Lecture 15: “PHP is hard for βdFrege” - part III -

We conclude the proof of the following theorem.

Theorem: Let F be a Frege system over $\{\forall, \neg\}$ and let $d \geq 3$. For sufficiently large n, every depth d proof of $\neg \text{OFPHP}_n^d$ in F has size $\geq 2^n$ for $0 < \delta < (\frac{1}{5})^d$.

Lemma 3: Let d be an integer, $0 < \varepsilon < \frac{1}{5}$, $0 < \delta < \varepsilon^d$ and Γ a set of formulas of depth $\leq d$ closed under subformulas.

If $|\Gamma| < 2^n$ then there exist $\rho \in M_n^q$ with $q = \varepsilon^d$ and there exist $\sigma \in 2n^\delta$-evaluation of Γ^ρ.

M_n^q = the set of all matchings over P, H of size $n + 1$ and ρ resp. of size q.

The proof of Lemma 3 will construct (by ind on the depth) a K-evaluation using some very specific kind of CHDT, i.e. canonical trees. To keep their depth small we will use restrictions and a Switching Lemma then. Since K-evaluations are well-behaved under restrictions then we will be able to build a K-evaluation in Lemma 3. This is from a very high level perspective the plan of the lecture.
- **Canonical Matching Decision Trees** -

Given a matching disjunction $F = t_1 \vee \ldots \vee t_m$, and a matching $\rho \in M_n$, the **canonical matching decision tree** $T(F, \rho)$ is the following tree in $CMDT(VF_{\rho})$ representing $F|_{\rho}$: fix an ordering on the terms of F and fix an ordering on the variables of F,

(i) if $F|_{\rho} \equiv 0$ then $T(F, \rho)$ is a single node labeled 0, analogously for $F|_{\rho} \equiv 1$

(ii) if $F|_{\rho} \neq 0$ and $F|_{\rho} \neq 1$ let t be first term in $F|_{\rho}$ then $T(F, \rho)$ is constructed as follows:

There is only one leaf with label 1, full matching tree for the variables in t; query in order the variables in t, i.e., for x_{ij} query first i, then j, both have outgoing edges: all the possible edges (i, x) (resp. (j, x)) with $x \in V_{\rho}$ consistent with the path leading to i.

Example: the trees we used in the definition of κ-evaluations for x_{ij} are canonical.

Example 2: $P = \{1, 2, 3, 4, 5\}$, $H = \{6, 7, 8, 9\}$

$F = (x_{17} \land x_{38}) \lor (x_{16} \land x_{27}) \lor (x_{6} \land x_{49}) \lor (x_{16} \land x_{59})$

$\rho = \{(1, 6)\}$

Suppose that the terms and vars are ordered according the way they are written in F above.

Write $T(F, \rho)$.

$F|_{\rho} = x_{27} \lor x_{49} \lor x_{59}$

$V|_{\rho} = \{2, 3, 4, 5, 7, 8, 9\}$

- Level when 2 is queried
- Level when 7 is queried
Lemma 4 (switching lemma): Let $F = t_v \ldots t_m$ be an r-matching DNF over P, resp. of size m, n. Let s be an integer, $l \leq n$ and let

$$\text{Bad}_n^2(F, 2s) = \{ p \in M_n^2 : T(F, p) \text{ has depth } \geq 2s \}$$

Then

$$\frac{|\text{Bad}_n^2(F, 2s)|}{|M_n^2|} \leq \left(\frac{2r}{n-l} \right)^s$$ \((\star)\)

(Notice that the bound in \((\star)\) does not depend on the number of terms in F.)

Proof: (using the encoding idea by Razborov)

We build an injective mapping $\gamma: \text{Bad}_n^2(F, 2s) \rightarrow M_n^{l-s} \times \text{code}(r, s) \times [2^{l+1}]^{2s}$, where $\text{code}(r, s)$ is the set of all strings $\beta = (\beta_1, \ldots, \beta_d)$ s.t. $\beta \in \{0, 1\}^r \setminus \{0\}^r$ and the number of occurrences of 1s in β is exactly s.

From the existence of such γ, the fact that $|\text{code}(r, s)| \leq \left(\frac{r}{k_2} \right)^s$ (\(\star\)) and the fact that $\frac{|M_n^{l-s}|}{|M_n^2|} \leq \left(\frac{d(k+1)}{n-l} \right)^s$ (also \(\star\)) we immediately get the bound in \((\star)\). So let's focus on building such γ.

If $p \in \text{Bad}_n^2(F, 2s)$ then $T(F, p)$ looks like the following picture:

- Full tree for t_{i_1}, first term in F s.t. $t_{i_1} \uparrow p \neq 0$
- Full tree for t_{i_2}, first term in F s.t. $t_{i_2} \uparrow p \neq 0$
- Full tree for t_{i_3}, s.t. etc.
Let's say that $\pi = \pi_i u \cdots u \pi_j$ is the leftmost path in $T(F, \rho)$ of length $2s$. (It exists by our assumption on the depth of $T(F, \rho)$.)

The paths $\sigma_i, \ldots, \sigma_D$ are the paths setting to true the terms t_{i_1}, \ldots, t_{i_D}, more precisely, for each $k \leq D$ $t_{i_k} \mid \rho \cup \sigma_i u \cdots u \sigma_D u \sigma_k = 1$.

Let $\sigma = \sigma_i u \cdots u \sigma_D$, then we define $\eta(\rho)$ as:

$$\eta(\rho) = (\rho \cup \sigma, \beta, m).$$

By construction, along π and σ the same variables are queried, since the length of π is $2s$, then the variables queried are exactly s and $|\sigma| = s$ too.

So $\rho \cup \sigma \in \mathcal{M}_{s} - s$.

Let β, the second entry of $\eta(\rho)$, be the following string $\beta = (\beta_1, \ldots, \beta_D)$ where

$$(\beta_j)_k = \begin{cases} 1 & \text{if the k-th variable of t_{i_j} is queried in π} \\ 0 & \text{otherwise} \end{cases}$$

Clearly $\beta \in \text{code}(r, s)$, since there are exactly s variables queried in the whole π.

The last entry m of $\eta(\rho)$ says how the variables whose position is encoded by β are set by π. More precisely, if β says that the variable X_i^j is queried then m says where X_i is mapped by π among the s holes not covered by ρ, and where b is mapped by π among the m_i pigeons not covered by ρ.

To encode this we just need the set $[2l + 1]_2$.

This concludes the construction of η, so why is it injective?

This follows from the fact that from $(\rho \cup \sigma, \beta, m)$ in the image of η we can reconstruct ρ.

Let t_{i_1} be the first term in F s.t. $t_{i_1} \mid \rho \cup \sigma = 1$, let ρ' be in the counter-image of $(\rho \cup \sigma, \beta, m)$. It must be that $\rho' \leq \rho \cup \sigma$. Let t_{i_1} be the first term of F s.t. $t_{i_1} \mid \rho' \neq 0$. We have that $t_{i_1} \mid \rho', \neq 0$ and so $i_1 \leq i_1'$. By construction $t_{i_1} \mid \rho \cup \sigma = 1$ but i_1 was the first index with this property so $i_1' \leq i_1$ and hence $i_1 = i_1'$. We found t_{i_1}! From β now we know all the positions of the variables in t_{i_1} set by σ_i, and hence we know σ_i. From m now we know how the underlying set of vertices of such variables are set in t_{i_1}.

Now we can repeat the previous argument using $(\rho \cup \sigma \setminus \sigma_i) u t_{i_1}$ instead of $\rho \cup \sigma$. As before we find t_{i_2}, σ_2 and t_{i_2} etc. In the end we found all $\sigma_1, \ldots, \sigma_D$ so from $\rho \cup \sigma$ we can reconstruct ρ.