Polynomial Identity Testing, Michael Forbes

Outline:
1) Overview
 a) algebra
 b) linear maps
 c) sum of powers of linear polynomials
 - lower bounds
 - identity testing
2) sums of powers of quadratic polynomials
 - lower bounds
 - identity testing

1) Overview:

Q (polynomial identity testing (PIT)) given a polynomial \(f(x_1, \ldots, x_n) \), is \(f \equiv 0 \)?

\[f(x_1, \ldots, x_n) = \sum_{e \in E} c_e x^e \]

where \(x^e \) is a monomial.

For \(g = f \) we can give a polynomial \(h(x) \) by an algebraic circuit.

\[h(x) = (x-y)(x-y) \]

(Lawrence-Zippel): \(S \in \mathbb{F}_p^x \), \(p \mid f(0) \neq 0 \)

Randomized algo for PIT: given circuit \(C \) compute \(f(0) \)

Use \(C \) to evaluate \(h(x) \) at \(S \), \(|S| = \frac{1}{32} \).

Typical PIT:
- black-box: only use circuit to evaluate \(f(x) \)
- white-box: can use circuit in any way

Long-term goal: efficient deterministic PIT. For interesting models of restricted circuits

- compression: \(f \in \mathbb{F}_p[X] \), \(f \) is \(20 \) or \(40 \alg \) and \(f \) computed by small circuits

Conclusion: black box

for circuits of size \(S \), exists \(S \) with \((S) \leq \text{poly}(S) \)

construct explicit \(S \)?
Q: construct any hitting set?

Lem: \(S \subseteq F \), \(|S| \leq d n \). Then \(S \) is a \((d+1)^n-1\) size hitting set for \(n\)-var, degree \(d \) polynomials. For such polynomials computed by small circuits.

Pf: \(f(x) \) in \(S \), degree \(d \)

\[
S = \{ P_i \mid f(P_i) = 0, 1 \leq i \leq d+1 \}
\]

Hence, \(f(x) \neq 0 \).

Problem: we have small hitting sets if \(n \) is small.

2) Hitting sets \(
\text{fewer} \) than \(d \)-size polynomials,

Prop: \(\exists S \subseteq F \) of \(n\)-var, degree \(d \)

Let \(H \) be a hitting set for \(S \)

Let \(\|H\| < (n+1)^d \) then can find an explicit \(g(x) \) of degree \(d \) in \(\text{poly}(S, H, n, d) \) time.

Given \(|H| \leq \left(\binom{n+d}{d} \right) \) is not hard.

Ideally \(|H| = \text{poly}(S) \)

Hence, \(g(x) \) needs \(\text{size} \approx S \) circuits. Hard to prove.

Pf: \(H \subseteq S \Rightarrow f(x) = 0 \Rightarrow f(x) = 0 \forall x \in S \)

\(f(x) = \sum_{a} c_a x^a \Rightarrow c_a x^a = 0 \forall x \in S \)

\(c_a = 0 \forall a \)

If \(c_a \) is non-zero, linear equation in \(f(x) \).

\(\|H\| \) constraints \(\left(\binom{n+d}{d} \right) \) constraints.

Linear system, so can solve.
Circle at \(\Sigma \) of general circuits.

\[f(x) = \sum_{i=1}^{n} \left(\alpha_i x_i + \alpha_i x_j + \cdots + \alpha_i x_n \right) \delta_i, \quad \delta_i \in \{0, 1\} \]

"size": \(\text{not a linear polynomial} \)

\[(x+y)^2 - (x-y)^2 = 4xy \]

3) Sum of powers of linear polynomials

defn: a sum of powers of linear polynomials \(\Sigma_{i=1}^{n} \) is

\[\sum \text{general powering circuits} \equiv \text{general circuit restriction to depth 3 is quite limiting but nontrivial!} \]

\[\sum x_i = \frac{1}{n!} \sum_{S \subseteq [n]} \left(\sum_{i \in S} x_i \right)^n \]

\[\text{size} \ n \cdot 2^n \cdot \Sigma \]

Cor: any \(n \)-var degree poly has an \(\exp(n^d) \)-size \(\Sigma \) circuit

Q: explicit poly nearly large \(\Sigma \) circuits?
3a) \(\Sigma \Lambda \Sigma \) lbs

thing: \(x_1 \cdots x_n \) need \(\Sigma \Lambda (x) \) size \(\Sigma \Lambda \) circuit

strategy: complexity measure \(m: \mathbb{R}[x] \to \mathbb{N} \)

\(s.t.: \) \(m(x_1 \cdots x_n) = \text{large} \)

\(m(f) = \text{small} \) if \(f \) has small \(\Sigma \Lambda \) circuit

\(i.e.: \) \(m(f \circ g) = m(f) + m(g) \)

\(m(\ell^d) = \text{small} \) if \(\deg \ell \leq d \)

\(\Rightarrow \) \(x_1, x_2, \ldots, x_n \in \Sigma \Lambda \) \(\ell \)

then: \(r = \frac{m(x_1 \cdots x_n)}{m(\ell^d)} \Rightarrow \frac{\text{large}}{\text{small}} = \text{large} \)

fundamental measure: "size" of partial derivative

\(\exists x: \) \(f(x_1, \ldots, x_n) \)

\(\Rightarrow \) there is only 1 partial derivative of each order!

\(\partial x_i f = \frac{\partial f}{\partial x_i} (x_1, \ldots, x_n) \)

\(\partial x_i y = \frac{\partial y}{\partial x_i} (x_1, \ldots, x_n) \)

ex: \(f(x, y) = (x + y)^n \)

chain rule: \(\partial x f = (x + y)^{n-1} \cdot 1 \)

\(\partial x y = n(x + y)^{n-1} \cdot 1 \)

\(\partial y = 2x + y \leq 2 \) polynomials essentially the same

idea: measure size by linear algebra

\(C: \mathbb{Q}[x]^{ed} \to (\mathbb{Q}[x])^{ed} \) is a \(\text{dim} \mathbb{Q}[x] = \text{dim} \mathbb{Q}[x] \) linear map

\(\text{def.} (\text{partial derivative method}): \) \(\Delta: \mathbb{Q}[x]^{ed} \to \mathbb{N} \mathbb{Q}[x]^{ed} \)

\(\Delta(f) = \sum \Delta x_i f \)

\(\Delta x_i f = \frac{\partial f}{\partial x_i} (x_1, \ldots, x_n) \)

\(\text{dim} \Delta(f) = \text{dim} \mathbb{Q}[x]^{ed} \)

ex: \(f(x, y) = (x + y)^n \)

\(\partial f = \sum (x + y)^{n-1} \cdot 1 \cdot (x + y)^{n-1} \cdot 1 \cdot \Delta x + \Delta y \)

\(\text{dim} = 3 = 2 + 1 \)

ex: \(f(x, y) = xy \)

\(\partial f = \Delta x, \Delta y, z \)

\(\text{dim} = 4 = 2^2 \)

\(f \) is 3 not 5 or 6...
\[
\begin{align*}
\deg x + \deg y &= \deg (x + y) + \deg (x) + \deg (y), \\
\text{Proof:} \quad \deg x + \deg y &= \deg (x + y) + \deg (x) + \deg (y), \\
\text{Thus} \quad \deg (x + y) &\in \text{Span}\{x, y\}.
\end{align*}
\]

Lemma: \(x + y \in \text{Span}\{x, y\} \)

Proof: \(x + y = \sum a_i x_i + \sum b_i y_i \)

So \(x + y \in \text{Span}\{x, y\} \)

Lemma: \(x^2 + y^2 \in \text{Span}\{x, y\} \)

Proof: \(x^2 + y^2 = (x + y)^2 - 2xy \)

So \(x^2 + y^2 \in \text{Span}\{x, y\} \)

This "clones" the lower bounds question but not identically steering: no hardness as answers are explainable.

Theorem: given \(\deg \) size \(\Sigma \Lambda \), can decide whether \(f \equiv 0 \) in \(\text{poly}(\deg) \).

Proof: there are \(\text{poly}(\deg) \) \(\deg \)-size hitting sets for \(\Sigma \Lambda \) circuits.

Theorem: \(\text{poly}(\deg) \) \(\deg \) cross-bounds despite simplicity of \(\Sigma \Lambda \).

Here: "scale down" with low bandwidth "see more" from lower bound.
$$f(x) = \sum_{i=1}^{d} f_i(x), \quad d \leq d_{\text{col}}, \quad \text{what does this mean?}$$

If $1 < s^d$ then $f \not\propto x_1 \cdots x_n$

Sub-case:
$$f \propto x_1 \cdots x_n, \quad i_1 < \cdots < i_k \quad \text{to } k \gg \log v$$

So $\sum \langle \text{size of } f \rangle$ can only compute $\log(v)$-size monomials.

Let
$$(x_1 + \cdots + x_n)^n = x_1^n + x_2^n + \cdots + x_n^n$$

Let σ be a large random \mathbb{F}_p-only vector.

When $f = \sum_{\gamma \in \mathbb{F}_p^d} \mathbb{F}_p \gamma$,

Then $\langle \text{size of } f \rangle \leq \log(n)$,

$$\text{since } \sum \langle \text{size of } f \rangle \text{ involves } \leq \log(n) \text{ variables}$$

In this, \varnothing is the list of non-zero monomials.

The lexicographic ordering on monomials x is \[\text{dictionary order} \]

Let $f = \sum_{\gamma \in \mathbb{F}_p^d} \mathbb{F}_p \gamma$

Let $x > y > 2^{100}$

$$x^2 + y^2 > 2^{200}$$

Thus, $\langle x_1 + \cdots + x_n \rangle = x_1^n$ for some order $+ \cdots + x_n^n$

This explains how one can f in size $\sum \langle f \rangle$

$P^h = 1)$ guess the $\langle \text{size of } f \rangle$

2) zero out other variables with lower monomial.

3) get \varnothing by poly in $\langle \text{size of } f \rangle$ vars

4) build true hitting set (random poly by $\langle \text{size of } f \rangle$ choices.

Formally, $S \subseteq \mathbb{F}_p^d$, $S = \langle \text{size of } f \rangle + \langle \text{size of } f \rangle$, S is hereditary, closed, poly

$$\varnothing = \big\{ \mathbb{F}_p^d \big\}, \quad \langle \text{size of } f \rangle \text{ hits } \varnothing$$

Let \varnothing is a total order on monomials.

1) \[x^d < x^d \]

2) \[x^a < x^b \text{ if } \langle a \rangle < \langle b \rangle \]

3) \[x^a < x^b \iff h(x^a) < h(x^b) \]

$P^h = 1)$ by olth

2) \[\langle a \rangle < \langle b \rangle \quad \text{for nonzero words} \]

3) \[\langle \text{first nonzero word of } f \rangle \text{ is positive, e.g. } f(x_1, x_2) \]
Define $x^2 < x^3$. Suppose $\frac{\partial^e(x^2)}{\partial x^e(x^2)} \neq 0$.

Claim: $\frac{\partial^e(x^2)}{\partial x^e(x^2)} < \frac{\partial^e(x^3)}{\partial x^e(x^3)}$.

Proof:
\[
\frac{\partial^e(x^2)}{\partial x^e(x^2)} = \text{const.}, \quad \frac{\partial^e(x^3)}{\partial x^e(x^3)} = \frac{\partial^e(x^2)}{\partial x^e(x^2)} + \text{lower term}
\]
This implies $x^2 < x^3$.

Main Lemma: \(\left| \frac{\partial^e(f)}{\partial x^e(LM(f))} \right| \)

When \(LM(f) \) is the leading monomial of \(f \),

so if \(x = x^2 \text{ then } f = (x, x^2, \text{ lower terms}) \)

Main Lemma: Suppose \(f \) is a polynomial.

Let \(x, y, z \in \mathbb{R} \) such that \(\frac{\partial^e(f)}{\partial x^e(LM(f))} \geq 2^k \)

If \(LM(f) \) involves \(x \) only \(= \) leading monomial involves \(x \) or lower terms.

Proof of Main Lemma:

Let \(f \) be a polynomial.

\(\frac{\partial^e(f)}{\partial x^e(LM(f))} \geq 2^k \) if \(x^k \) in \(LM(f) \).

Claim:
\(f = x^k + \text{lower} \)

\(\frac{\partial^e(f)}{\partial x^e(LM(f))} = 0 \) if \(\frac{\partial^e(x^k)}{\partial x^e(x^k)} \geq 0 \).

Claim: All polynomials in \(f \) are linearly independent.

Proof: \(LM(\frac{\partial^e(f)}{\partial x^e(LM(f))}) \geq 2^k \) such that \(x^k \) involves \(x \).
Recall: defined \(\Sigma \Lambda \Sigma \) - \(x_1, \ldots, x_n \) has size \(2^n \Sigma \Lambda \Sigma \\
\) - define \(|\Sigma| \) to be complexity measure \\
\(|\Sigma(x_1, \ldots, x_n)| = 2^n \)
\(= \) read \(2^n \) size \(\Sigma \Lambda \Sigma \) - \(x_1, \ldots, x_n \)
\(\) (sizes \(\Sigma \Lambda \Sigma \)) \(\leq S \)

- "Scale down" and "go slow" from lower bound
- if sizes \(\Sigma \Lambda \Sigma \) = \(\text{LM}(P) \) involves \(O(g(r)) \) (arithmetic)

- use structural results to gain binding size

2) sums of powers of quad polynomials

be studied \(\Sigma \Lambda \Sigma^2 \) when \(\deg(x_i) \leq 1 \) \((\Sigma \Lambda \Sigma) \)

Q: when if \(\deg(x_i) > 2 \) \(\in \Sigma \Lambda \Sigma \Sigma^2 \)

Scenarios:

1) \(\Sigma \Lambda \Sigma \Sigma^2 \) size \(S = \Sigma \Lambda \Sigma \) grew \(\leq g(r) \)

2) some \(f \) small \(\Sigma \Lambda \Sigma \Sigma^2 \) - \(f \) needs large \(\Sigma \Lambda \Sigma \)

[Diagram:
\(\Sigma \Lambda \Sigma \) scenario: \(X_1, \ldots, X_n \) has small \(\Sigma \Lambda \Sigma \Sigma^2 \) circuit
\(\Rightarrow X_1, \ldots, X_n \) needs large \(\Sigma \Lambda \Sigma \Sigma^2 \) growth over \(2^{\alpha \cdot r} \).

Prep: \(f = (x_1^2 + \ldots + x_n^2)^n \)

a) \(f \) has small \(\Sigma \Lambda \Sigma \Sigma^2 \)

b) \(f \) needs \(2^{\alpha \cdot r(n)} \Sigma \Lambda \Sigma \)

Pf: (c) by direct

(c) \(\max \{|\Sigma|\} = 2^n \)

\(f(x_1, y) = (x^2 + y^2)^n \)

\(\partial_x = 2x(x^2 + y^2) \quad x \)

\(\partial_y = 2y(x^2 + y^2) \quad y \)

\(f_{x,y} = x^2y \quad xy \)

Claim: \(S = 2^n \) \(\prod \pi \in C \lambda \Sigma \Sigma \Lambda \Sigma \Sigma^2 \) constant. \(\prod \pi \in \Sigma \Sigma \Lambda \Sigma \Sigma^2 \lambda \Sigma \Sigma \Lambda \Sigma \Sigma^2 \)

Pf: induction:

\(S = \#S \)

\(S = \sum (x_1^2 + \ldots + x_n^2)^n \)

\(S = \sum \prod \pi \in C \lambda \Sigma \Sigma \Lambda \Sigma \Sigma^2 \lambda \Sigma \Sigma \Lambda \Sigma \Sigma^2 \)

\(\Rightarrow S = \sum \prod \pi \in C \lambda \Sigma \Sigma \Lambda \Sigma \Sigma^2 \lambda \Sigma \Sigma \Lambda \Sigma \Sigma^2 \)

\(= 2(x_1^2 + \ldots + x_n^2)^n \)
Polynomial Identity Testing, Michael Forbes

Outline:
1) Review
 - Identity testing of sums of powers of linear polys
 - Sums of powers of quadratic polys (?)
2) Review

Q: polynomial identity testing: given a polynomial $f(x)$, is $f(x^n)$ polynomially identity testing?
Theorem: $x_1 - x_n$ needs $2 \log(n)$ size \mathbb{Z}^n.

Thus: the leading moments of size $s \mathbb{Z}^n$ yields $s \ll n^{1/2}$.

Proof: use $z \in \mathbb{Z}^n$ to get y_1, \ldots, y_n.

Then substitute $y_1 = x_1 - x_d$,

$y_2 = x_d - x_1$,

\vdots

$y_n = x_n - x_1$,

Thus: $x_1 - x_n$ needs $2 \log(n)$ size \mathbb{Z}^n.

Only in 2012!

Thus: the leading moments of size $s \mathbb{Z}^n$ yields $s \ll n^{1/2}$.

Claim: the leading moments of size $s \mathbb{Z}^n$ yields $s \ll n^{1/2}$.

Insight: consider $Q_{x_1, \ldots, x_n}^\infty = \sum_{i=1}^n P_{x_i} = \sum_{i=1}^n P(x_1, x_2, \ldots, x_n)$.

Both sets are of same size but (a) is easy to use and (b) is easy to use.

Key property of $\deg s$: low $\deg s$, low $\deg s$.

New measure: $x = \deg s(f) = \begin{cases} x_0^a & x_0 \leq a \\ \deg x^s \leq x \end{cases}$.

"Shifted partial orderings."

Lots of exciting recent work on this measure.

Proving the 2nd is not too hard, but another