)

Alice has variables xi and Bob has variables yj , they evaluate the line∑
i

aixi +
∑
j

bjyj ≤ c

Alice computes A =
∑

i aixi;

Bob computes B =
∑

j c− bjyj ;

they compute GT (A,B) paying O(log2 n log(s logL)) bits.
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Proof Ingredients Search problem for UNSAT

How to evaluate blackboards (Cutting Planes II)

Observation

A cutting planes refutation of length L and space s implies a randomized
communication protocol for Search(F ) of cost

O
(
s logL log(s logL) log2 n

)
.

Proof.

1 Each inequality evaluation costs O(log2 n log(s logL)) bits.

2 Each evaluation fails with probability at most (say)

1

4s logL

3 At most s logL inequalities are evaluated.
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Proof Ingredients Lifting

Q: how do we get hard search problem?

A: we “lift” moderately hard search problem.

Massimo Lauria (KTH) CC applications to Proof Complexity Lecture 14, Oct 14 ’12 36/58



Proof Ingredients Lifting

Q: how do we get hard search problem?

A: we “lift” moderately hard search problem.

Massimo Lauria (KTH) CC applications to Proof Complexity Lecture 14, Oct 14 ’12 36/58



Proof Ingredients Lifting

Formal definition of a search problem

It is a set

S ⊆ {0, 1}m × A

such that for any q ∈ {0, 1}m there exists (q, a) ∈ S.

q is a “query”

a is an “answer” (one of possibly many)
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Proof Ingredients Lifting

Lifting of a search problem

Start with search problem
S ∈ {0, 1}m ×A

We want a query q for S

Construct the query using inputs
x ∈ {0, 1}`m and y ∈ [`]m

Alice’s y-variables determine. . .

. . . which of Bob’s x-bits is in q

Length-` lifting of S defined as

(x, y, q) ∈ Lift`(S) ⇐⇒ (〈x1,y1 , . . . , xm,ym〉, q) ∈ S

x1,1 x1,2 x2,1 x2,2 x3,1 x3,2

y1 y2 y3

q :=
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Proof Ingredients Lifting

Lifting does not create hardness

Lifting per se does not make a search problem hard.
It allows to better exploit the complexity of the original search problem.
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Proof Ingredients Critical Block Sensitivity

Source of hardness: block sensitivity
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Proof Ingredients Critical Block Sensitivity

Block Sensitivity for functions

Block sensitivity of f on α: # disjoint blocks of α that flip f if flipped

( )
f =0 1 1 0 1 0 1 0 0 0 1 0 0

bs(f, α) = 3 in this example

bs(f,A): largest block sensitivity for any α in subset A of inputs
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Proof Ingredients Critical Block Sensitivity

Block Sensitivity for search problems

f solves search problem S ⊆ {0, 1}m ×Q if it holds that (α, f(α)) ∈ S

We focus on critical assignment of S (i.e. only one answer).

bscrit(S): block sensitivity over critical assignments A of best f solving S

on A the problem S is like a function;

the assignments obtained by flipping blocks, may not be critical.
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Proof Ingredients Critical Block Sensitivity

Lifting and Critical Block Sensitivity (I)

Lemma 1 (informal)

If critical block sensitivity of search problem S is large, then
communication complexity of lifted search problem Lift (S) is large
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Proof Ingredients Critical Block Sensitivity

Lifting and Critical Block Sensitivity (II)

Lemma 1 (more formal version)

Suppose S ⊆ {0, 1}m ×Q is a search problem and ` ≥ 3. Then any
consistent randomized protocol solving Lift`(S), where Alice receives the
selector y-variables and Bob receives the main x-variables, requires
Ω(bscrit(S)) bits of communication.

Proof is by

information theory tools

direct sum theorem à la [BJKS04]
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Proof Ingredients Critical Block Sensitivity

Consistent protocol?

A two-player randomized protocol Π for S is such that

Pr[(x, y,Π(x, y)) ∈ S] >
2

3
.

A consistent protocol instead:

∃(x, y, q) ∈ S such that Pr[(x, y) = q] >
2

3
.

It does matter since consistent protocols are weaker in some cases.
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Proof Ingredients Critical Block Sensitivity

Putting the Pieces Together

Encode lifting of search problem for CNF as new formula Lift (F )
(as in [Beame, Huynh & Pitassi ’10])

Small length AND small space refutation of Lift (F )
⇒ efficient communication protocol for Search(Lift (F ))

Protocol for Search(Lift (F ))
⇒ use to solve Lift (Search(F )) — easy

But communication complexity of lifted search problem
lower-bounded by critical block sensitivity (Lemma 1)

We need a CNF F such that Search(F ) has large block sensitivity
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Proof Ingredients Pebbling

Pebbling contradictions on pyramids
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Proof Ingredients Pebbling

Pebbling Contradiction

CNF formulas encoding pebble game played on DAG G

1. u
2. v
3. w
4. u ∨ v ∨ x
5. v ∨ w ∨ y
6. x ∨ y ∨ z
7. z

z

x y

u v w

sources are true

truth propagates
upwards

but sink is false

Appeared in various contexts in [Bonet et al. ’98, Raz & McKenzie ’99,
Ben-Sasson & Wigderson ’99] and other papers

Used to study size and space in resolution in [N. ’06, N. & Håstad ’08,
Ben-Sasson & N. ’08, ’11]
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Proof Ingredients Pebbling

Pebbling and Time-Space Relation

Questions about time-space trade-offs fundamental in theoretical
computer science

In particular, well-studied (and well-understood) for
pebble games modelling calculations described by DAGs
([Cook & Sethi ’76] and many others)

Time needed for calculation: # pebbling moves

Space needed for calculation: max # pebbles required

Pebbling game and Resolution

pebbling time ≈ refutation length

pebbling space ≈ clause space

time/space trade-offs ≈ proof length/space trade-offs
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Proof Ingredients Pebbling

Critical Assignments for Pyramid Pebbling Contradiction

1

2

3

4

..
.

h−1

h

1 2 3 4 5 6 7 8 9 10 . . .2h−2 2h

Focus on critical assignment setting:
vertices on one source-to-sink path P false

all other vertices true (so source(P ) only correct answer)

Bicritical assignments falsify two different paths
⇒ two possible correct answers
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Proof Ingredients Pebbling

Path Graph

1

2

3

4

..
.

h−1

h

1 2 3 4 5 6 7 8 9 10 . . .2h−2 2h

PQ2Q1

Build graph G such that
vertices = source-to-sink paths P

edge (P,Q) only if P and Q merge and stay together

in addition, if (P,Q1) and (P,Q2) edges, then Q1 ∩Q2 ⊆ P
G is undirected — (P,Q) edge only if (Q,P ) edge
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Proof Ingredients Pebbling

Dense Path Graph ⇒ High Critical Block Sensitivity

Lemma 2

If ∃ path graph G with average degree d, then falsified clause search
problem for pebbling formula has critical block sensitivity ≥ d/2

Proof:

Orient G based on function f solving search problem

If f answers source(Q) for bicritical (P,Q), direct edge P → Q

Some P must have outdegree ≥ d/2
When P flipped to bicritical (P,Qi) for P → Qi, then f changes

Hence critical block sensitivity ≥ d/2, Q.E.D.

Lemma 3

For pyramid on n vertices, can get average degree Ω
(

4
√
n
)
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Proof Ingredients Pebbling

CNFs with large critical block sensitivity search problem

Corollary 4

Search problems for pebbling formulas of pyramid graphs have critical
block sensitivity Ω

(
4
√
n
)
.
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Conclusion

4. Conclusion
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Conclusion

Theorem (Huynh, Nordström (STOC ’12))

There are k-CNF formulas {Fn}∞n=1 of size Θ(n) such that

resolution can refute Fn in length O(n) (and hence so can
polynomial calculus and cutting planes)

any polynomial calculus or cutting planes refutation of Fn in
length L and space s must have

s logL ' 4
√
n

Proof.
1 Pick Pn to be pebbling formula over the pyramind of n vertices

2 Set Fn := Lift3
(
Pn

)
. Fn has resolution refutation of length O(n)

3 In CP and PC it holds that s logL ' bscrit(Search
(
Pn

)
) (Lemma 1)

4 bscrit(Search
(
Pn

)
) ≥ 4
√
n (Corollary 4)
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Conclusion

This lecture. . .

Modern SAT solvers enormously successful in practice — key issue is
to minimize time and memory consumption

Modelled by proof size and space in proof complexity

Simultaneous optimization of time and memory in proof systems gives
us efficient protocols for search problems related to CNFs.

Search problem for pebbling formulas for pyramids requires large
communication!
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Conclusion

. . . and next lecture

more details about lifted formulas

discuss Search(Lift (F )) vs Lift (Search(F ))

pebbling formulas for pyramids have large critical block sensitivity.

comments on proof technique/limitations/open problems.
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