
Algebraic Gems in TCS: Problem Set 2

Due: Sunday Dec 14, 2014, at 23:59. Submit your solutions as a PDF �le by e-mail to jakobn
at kth dot se with the subject line Problem set 2: 〈your full name〉. Name the PDF
�le PS2_〈YourFullName〉.pdf (with your name coded in ASCII without national characters),
and also state your name and e-mail address at the top of the �rst page. Solutions should
be written in LATEX or some other math-aware typesetting system. Please try to be precise
and to the point in your solutions and refrain from vague statements. Write so that a fellow

student of yours can read, understand, and verify your solutions. In addition to what is
stated below, the general rules stated on the course webpage always apply.
Collaboration: Discussions of ideas in groups of two people are allowed�and indeed,
encouraged�but you should write down your own solution individually and understand all
aspects of it fully. You should also acknowledge any collaboration. State at the beginning
of the problem set if you have been collaborating with someone and if so with whom. (Note
that collaboration is on a per problem set basis, so you should not discuss di�erent problems
on the same problem set with di�erent people.)
Reference material: Some of the problems are �classic� and hence it might be easy to �nd
solutions on the Internet, in textbooks or in research papers. It is not allowed to use such
material in any way unless explicitly stated otherwise. Anything said during the lectures or
in the lecture notes should be fair game, though, unless you are speci�cally asked to show
something that we claimed without proof in class. It is hard to pin down 100% formal rules
on what all this means�when in doubt, ask the lecturer.
About the problems: Some of the problems are meant to be quite challenging and you
are not necessarily expected to solve all of them. A total score of around 60 points should
be enough for grade E, 90 points for grade D, 120 points for grade C, 150 points for grade B,
and 180 points for grade A on this problem set. Any corrections or clari�cations will be
given at piazza.com/kth.se/fall2014/dd2442/ and any revised versions will be posted on
the course webpage www.csc.kth.se/DD2442/semteo14/.

1 (20 p) In Lecture 12, we saw that the Hadamard code could be de�ned so as to encode a

binary string x ∈ {0, 1}k as the value of all linear functions evaluated on x, i.e., as the sequence
(`(x) : ` ∈ L), where L = {

∑k
i=1 cixi | ci ∈ {0, 1}} denotes the set of all linear functions from

{0, 1}k to {0, 1}. (This is equivalent to the de�nition we had before our �nal tweak to double

the number of codewords).

In the same way, one can de�ne the long code of x ∈ {0, 1}k as the value of all functions

(linear or not) evaluated on x, i.e., as the sequence (f(x) : f ∈ F), where we write F =
{f | f : {0, 1}k → {0, 1}} to denote the set of all functions from {0, 1}k to {0, 1}. Determine the

block length and distance of this code. Is it linear?

Hint: It might be helpful to observe that a function f : {0, 1}k → {0, 1} can be represented as

a bitstring {0, 1}2k . Identifying an integer x with the n-bit binary representation of x, we can
then think of f(x) as the xth bit in this bitstring.
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2 (20 p) An (n, k, d)q code is called systematic if the message is encoded into a codeword consisting

of the message as the k �rst symbols followed by n− k check symbols. Linear codes can always be

made systematic by transforming the generator matrix G to the form [Ik |A] (possibly permuting
the positions in the codeword).

Write the generator matrix for the
[
2` − 1, 2` − `− 1, 3

]
2
Hamming code in systematic form.

Can you explain the meaning of the check bits?

3 (20 p) Suppose that we have a Reed-Solomon code with parameters1 [n, n/2, n/2]n for n = 2m

and concatenate this code with the trivial binary code that is identity (i.e., has block length and

message lengthm and distance 1). We claimed in class that this yields an [mn,mn/2, n/2]2-code,
but is it really true that the distance can be as bad as only n/2? Either prove that the minimum

distance will in fact be signi�cantly better than n/2 or provide an explicit example of a code

where the distance is close to n/2.

4 (30 p) Recall that the binary entropy function H(p) is de�ned by H(0) = H(1) = 0 and H(p) =
−p log2 p − (1 − p) log2(1 − p) for 0 < p < 1. In Lecture 12, we claimed that for the volume of

the Hamming ball of radius pn in Fn2 it holds that Vol2(pn, n) =
∑

0≤i≤pn
(
n
i

)
≈ 2nH(p). We now

want to make this claim formal.

4a Prove that for 0 ≤ p ≤ 1
2 it holds that

∑
0≤i≤pn

(
n
i

)
≤ 2nH(p).

Hint: Write 1 = (p+ (1− p))n and expand.

4b Prove that for 0 ≤ p ≤ 1
2 it holds that

lim
n→∞

log2
(∑

0≤i≤pn
(
n
i

))
n

= H(p) .

Hint: Since you will want to round pn to an integer in order for the binomial coe�cients

to typecheck, you might also want to use the corollary of the mean value theorem saying

that

|f(x)− f(y)| ≤ |x− y| max
ξ∈(x,y)

|f ′(ξ)| .

5 (50 p) In this problem we want to investigate various aspects of the Schwartz-Zippel lemma.

5a In Lecture 9, we proved the version of the Schwartz-Zippel lemma that says that any poly-

nomial f ∈ Fq[x1, x2, . . . , xn] of total degree d is zero on at most a fraction d
q of the points

in Fnq . In our proof we wrote the polynomial as f(x1, x2, . . . , xn) =
∑d

i=0 x
i
1fi(x2, . . . , xn),

picked the largest i∗ such that fi∗(x2, . . . , xn) 6≡ 0, and then argued by induction.

A question that was raised after this lecture was whether we really needed to pick i∗

maximal, or whether any i such that fi(x2, . . . , xn) 6≡ 0 would work equally well. Answer

this question. That is, either show that the argument that we had goes through for any i
or point out where it fails.

1Too avoid clutter, we are a bit sloppy here and ignore rounding and o�-by-one errors in the message length-

distance relation.
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5b There is also a version of the Schwartz-Zippel lemma with bounds on individual degrees

that says the following: If f ∈ Fq[x1, x2, . . . , xn] is a non-zero polynomial with individual

degrees degxi(f) ≤ di for i = 1, . . . , n, then f is non-zero on at least a fraction
∏n

i=1(q−di)
qn

of the points in Fnq . Prove this lemma.

Hint: Use the fact that we can think of f as a univariate polynomial in xn with coe�cients

in the ring Fq[x1, x2, . . . , xn−1].

5c Prove the version of the Schwartz-Zippel lemma that we needed in Lecture 9 for our analysis

of Reed-Muller codes where the polynomials have total degree larger than the �eld size.

That is, prove that if f ∈ Fq[x1, x2, . . . , xn] is a non-zero polynomial with individual degrees

degxi(f) ≤ s for i = 1, . . . , n and total degree deg(f) = d = sk + r, then f is non-zero on

at least a fraction
(
1− s

q

)k(
1− r

q

)
of the points in Fnq .

Hint: Combine the other Schwartz-Zippel lemmas we have seen.

6 (30 p) In one of the guest lectures on polynomial identity testing for depth-3 powering circuits,

or ΣΛΣ circuits, Michael Forbes considered a lexicographic ordering on monomials and showed

that small ΣΛΣ circuits have to compute polynomials with small leading monomials with respect

to this ordering. After some further reasoning, this led to the construction of hitting sets of size

roughly slog s for size-s ΣΛΣ circuits.

Recall that in the lexicographic ordering there is some order x1 > x2 > · · · > xn on the vari-

ables, and we have that monomials containing x1 always win over monomials not containing x1.

More formally, if we denote ~x~a =
∏
xaii then ~x~a > ~x

~b if the �rst non-zero entry in the vector ~a−~b
is positive, so that, for instance, x1x2 > x1 > x2x3 > x3x

2
4x5 holds. Because of his background

in proof complexity, Jakob likes much better the degree lexicographic ordering (also known as

the graded lexicographic ordering), in which monomials of larger total degree always win over

monomials of smaller total degree and lexicographic ordering is only used to split ties between

monomials of the same degree. That is, for degree-lexicographic ordering we would have, for

example, x3x
2
4x5 > x1x2 > x2x3 > x1.

Jakob spent a fair chunk of the lecture thinking about why Michael did not choose this

latter, clearly more pleasing, ordering instead, and whether all the proofs would still work in

this setting or whether the arguments would break down at some critical junction. Please help

Jakob to �gure this out. That is, either show that everyhing Michael did on the board would

still work, and explain why the critical steps would still go through (not necessarily repeating

the whole argument verbatim, though), or point out where the proofs would break and why.

7 (40 p) It follows from the Schwartz-Zippel lemma that for any �eld Fq and any subset S =
{α0, α1, . . . , αd} ⊆ Fq of size

∣∣S∣∣ = d+ 1 ≤ q it holds that Sn = {(αi1 , αi2 , . . . , αin) | 0 ≤ ij ≤ d}
is a hitting set for polynomials in Fq[x1, x2, . . . , xn] of total degree at most d. Prove that it is in

fact possible to �nd hitting sets of size
(
n+d
d

)
�
∣∣Sn∣∣ = (d+ 1)n for such polynomials.

Hint: Consider the set S′ = {(αi1 , αi2 , . . . , αin) | ij ≥ 0,
∑n

j=1 ij ≤ d} and analyze the proof of

the Schwartz-Zippel lemma.
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8 (60 p) We say that an undirected graph G = (V,E) is an (s, d, c)-vertex expander if G is d-regular
and for every S ⊆ V (G) of size |S| ≤ s it holds that |N(S)| ≥ c|S|, where we write N(S) =
{u | ∃(u, v) ∈ E(G) for v ∈ S} to denote the set of neighbours of S. The goal of this problem is

to establish a connection between vertex expansion and spectral expansion.

8a Prove that if p is a probability vector, then ‖p‖22 is the probability that if i, j ∈ [n] are
chosen independently distributed according to p, we get i = j.

8b Prove that if s is the probability vector denoting the uniform distribution over some subset

S ⊆ V (G) of a graph G with random-walk matrix A, then ‖As‖22 ≥ 1/|N(S)|.

8c Prove that if G is an (n, d, λ)-spectral expander and S ⊆ V (G) has size |S| = εn, then

|N(S)| ≥ |S|
(1− ε)λ2 + ε

.

Hint: Show that for s being the uniform distribution over S it holds that ‖As‖22 ≤
‖A1/n‖22 + λ2‖s− 1/n‖22.

Remark: This shows that a Ramanujan graph (with second eigenvalue roughly 2/
√
d) has vertex

expansion roughly d/4 for small enough vertex sets. This can actually be improved to d/2, which
is tight. Random d-regular graphs, however, have vertex expansion (1− o(1))d almost surely.

9 (50 p) For this problem, and for this problem only, please feel free to use textbooks,

search in the research literature, or roam the internet to �nd helpful information.

Let p ∈ N+ be a prime number and for x ∈ Fp de�ne

x∗ =

{
0 if x = 0,

x−1 otherwise.

Let Gp =
(
Vp, Ep

)
be the undirected, 3-regular graph with vertex set Vp = Fp and edges (x, x+1),

(x, x− 1), and (x, x∗), for each x ∈ Vp.
We claimed in Lecture 5 that such graphs Gp are good expanders. Compute exactly for

p = 7, 11, 13, 17, 19, . . . and as far up as you can go the exact edge expansion

h
(
Gp
)

= min
S⊆V (Gp)
0<|S|<p/2

|E(S, S)|
|S|

for these graphs. Does the expansion seem to converge to some value? Can you �nd any

theoretic lower (or upper) bounds on the expansion in the literature? How do such theoretic

bounds compare with the exact values that you can obtain?

In addition to answering the above questions, please explain brie�y how you coded up the

program used to solve this problem and what running times you observed (your time-out limit

should be at least 30 minutes on a reasonably powerful hardware platform as explained below).

Please do not submit any code, however, but instead describe how it works. Place the actual

code in a directory in the AFS �le system where jakobn has reading and listing permission rl

(as shown by fs la .) . Note that permission l is needed for the whole path leading to the

directory. Make sure your code works in the KTH CSC Ubuntu Linux environment. Include a

Make�le in the directory, or a shellscript make that will compile your code. If there are problems

with any of the above, contact the lecturer to agree on some other technical solution.

Before starting to do serious computations, please ask (e.g., by contacting the lecturer via

Piazza) for an account on one of our workstations in the TCS group where you can run more

heavy-duty tasks, or make sure to use other hardware with comparable speci�cations.

Page 4 (of 4)

DD2442 Seminars on Theoretical Computer Science: Algebraic Gems in TCS � Autumn 2014, period 1�2
Jakob Nordström


