Application of Communication Complexity: Time/Memory trade-offs in SAT-solving

> Theoretical Computer Science Group KTH Royal Institute of Technology

DD2441 Autumn 2012: Communication Complexity October 8, 2012

$$\begin{array}{ll} \text{CNF} & \bigwedge_{i=1}^{c}\bigvee_{j=1}^{d_{i}}\ell_{i,j} & \ell_{i,j} = \begin{cases} x \\ \neg x & \text{for some variable } x \end{cases}$$

$$\begin{array}{l} \text{SAT} & (\neg x \lor \neg y \lor z) \land (x \lor z) \land (\neg x \lor y) \\ & \text{e.g. } x = \bot, y = \top, z = \top \end{cases}$$

$$\begin{array}{l} \text{UNSAT} & (\neg x \lor y) \land \neg y \land (x \lor \neg z) \land (y \lor z) \end{cases}$$

The SAT Problem in Theory and Practice

- SAT NP-complete and so probably intractable in worst case
- But enormous progress on applied algorithms last 10-15 years
- Surprising fact: State-of-the-art SAT solvers can deal with real-world instances containing millions of variables

SAT satisfying assignment

UNSAT proof of unsatisfiability

Key computational resources for modern solvers are:

- Running Time
- Memory

Deterministic polynomial time $P(\cdot, \cdot)$

- if $F \in \text{UNSAT}$ then $P(F, \pi) = 1$ for some $\pi \in \{0, 1\}^*$
- if $F \notin \text{UNSAT}$ then $P(F, \pi) = 0$ for all $\pi \in \{0, 1\}^*$

Propositional proof systems: example

 $SAT-Solver(F) = unsat \longrightarrow$

refutation of ${\cal F}$

Resolution based		
DPLL	\longrightarrow	tree-like resolution
Clause Learning	\longrightarrow	fragments of (regular) resolution
CL + Restarts	\longrightarrow	resolution
Algebraic		
CryptoMiniSat	\longrightarrow	fragments of PCR on $GF(2)$
Polybori	\longrightarrow	PC on $GF(2)$
	Geo	metric
Gomory Cuts	\longrightarrow	cutting planes
CPLEX	\longrightarrow	cutting planes+others

- Constructive (almost deterministic) algorithms
- Key resources for solvers: time and memory
- Ideally minimize simultaneously

- Constructive (almost deterministic) algorithms
- Key resources for solvers: time and memory
- Ideally minimize simultaneously

- Study proofs, i.e., nondeterministic algorithms
- Complexity measures: proof size and proof space
- Lower bounds for optimal algorithms

- Constructive (almost deterministic) algorithms
- Key resources for solvers: time and memory
- Ideally minimize simultaneously

- Study proofs, i.e., nondeterministic algorithms
- Complexity measures: proof size and proof space
- Lower bounds for optimal algorithms

Hope to understand potential and limitation of SAT solvers by studying corresponding proof systems

Objective

We want to analyse the relation between memory and time in SAT solving.

- can we solve SAT quickly?
- can we solve SAT with little memory?
- can we do both simultaneously?

Main Idea

Go to proof complexity: a **short proof** in **small space** gives an efficient protocol for an hard communication problem.

The content of this and next lecture is based on the paper

On the Virtue of Succinct Proofs: Amplifying Communication Complexity Hardness to Time-Space Trade-offs in Proof Complexity.

— by Trinh Huynh and Jakob Nordström (STOC '12)

Outline

Intro to proof Complexity

- Computational model
- Proof Systems

2 Main Theorem

O Proof Ingredients

- Search problem for UNSAT
- Lifting
- Critical Block Sensitivity
- Pebbling

4 Conclusion

1. Intro to Proof Complexity

Computational model for small space proofs

Some Terminology and Notation

- Literal a: variable x or its negation \overline{x}
- Clause C = a₁ ∨ · · · ∨ a_k: disjunction of literals (Consider as sets, so no repetitions and order irrelevant)
- CNF formula $F = C_1 \land \cdots \land C_m$: conjunction of clauses
- *k*-CNF formula: all clauses of size $\leq k = O(1)$
- Goal: Refute given CNF formula (i.e., prove it is unsatisfiable)
- Refer to clauses of CNF formula as axioms (as opposed to conclusions derived from these clauses)
- All formulas in this talk are k-CNFs (cleanest and most interesting case)

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

 $x \vee \overline{y} \vee z$

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

$$\begin{array}{c} x \lor \overline{y} \lor z \\ \overline{z} \lor \overline{u} \lor w \end{array}$$

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

$$\begin{array}{l} x \lor \overline{y} \lor z \\ \overline{z} \lor \overline{u} \lor w \\ x \lor \overline{y} \lor \overline{u} \lor w \end{array}$$

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

 $\begin{array}{l} x \lor \overline{y} \lor z \\ \overline{z} \lor \overline{u} \lor w \\ x \lor \overline{y} \lor \overline{u} \lor w \end{array}$

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

 $\overline{z} \lor \overline{u} \lor w$ $x \lor \overline{y} \lor \overline{u} \lor w$

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

 $\overline{z} \lor \overline{u} \lor w$ $x \lor \overline{y} \lor \overline{u} \lor w$

- Proof system operates with lines of some syntactic form
- Proof/refutation is "presented on blackboard"
- Derivation steps:
 - Write down axiom clauses of CNF formula being refuted (as encoded by proof system)
 - Infer new lines by deductive rules of proof system
 - Erase lines not currently needed (to save space on blackboard)
- Refutation ends when contradiction is derived

Complexity Measures: Length, Size and Space

Length

derivation steps

Size

 \approx total # symbols in proof counted with repetitions

Space

pprox max size of blackboard to carry out proof (e.g., space 3 for this blackboard)

 $\begin{array}{l} x \lor \overline{y} \lor z \\ \overline{z} \lor \overline{u} \lor w \\ x \lor \overline{y} \lor \overline{u} \lor w \end{array}$

Proof Systems

Basis for the most successful SAT solvers to date (DPLL method plus clause learning; a.k.a. CDCL)

Lines in refutation are disjunctive clauses

Resolution rule
$$\frac{C \lor x \quad D \lor \overline{x}}{C \lor D}$$

Polynomial Calculus (or PCR)

Clauses interpreted as polynomial equations over finite field E.g., $x \lor y \lor \overline{z}$ translated to x'y'z = 0Show no common root by deriving 1 = 0

Boolean axiomsNegation
$$x^2 - x = 0$$
 $x + x' = 1$ Linear combination $p = 0$ $q = 0$ $\alpha p + \beta q = 0$ Multiplication $p = 0$ $xp = 0$ $xp = 0$

Cutting Planes

Clauses interpreted as linear inequalities E.g., $x \lor y \lor \overline{z}$ translated to $x + y + (1 - z) \ge 1$ Show inconsistent by deriving $0 \ge 1$

Variable axioms
$$\boxed{0 \le x \le 1}$$
Multiplication $\boxed{\sum a_i x_i \ge A}{\sum ca_i x_i \ge cA}$ Addition $\underbrace{\sum a_i x_i \ge A}{\sum (a_i + b_i) x_i \ge A + B}$ Division $\underbrace{\sum ca_i x_i \ge A}{\sum a_i x_i \ge [A/c]}$

Massimo Lauria (KTH)

$$\emptyset \cdots \to \begin{bmatrix} xz + yz \\ xz - 1 \end{bmatrix}$$

$$\emptyset \dots \rightarrow \begin{bmatrix} xz + yz \\ xz - 1 \end{bmatrix} \rightarrow \begin{bmatrix} xz + yz \\ xz - 1 \\ 1 + yz \end{bmatrix}$$

$$\emptyset \dots \rightarrow$$
 $\begin{bmatrix}
xz + yz \\
xz - 1
\end{bmatrix}$
 \rightarrow
 $\begin{bmatrix}
xz + yz \\
xz - 1 \\
1 + yz
\end{bmatrix}$
 \rightarrow
 $\begin{bmatrix}
xz + yz \\
- \\
1 + yz
\end{bmatrix}$

$$\emptyset \cdots \rightarrow \begin{bmatrix} xz + yz \\ xz - 1 \\ \end{bmatrix} \rightarrow \begin{bmatrix} xz + yz \\ xz - 1 \\ 1 + yz \end{bmatrix} \rightarrow \begin{bmatrix} xz + yz \\ 1 \\ 1 + yz \end{bmatrix} \rightarrow \begin{bmatrix} xz + yz \\ x^2 - x \\ 1 + yz \end{bmatrix} \cdots$$

$$\emptyset \dots \to \begin{bmatrix} xz + yz \\ xz - 1 \end{bmatrix} \to \begin{bmatrix} xz + yz \\ xz - 1 \\ 1 + yz \end{bmatrix} \to \begin{bmatrix} xz + yz \\ 1 \\ 1 + yz \end{bmatrix} \to \begin{bmatrix} xz + yz \\ x^2 - x \\ 1 + yz \end{bmatrix} \dots \to \begin{bmatrix} 1 \end{bmatrix}$$
Length, Size and Space

Length

is the number of lines in the proof, or equivalently the number of vertices in the directed acyclic graph representing the proof.

Size

 \approx sum over all proof lines of the number of symbols in a line (counted with repetitions). In PCR a line can have a super-polynomial number of symbols, while it is not the case in Resolution or CP.

Space

- Resolution: max # of clauses in a blackboard during a proof.
- Cutting Planes: max # of inequalities in a blackboard during a proof.
- PCR: max # of monomials in a blackboard during a proof.

Known results

Resolution

Length several lower bounds Space optimal lower bounds Trade-offs strong size-space trade-offs	[U '87; CS '88] [T '99; ABRW '00; BG '03] [BN '11; BBI '12]
• Cutting Planes	
Length one lower bound Space nothing is known Trade-offs very limited trade-offs	[P '97] [HN '12]
 Polynomial Calculus 	
Length exponential lower bounds on size Space recent progress Trade-offs limited size-space trade-offs	[AR '01] [ABRW '00; FLNRT '12; BG '13] [HN '12 ; BNT '12]

2. Main Theorem

Main Theorem

Theorem (Huynh, Nordström (STOC '12))

There are k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\Theta(n)$ such that

- resolution can refute F_n in length O(n) (and hence so can polynomial calculus and cutting planes)
- any polynomial calculus or cutting planes refutation of F_n in length L and space s must have

 $s \log L \gtrapprox \sqrt[4]{n}$

3. Proof Ingredients

Proof Ingredients

- A communication problem based on UNSAT CNFs.
- Lifting of search problem (to make it harder)
- Critical block sensitivity (source of hardness)
- Pebbling formulas (large block sensitivity)

Search problem on UNSAT CNF

Given

- $F = \wedge_i C_i$ an unsatisfiable CNF;
- *α* an assignment;

find:

• C_i such that α falsifies C_i

Search problem on UNSAT CNF

Given

- $F = \wedge_i C_i$ an unsatisfiable CNF;
- α an assignment;

find:

• C_i such that α falsifies C_i

Basic intuition

An "efficient refutation" for F gives an "efficient method" to solve the search problem on F.

From proofs to search procedures (example)

From proofs to search procedures (example)

From proofs to search procedures (example)

Search problem as a Communication problem

- Alice gets part of the assignment α and her own private randomness
- Bob gets the other part of lpha, and his own private randomness

Falsified clause search problem Search(F)

Input: Assignment α to Vars(F) split between Alice and Bob Output: Clause $C \in F$ such that $\alpha(C) = 0$

Search problem as a Communication problem

- Alice gets part of the assignment α and her own private randomness
- Bob gets the other part of lpha, and his own private randomness

Falsified clause search problem Search(F)

Input: Assignment α to Vars(F) split between Alice and Bob Output: Clause $C \in F$ such that $\alpha(C) = 0$

CC point of view

How many bit do they need to exchange to solve the search Problem?

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Ø								\perp

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Use binary search to find transition from true to false blackboard Must happen when $C \in F$ written down — answer to Search(F)

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Use binary search to find transition from true to false blackboard Must happen when $C \in F$ written down — answer to Search(F)Refutation length $L \Rightarrow$ evaluate $\log L$ blackboards

Evaluate blackboard configurations of a refutation of ${\cal F}$ under α

Use binary search to find transition from true to false blackboard Must happen when $C \in F$ written down — answer to Search(F)Refutation length $L \Rightarrow$ evaluate $\log L$ blackboards Refutation space $s \Rightarrow \max \approx s$ bits of communication per blackboard

How to evaluate blackboards (Polynomial Calculus)

For each monomial Alice and Bob evaluate their part and send the values to each other.

Observation

A polynomial calculus refutation of length L and monomial space s implies a deterministic communication protocol for Search(F) of cost

 $\mathcal{O}(s \log L)$

How to evaluate blackboards (Cutting Planes I)

Alice has variables x_i and Bob has variables y_j , they evaluate the line

$$\sum_{i} a_i x_i + \sum_{j} b_j y_j \le c$$

- Alice computes $A = \sum_i a_i x_i$;
- Bob computes $B = \sum_j c b_j y_j$;
- they compute GT(A,B) paying $\mathcal{O}(\log^2 n \log(s \log L))$ bits.

How to evaluate blackboards (Cutting Planes II)

Observation

A cutting planes refutation of length L and space s implies a randomized communication protocol for Search(F) of cost

 $\mathcal{O}(s \log L \log(s \log L) \log^2 n).$

Proof.

- **(**) Each inequality evaluation costs $\mathcal{O}(\log^2 n \log(s \log L))$ bits.
- ② Each evaluation fails with probability at most (say)

$$\frac{1}{4s \log L}$$

③ At most $s \log L$ inequalities are evaluated.

Q: how do we get hard search problem?

Q: how do we get hard search problem?

A: we "lift" moderately hard search problem.

Formal definition of a search problem

It is a set

 $S \subseteq \{0,1\}^m \times A$

such that for any $q \in \{0, 1\}^m$ there exists $(q, a) \in S$.

- q is a "query"
- *a* is an "answer" (one of possibly many)

Start with search problem $S \in \{0,1\}^m imes A$

Start with search problem $S \in \{0,1\}^m imes A$

We want a query q for S

Start with search problem $S \in \{0,1\}^m \times A$

We want a query \boldsymbol{q} for \boldsymbol{S}

Construct the query using inputs $x\in\{0,1\}^{\ell m}$ and $y\in[\ell]^m$

y_1	y_2	y_3
-------	-------	-------

$x_{1,1}$ $x_{1,2}$ $x_{2,1}$	$x_{2,2}$	$x_{3,1}$	$x_{3,2}$
-------------------------------	-----------	-----------	-----------

$$q :=$$

Start with search problem $S \in \{0,1\}^m \times A$

We want a query \boldsymbol{q} for \boldsymbol{S}

Construct the query using inputs $x \in \{0,1\}^{\ell m}$ and $y \in [\ell]^m$

Alice's y-variables determine...

$$q :=$$

Start with search problem $S \in \{0,1\}^m \times A$

We want a query \boldsymbol{q} for \boldsymbol{S}

Construct the query using inputs $x \in \{0,1\}^{\ell m}$ and $y \in [\ell]^m$

Alice's y-variables determine...

 \ldots which of Bob's *x*-bits is in *q*

Lifting

Lifting of a search problem

Start with search problem $S \in \{0,1\}^m \times A$

We want a query \boldsymbol{q} for \boldsymbol{S}

Construct the query using inputs $x \in \{0,1\}^{\ell m}$ and $y \in [\ell]^m$

Alice's y-variables determine...

 \dots which of Bob's *x*-bits is in *q* Length- ℓ lifting of *S* defined as

 $(x, y, q) \in Lift_{\ell}(S) \iff (\langle x_{1,y_1}, \dots, x_{m,y_m} \rangle, q) \in S$

Lifting does not create hardness

Lifting per se does not make a search problem hard. It allows to better exploit the complexity of the original search problem.

Source of hardness: block sensitivity
Block sensitivity of f on α : # disjoint blocks of α that flip f if flipped

 $bs(f, \alpha) = 3$ in this example

Block sensitivity of f on α : # disjoint blocks of α that flip f if flipped

 $bs(f, \alpha) = 3$ in this example

 $bs(f, \mathcal{A})$: largest block sensitivity for any α in subset \mathcal{A} of inputs

f solves search problem $S \subseteq \{0,1\}^m \times Q$ if it holds that $(\alpha,f(\alpha)) \in S$

f solves search problem $S \subseteq \{0,1\}^m \times Q$ if it holds that $(\alpha,f(\alpha)) \in S$

We focus on critical assignment of S (i.e. only one answer).

f solves search problem $S \subseteq \{0,1\}^m \times Q$ if it holds that $(\alpha,f(\alpha)) \in S$

We focus on critical assignment of S (i.e. only one answer).

 $bs_{crit}(S)$: block sensitivity over critical assignments \mathcal{A} of best f solving S

f solves search problem $S \subseteq \{0,1\}^m \times Q$ if it holds that $(\alpha,f(\alpha)) \in S$

We focus on critical assignment of S (i.e. only one answer).

 $bs_{crit}(S)$: block sensitivity over critical assignments \mathcal{A} of best f solving S

- on \mathcal{A} the problem S is like a function;
- the assignments obtained by flipping blocks, may not be critical.

Lifting and Critical Block Sensitivity (I)

Lemma 1 (informal)

If critical block sensitivity of search problem S is large, then communication complexity of lifted search problem ${\it Lift}(S)$ is large

Lifting and Critical Block Sensitivity (II)

Lemma 1 (more formal version)

Suppose $S \subseteq \{0,1\}^m \times Q$ is a search problem and $\ell \geq 3$. Then any consistent randomized protocol solving $Lift_{\ell}(S)$, where Alice receives the selector *y*-variables and Bob receives the main *x*-variables, requires $\Omega(bs_{crit}(S))$ bits of communication.

Proof is by

- information theory tools
- direct sum theorem à la [BJKS04]

Consistent protocol?

A two-player randomized protocol Π for S is such that

$$\Pr[(x, y, \Pi(x, y)) \in S] > \frac{2}{3}.$$

Consistent protocol?

A two-player randomized protocol Π for S is such that

$$\Pr[(x, y, \Pi(x, y)) \in S] > \frac{2}{3}.$$

A consistent protocol instead:

$$\exists (x, y, q) \in S \text{ such that } \Pr[(x, y) = q] > \frac{2}{3}.$$

It does matter since consistent protocols are weaker in some cases.

• Encode lifting of search problem for CNF as new formula Lift(F) (as in [Beame, Huynh & Pitassi '10])

- Encode lifting of search problem for CNF as new formula Lift(F) (as in [Beame, Huynh & Pitassi '10])
- Small length AND small space refutation of Lift(F)
 ⇒ efficient communication protocol for Search(Lift(F))

- Encode lifting of search problem for CNF as new formula Lift(F) (as in [Beame, Huynh & Pitassi '10])
- Small length AND small space refutation of Lift(F)
 ⇒ efficient communication protocol for Search(Lift(F))
- Protocol for Search(Lift(F)) \Rightarrow use to solve Lift(Search(F)) — easy

- Encode lifting of search problem for CNF as new formula Lift(F) (as in [Beame, Huynh & Pitassi '10])
- Small length AND small space refutation of Lift(F)
 ⇒ efficient communication protocol for Search(Lift(F))
- Protocol for Search(Lift(F)) \Rightarrow use to solve Lift(Search(F)) — easy
- But communication complexity of lifted search problem lower-bounded by critical block sensitivity (Lemma 1)

- Encode lifting of search problem for CNF as new formula Lift(F) (as in [Beame, Huynh & Pitassi '10])
- Small length AND small space refutation of Lift(F)
 ⇒ efficient communication protocol for Search(Lift(F))
- Protocol for Search(Lift(F)) \Rightarrow use to solve Lift(Search(F)) — easy
- But communication complexity of lifted search problem lower-bounded by critical block sensitivity (Lemma 1)

We need a CNF F such that Search(F) has large block sensitivity

Pebbling contradictions on pyramids

CNF formulas encoding pebble game played on DAG ${\it G}$

- sources are true
- truth propagates upwards
- but sink is false

CNF formulas encoding pebble game played on DAG ${\boldsymbol{G}}$

- sources are true
- truth propagates upwards
- but sink is false

CNF formulas encoding pebble game played on DAG ${\it G}$

- sources are true
- truth propagates upwards
- but sink is false

CNF formulas encoding pebble game played on DAG ${\it G}$

- sources are true
- truth propagates upwards
- but sink is false

CNF formulas encoding pebble game played on DAG G

- sources are true
- truth propagates upwards
- but sink is false

Appeared in various contexts in [Bonet et al. '98, Raz & McKenzie '99, Ben-Sasson & Wigderson '99] and other papers

Used to study size and space in resolution in [N. '06, N. & Håstad '08, Ben-Sasson & N. '08, '11]

Pebbling and Time-Space Relation

Questions about time-space trade-offs fundamental in theoretical computer science

Pebbling and Time-Space Relation

Questions about time-space trade-offs fundamental in theoretical computer science

In particular, well-studied (and well-understood) for pebble games modelling calculations described by DAGs ([Cook & Sethi '76] and many others)

- Time needed for calculation: # pebbling moves
- Space needed for calculation: max # pebbles required

Pebbling and Time-Space Relation

Questions about time-space trade-offs fundamental in theoretical computer science

In particular, well-studied (and well-understood) for pebble games modelling calculations described by DAGs ([Cook & Sethi '76] and many others)

- Time needed for calculation: # pebbling moves
- Space needed for calculation: max # pebbles required

Pebbling game and Resolution

- pebbling time \approx refutation length
- pebbling space \approx clause space
- time/space trade-offs \approx proof length/space trade-offs

Critical Assignments for Pyramid Pebbling Contradiction

Focus on critical assignment setting:

- vertices on one source-to-sink path P false
- all other vertices true (so source(P) only correct answer)

Critical Assignments for Pyramid Pebbling Contradiction

Focus on critical assignment setting:

- vertices on one source-to-sink path P false
- all other vertices true (so source(P) only correct answer)

Bicritical assignments falsify two different paths

 \Rightarrow two possible correct answers

Path Graph

Build graph G such that

- vertices = source-to-sink paths P
- edge (P,Q) only if P and Q merge and stay together
- in addition, if (P, Q_1) and (P, Q_2) edges, then $Q_1 \cap Q_2 \subseteq P$
- G is undirected (P,Q) edge only if (Q,P) edge

Dense Path Graph \Rightarrow High Critical Block Sensitivity

Lemma 2

If \exists path graph G with average degree d, then falsified clause search problem for pebbling formula has critical block sensitivity $\geq d/2$

Dense Path Graph \Rightarrow High Critical Block Sensitivity

Lemma 2

If \exists path graph G with average degree d, then falsified clause search problem for pebbling formula has critical block sensitivity $\geq d/2$

Proof:

• Orient G based on function f solving search problem
Lemma 2

If \exists path graph G with average degree d, then falsified clause search problem for pebbling formula has critical block sensitivity $\geq d/2$

- Orient G based on function f solving search problem
- If f answers $\operatorname{source}(Q)$ for bicritical (P,Q), direct edge $P \to Q$

Lemma 2

If \exists path graph G with average degree d, then falsified clause search problem for pebbling formula has critical block sensitivity $\geq d/2$

- Orient G based on function f solving search problem
- If f answers $\operatorname{source}(Q)$ for bicritical (P,Q), direct edge $P \to Q$
- Some P must have outdegree $\geq d/2$

Lemma 2

If \exists path graph G with average degree d, then falsified clause search problem for pebbling formula has critical block sensitivity $\geq d/2$

- Orient G based on function f solving search problem
- If f answers $\operatorname{source}(Q)$ for bicritical (P,Q), direct edge $P \to Q$
- Some P must have outdegree $\geq d/2$
- When P flipped to bicritical (P, Q_i) for $P \rightarrow Q_i$, then f changes

Lemma 2

If \exists path graph G with average degree d, then falsified clause search problem for pebbling formula has critical block sensitivity $\geq d/2$

- Orient G based on function f solving search problem
- If f answers $\operatorname{source}(Q)$ for bicritical (P,Q), direct edge $P \to Q$
- Some P must have outdegree $\geq d/2$
- When P flipped to bicritical (P, Q_i) for $P \to Q_i$, then f changes
- Hence critical block sensitivity $\geq d/2$, Q.E.D.

Lemma 2

If \exists path graph G with average degree d, then falsified clause search problem for pebbling formula has critical block sensitivity $\geq d/2$

Proof:

- Orient G based on function f solving search problem
- If f answers $\operatorname{source}(Q)$ for bicritical (P,Q), direct edge $P \to Q$
- Some P must have outdegree $\geq d/2$
- When P flipped to bicritical (P, Q_i) for $P \to Q_i$, then f changes
- Hence critical block sensitivity $\geq d/2$, Q.E.D.

Lemma 3 For pyramid on *n* vertices, can get average degree $\Omega(\sqrt[4]{n})$

CNFs with large critical block sensitivity search problem

Corollary 4

Search problems for pebbling formulas of pyramid graphs have critical block sensitivity $\Omega(\sqrt[4]{n})$.

4. Conclusion

There are k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\Theta(n)$ such that

- resolution can refute F_n in length O(n) (and hence so can polynomial calculus and cutting planes)
- any polynomial calculus or cutting planes refutation of F_n in length L and space s must have

 $s \log L \gtrsim \sqrt[4]{n}$

Proof.

There are k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\Theta(n)$ such that

- resolution can refute F_n in length $\mathcal{O}(n)$ (and hence so can polynomial calculus and cutting planes)
- any polynomial calculus or cutting planes refutation of F_n in length L and space s must have

 $s \log L \gtrsim \sqrt[4]{n}$

Proof.

() Pick P_n to be pebbling formula over the pyramind of n vertices

There are k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\Theta(n)$ such that

- resolution can refute F_n in length $\mathcal{O}(n)$ (and hence so can polynomial calculus and cutting planes)
- any polynomial calculus or cutting planes refutation of F_n in length L and space s must have

 $s \log L \gtrsim \sqrt[4]{n}$

Proof.

- **(**) Pick P_n to be pebbling formula over the pyramind of n vertices
- **2** Set $F_n := Lift_3(P_n)$. F_n has resolution refutation of length $\mathcal{O}(n)$

There are k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\Theta(n)$ such that

- resolution can refute F_n in length $\mathcal{O}(n)$ (and hence so can polynomial calculus and cutting planes)
- any polynomial calculus or cutting planes refutation of F_n in length L and space s must have

 $s \log L \gtrsim \sqrt[4]{n}$

Proof.

- **①** Pick P_n to be pebbling formula over the pyramind of n vertices
- Set $F_n := Lift_3(P_n)$. F_n has resolution refutation of length $\mathcal{O}(n)$
- **③** In CP and PC it holds that $s \log L \gtrsim bs_{crit}(Search(P_n))$ (Lemma 1)

There are k-CNF formulas $\{F_n\}_{n=1}^{\infty}$ of size $\Theta(n)$ such that

- resolution can refute F_n in length O(n) (and hence so can polynomial calculus and cutting planes)
- any polynomial calculus or cutting planes refutation of F_n in length L and space s must have

 $s \log L \gtrsim \sqrt[4]{n}$

Proof.

Pick P_n to be pebbling formula over the pyramind of n vertices
Set F_n := Lift₃(P_n). F_n has resolution refutation of length O(n)
In CP and PC it holds that s log L ≥ bs_{crit}(Search(P_n)) (Lemma 1)
bs_{crit}(Search(P_n)) ≥ ⁴√n (Corollary 4)

- Modern SAT solvers enormously successful in practice key issue is to minimize time and memory consumption
- Modelled by proof size and space in proof complexity
- Simultaneous optimization of time and memory in proof systems gives us efficient protocols for search problems related to CNFs.
- Search problem for pebbling formulas for pyramids requires large communication!

... and next lecture

- more details about lifted formulas
- discuss Search(Lift(F)) vs Lift(Search(F))
- pebbling formulas for pyramids have large critical block sensitivity.
- comments on proof technique/limitations/open problems.