
Algebraic Gems in TCS: Problem Set 1

Due: Thursday Oct 30, 2014, at 23:59. Submit your solutions as a PDF �le by e-mail to
jakobn at kth dot se with the subject line Problem set 1: 〈your full name〉. Name
the PDF �le PS1_〈YourFullName〉.pdf (with your name coded in ASCII without national
characters), and also state your name and e-mail address at the top of the �rst page. Solutions
should be written in LATEX or some other math-aware typesetting system. Please try to be
precise and to the point in your solutions and refrain from vague statements. Write so that a

fellow student of yours can read, understand, and verify your solutions. In addition to what
is stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solution individually and understand all
aspects of it fully. You should also acknowledge any collaboration. State at the beginning
of the problem set if you have been collaborating with someone and if so with whom. (Note
that collaboration is on a per problem set basis, so you should not discuss di�erent problems
on the same problem set with di�erent people.)
Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. It is hard to pin down 100% formal rules
on what all this means�when in doubt, ask the lecturer.
About the problems: Some of the problems are meant to be quite challenging and you are
not necessarily expected to solve all of them. A total score of around 120 points should be
enough for grade E, 155 points for grade D, 190 points for grade C, 225 points for grade B,
and 260 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2014/dd2442/ and any revised versions will be posted on
the course webpage www.csc.kth.se/DD2442/semteo14/.

1 (50 p) Let us warm up by doing some exercises in abstract algebra.

1a Recall that a group G is cyclic if it can be written G = {gn | n ∈ Z} for some generator g.
Prove that a cyclic group is abelian, i.e., that for any a, b ∈ G it holds that a · b = b · a.

1b Recall that an integral domain is a commutative ring with unity that does not have zero
divisors. Prove that a �nite integral domain is in fact a �eld.

1c We mentioned in class that the multiplicative subgroup F∗ = F\{0} is cyclic if F is a �nite
�eld. Is the �niteness condition essential here, or does this in fact hold for all �elds?
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1d A (univariate) polynomial p ∈ F[x] is irreducible if there are no two polynomials q1, q2 ∈ F[x]
of degree strictly less than p such that p = q1q2. Find an irreducible polynomial p∗ of
degree 3 over F2[x] and prove that p∗ is indeed irreducible.

Comment: There are various formal criteria that guarantees that polynomials are irre-
ducible, but this is not what we are looking for here. You should just �nd a polynomial
and prove that it is irreducible from �rst principles.

1e For any (univariate) polynomials f, g ∈ F[x], g 6= 0, it holds that f can be written as
f = q · g + r where r = 0 or deg(r) < deg(g). This representation is unique, and we say
that r is the polynomial f reduced modulo g. Let F[x]/〈g〉 be the set of polynomials of
degree stricly less than deg(g) with addition and multiplication de�ned as usual except
that the end result is always reduced modulo g as above. It is not hard to see that F[x]/〈g〉
is a commutative ring with unity.

Prove that for the irreducible polynomial p∗ you found in problem 1d it holds that F[x]/〈p∗〉
is in fact a �eld, and then provide the following information:

� The number of elements in F[x]/〈g〉.
� A generator g of the multiplicative subgroup (F[x]/〈g〉)∗. together with a full list
g, g2, g3, g4, . . . of all elements in (F[x]/〈g〉)∗ in the order generated by g.

� A full list of all generators of of the multiplicative subgroup.

Comment: This is one particular example of a general method for constructing �nite �elds
of any given (prime power) size q.

2 (50 p) Recall that the rules for forming clubs in Even town are as follows:

� Every club must have an even (and non-zero) number of members.

� No two clubs can have exactly the same set of members.

� Every two clubs must share an even number of members.

2a Prove that if Even town has n citizens, then 2Ω(n) clubs can be formed.

2b What is the best upper bound you can obtain on the number of clubs for n citizens? You
may assume that n is even.

Hint: You might want to use that for the null space L⊥ of a linear space L ⊆ Fn (as de�ned
in class) it holds that dim(L⊥) = n− dim(L).

3 (30 p) Suppose that P is a set of n points in the plan, not all on one line. Prove that the pairs
of points (p1, p2) ∈ P 2 de�ne at least n distinct lines.
Hint: Use Fisher's inequality.

4 (30 p) Prove that there cannot exist any families of (n, d, ρ)-edge expanders for ρ > d/2.
Hint: Show that there must exist a subset S of n/2 vertices such that |E(S, S)| ≈ dn/4.
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5 (60 p) The purpose of this problem is to deal with some technicalities that we swept under the
rug when presenting the explicit expander construction based on graph products.

5a Prove that if G is an (n, d, λ)-spectral expander with normalized adjacency matrix A,
then the (multi-)graph G2 with normalized adjacency matrix A2 is an (n, d2, λ2)-spectral
expander.

5b In class we actually de�ned the graph matrix product G1 · G2 in general for arbitrary
undirected regular graphs G1 and G2 as long as |V (G1)| = |V (G2)|, although we only
used the properties of this product for graphs G2 as in problem 5a to claim that if G is
an n-vertex d-regular graph with λ(G) = λ, then it holds that G2 = G · G is an n-vertex
d2-regular graph with λ(G2) = λ2.

For the other graph products we considered more general statements, the analogue of which
would be the claim that if G1 is an (n, d1, λ1)-spectral expander and G2 is an (n, d2, λ2)-
spectral expander, then G1 ·G2 is an (n, d1d2, λ1λ2)-spectral expander. Can we prove such
a statement for matrix product as well, only that we do not really need it? Please decide
whether the statement is true or false and back it up with a proof.

5c When analysing the spectral properties of graph tensor products G1 ⊗ G2 (which as we
recall are de�ned in terms of tensor products of the corresponding normalized adjacency
matrices), we claimed that if A is an n× n matrix with eigenvectors u1, . . . ,un and corre-
sponding eigenvalues α1, . . . , αn and B is anm×m matrix with eigenvectors v1, . . . ,vn and
corresponding eigenvalues β1, . . . , βn, then A⊗B has eigenvectors ui⊗vj and corresponding
eigenvalues αiβj for i ∈ [n], j ∈ [m]. Prove this claim.

5d In our analysis of the expansion properties of the replacement product, towards the end we
went so fast as to completely ignore that we needed to bound the matrix norm of tensor
products. In particular, we implicitly used that for any symmetric matrix B it holds for
the matrix norm of the tensor product In ⊗B that ‖In ⊗B‖ ≤ ‖B‖. Prove this claim.

5e Although we did not pay much attention to this during the lecture, it is not hard to see
that our expander construction is in fact strongly explicit, which by what was said in
class means that we can plug in this expander in the randomness reduction argument that
we covered right before starting the expander construction. Could we have been a bit
more relaxed and used a merely explicit expander construction to get the same kind of
randomness reduction? Explain why this works or why it does not.
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6 (80 p) In this problem we want to study properties of the spectrum of normalized adjacency
matrices of undirected, regular graphs, some of which were claimed without proof in class. In
all of the problems below, we let G be an undirected n-vertex d-regular graph (for d > 0) with
normalized adjacency matrix A (also known as the random-walk matrix of G), and we write
µ1 ≥ µ2 ≥ . . . ≥ µn to denote the eigenvalues of A sorted in decreasing order.

6a Suppose that B is any n×n real, symmetric matrix that can be decomposed as B = UV UT ,
with V = diag(ν1, . . . , νn) being a diagonal matrix and U being an orthonormal matrix
(this is known as a symmetric eigenvalue decomposition and is guaranteed to exist by the
Spectral theorem). Verify that the columns ui of U are indeed eigenvectors of B with
corresponding eigenvalues νi.

6b We say that two n × n matrices B and C are similar if there exists a matrix P such
that C = P−1BP . Prove that similar matrices have the same eigenvalues with the same
multiplicity. (You can assume that B and C are real and symmetric if you like.)

Hint: This might be useful for the problems below, since it allows you to massage A as
convenient without loss of generality.

6c Prove that µ1 = 1 and that the multiplicity of this eigenvalue is equal to the number of
connected components of G (so, in particular, µ2 < 1 if and only if G is connected).

6d Prove that µn < 0.

6e Prove that if G is bipartite, then µn = −1, and more generally that if µ is an eigenvalue,
then so is −µ (and with the same multiplicity).

Hint: Here you can use problem 6b again.

7 (60 p) For this problem, and for this problem only, please feel free to use textbooks,

search in the research literature, or roam the internet to �nd helpful information.

Let us say that a Ramsey graph G(s, t) is a graph that has no independent set of size s and
no clique of size t. The Ramsey number R(s, t) is the smallest n such that no Ramsey graph
G(s, t) exists. Let xi,j , 1 ≤ i < j ≤ n, be propositional variables and consider the CNF formula

F s,t
n =

∧
S⊆[n]
|S|=s

∨
i,j∈S
i 6=j

xi,j ∧
∧

T⊆[n]
|T |=t

∨
i,j∈T
i 6=j

xi,j .

If we think of xi,j as encoding the existence or non-existence of an edge (i, j) in an n-vertex graph,
we can see that F s,t

n is satis�able if and only if there is a Ramsey graph G(s, t) on n vertices.

7a Can you compute any interesting Ramsey graphs (and exact Ramsey numbers) by feeding
formulas F s,t

n to a state-of-the-art SAT solver? Please give examples of both constructions
and Ramsey numbers obtained in this way, and identify the limits for this approach (where
we consider a formula to be beyond the limits of what we can handle if that SAT solvers
does not solve it in half an hour on a workstation, say).
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7b Looking at the literature, does there seem to have been any serious use of SAT solvers to
compute Ramsey numbers? If so, how large Ramsey numbers can one compute by using
SAT solving, and are there any other encodings than F s,t

n and/or any additional tweaks
used in order to get these results?

7c Looking at the literature, can you �nd any theoretical results that shed light on the poten-
tial and limitations of current SAT solving techniques when it comes to attacking proposi-
tional encodings of Ramsey graphs/Ramsey numbers such as F s,t

n ?

Comment: Before starting to do serious computations, please ask for an account on one of our
workstations in the TCS group and for some information about which SAT solvers are available
and how to use them. Please contact the lecturer via Piazza regarding these questions.
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