Final lecture today.

We are in the middle of proving that resolution and tree-like resolution are unlikely to be automatizable.

I.e., worst case it is likely not possible to find refutation of F in time polynomial in the smallest refutation.

Result obtained by reduction from circuit complexity.

Given monotone circuit C, it is assumed to be hard to tell what is the smallest number of inputs that needs to be 1 in order to satisfy circuit C.

Let us jump straight into where we were — the proof of the main technical lemma.
\[
\text{Inputs to } F: \text{ choosing vector } \mathbf{a} \text{ at } j \text{ for column } j
\]
\[
\text{Inputs to } f_i: \text{ choosing circuit copy for row } i
\]
\[
\text{Value of node } v \text{ evaluated on row } i \text{ if circuit copy } c
\]
\[
\text{Notational shorthands}
\]
\[
[\text{col}_j = \mathbf{a}] \implies " F_j (x_j^1, ..., x_j^5) = \mathbf{a}"
\]
\[
[\text{ctrl}_i = c] \implies " f_i (y_i^1, ..., y_i^5) = c"
\]
\[
\overline{x_j^5} = (x_j^1)^{\overline{5}} \land (x_j^2)^{\overline{5}} \land ... \land (x_j^5)^{\overline{5}}
\]
\[
-x_j^5 = (x_j^1)^{-5} \lor (x_j^2)^{-5} \lor ... \lor (x_j^5)^{-5}
\]
\[
(x \land y) \rightarrow z = \overline{x} \lor \overline{y} \lor \overline{z}
\]

\text{Clauses Expansion to CNF of}

(i) \quad \exists \ y_i \in \text{Dom}(f_i) \quad \forall i \in [m]

(ii) \quad (\forall j \quad \exists \mathbf{a} \quad \exists \mathbf{c} \quad \forall i \in [m] \quad \alpha_i = 1)

(iii) \quad (\forall j \quad \exists \mathbf{a} \quad \exists \mathbf{c} \quad \forall i \in [m] \quad \alpha_i = 1)

(iv) \quad \forall i \quad \exists \mathbf{c} \quad \overline{Z_i} = \{z_i^1, z_i^2, ..., z_i^5\}

\text{sometimes also write}

\{z_i^1, z_i^2, ..., z_i^5\} = \{x_i^1, x_i^2, ..., x_i^5\}
Given $A \in \{0,1\}^m$, define
\[
d_1(A) = \max \{ d \mid \text{s.t. for any } d \text{ vectors } \hat{a}^{(1)}, \ldots, \hat{a}^{(d)} \in A \text{ if } i \in [m] \text{ s.t.} \\
\hat{a}^{(i)}_1 = \ldots = \hat{a}^{(d)}_i = 1 \}
\]
\[
d_0(A) = \max \{ d \mid \text{s.t. for any } d \text{ distinct } i_1, \ldots, i_d \in [m] \text{ if } \hat{a} \in A \text{ s.t.} \\
\hat{a}_{i_1} = \ldots = \hat{a}_{i_d} = 0 \}
\]

For D choose over $\text{Vars}(T(C, b, F, f))$ define
\[
W_x(D) = \# \text{ x-variables in } D \\
W_y(D) = \# \text{ y-variables in } D \\
W_c(D) = \# \text{ variables } z^c \text{ in } D \\
\text{(note that } c \text{ fixed)}
\]

The \textit{controlled width} of D is
\[
\tilde{W}(D) = W_x(D) + W_y(D) + r \cdot \min_{c \in [r]} W_c(D)
\]

Recall $k(C) = \text{minimum Hamming weight}$ of any satisfying assignment for C
We have a monotone circuit $C(p_1, \ldots, p_n)$ and a set of vectors \(\mathcal{A} \subseteq \{0,1\}^m \). There are functions $F_1, \ldots, F_n : \{0,1\}^S \to \mathbb{R}$ such that f_i possibly partial, and m, r, s are arbitrary positive integer parameters such that
\[r = \Omega(s) \]

Then
\[(a) \quad \chi(C) \leq d_{\chi}(\mathcal{A}) \]
\[\ell_{\mathcal{R}}(\mathcal{T}(C, \mathcal{A}, F, F) + 1) = O(1)^{1.2^s(k(c) + 1)} \]

\[(b) \quad \tilde{W}(\mathcal{T}(C, \mathcal{A}, F, F) + 1) \geq \frac{c2}{2} \min \{k(c), d_{0}(\mathcal{A})\} \]

\[(c) \quad \ell_{\mathcal{R}}(\mathcal{T}(C, \mathcal{A}, F, F) + 1) = \exp(2^{\log(2)(\frac{r^2}{2} \min\{k(c), d_{0}(\mathcal{A})\})}) \]

Did proof of (a) last time.

$k(C) \leq d_{\chi}(\mathcal{A}) \Rightarrow$ for any choice of vectors \exists row i forcing C to 1, say $(1^k 0^{n-k})$.

But $\mathcal{T}(C, \mathcal{A}, F, F)$ claims C evaluates to 0 on this input.

Do top-down proof in circuit showing that not all k+1 first inputs can be 1 — contradiction.
Define "progress measure" \(\mu : \text{clauses} \rightarrow \mathbb{N} \) such that

(i) \(\mu(\text{axiom}) = 1 \)
(ii) \(\mu \) subadditive, i.e. \(\mu(BvC) \leq \mu(Bvx) + \mu(Cv\overline{x}) \)
(iii) \(\mu(\bot) \) large

Hence any refutation \(T : T(Cit, \overline{v}, \overline{f}) \vdash \bot \)
must contain clause \(D \) with \(\mu(D) \) medium-large.

(iv) Prove \(\mu(D) \) medium-large
 \[\Rightarrow \tilde{W}(D) \text{ large} \]

Note that all axioms in \(T(Cit, \overline{v}, \overline{f}) \) refer
to one specific row \(i \). Let

\[R_i = \{ \text{all axioms greeking about row } i \} \]

and

\[\mu(D) = \min \{ |I| : I \subseteq [m], \cup_i R_i = D \} \]

Properties (i) & (ii) above are immediate

Let us describe intuitively how to
do (iii) and (iv). Need to
prove Claims 1 & 2 on next page,
after which Part (6) follows.
Claim 1 \[\mu(I) > d_0(A) \]

Proof sketch

Equivalently, if \(|I| \leq d_0(A)\)

then \(\bigcup_{i \in I} R_i \) is satisfiable.

For any such \(I \), pick \(\tilde{a} \in A \) s.t.

\(\tilde{a}_i = 0 \) for \(i \in I \) (possible since \(|I| \leq d_0(A)\))

Consider matrix \(M = \begin{pmatrix} \frac{1}{\tilde{a}} & \cdots & \frac{1}{\tilde{a}} \\ 1 & \cdots & 1 \end{pmatrix} \)

C evaluates to 0 on all rows \(i \in I \) of \(M \), so \(\bigcup_{i \in I} R_i \) satisfiable \(\square \)

Hence \(\exists D \in \Pi \) with \(\frac{d_0(A)}{2} < \mu(D) \leq d_0(A) \)

Claim 2 If \(\mu(D) \leq d_0(A) \), then

\[\widehat{\nu}(D) = \mu(D) \cdot \min \left\{ k(c), \frac{d_0(A)}{2} \right\} \]

\[+ \cdot \min \left\{ k(c), \mu(D) \right\} \]

Proof sketch

Fix \(I \in \mathbb{I} \) minimal such that

\[\bigcup_{i \in I} R_i = D \]

i.e., \(\mu(D) = |I| \). By minimality, \(\forall i \in I \)

\[\bigcup_{i \in I \setminus \{i\}} \neq D \]
i.e., we can evaluate all rows in \(I \) except \(i_0 \) correctly and still falsify \(D \).

Now if \(\tilde{W}(D) \) too small, can find

(a) \(> n - k(c) \) columns \(\tilde{A} \) where \(D \) mentions \(< r \) variables \(\tilde{y} \), choosing column vectors

(b) row \(i_0 \) where \(D \) mentions \(< r \) variables \(\tilde{y}_{i_0} \), choosing circuit copy

(c) control \(C_0 \) such that \(D \) doesn't say anything about row \(i_0 \) being evaluated in \(C_0 \)

Do the following:

(a') change \(n - k(c) \) columns to vector \(\tilde{A} \) such that \(\tilde{a}_i = 0 \) for \(i \in I \) (by \(r \)-surjectivity of \(\sigma \))

without assigning to variables in \(D \)

(b') change variables \(\tilde{y}_{i_0} \) to choose circuit copy \(C_0 \) for row \(i_0 \) (again by \(r \)-surjectivity of \(\sigma \))

(c') Evaluate row \(i_0 \) correctly on circuit \(C_0 \), yielding output 0 since \(< k(c) \) positions are 1.

This satisfies \(R_{i_0} \).

\(\forall i \in I \setminus \{i_0\} \) still satisfied (requires assignment)

But \(D \) false, since we didn't touch \(\text{Vars}(D) \).

Contradiction
Formal proof of Claim 1

Fix any $I \subseteq [m]$, $|I| \leq d_0(A)$
Choose $\bar{a}^* \in \mathcal{T}$ s.t. $\bar{a}^*_i = 0$ for $i \in I$.
Choose $\delta_j \in \{0,1\}^m$ s.t. $F_j(\delta_j) = \bar{a}^*$
for all $j \in [n]$ (possible since F_j onto)
Set $\bar{x}_j = \delta_j$

Set \bar{y}_i, $i \in [m]$ in any way that satisfies axioms (ii) (possible since f_i surjective, and hence defined somewhere)
Set $\bar{x}_i, \bar{z}_i = 0$ for all $i \in I$

Now verify that this assignment satisfies $V_{i \in I} R_i$.

Axioms (i) OK by construction above

Axioms (ii) OK since all such axioms will have $\bar{a} \neq \bar{a}^*$ and hence $[col_j = \bar{a}]$ will be false.

Axioms (iii) & (iv) OK since all z-variables set to false, and this is a correct computation since all inputs are false.

Hence $V_{i \in I} R_i$ satisfiable if $|I| \leq d_0(A)$, so $\mu(1) > d_0(A)$ as claimed. \(\Box\)
Formal proof of Claim 2

Fix any D such that $\mu(D) \leq d_0(t)$

Fix any minimal-size $I \subseteq [m]$ such that

$$\forall i \in I \quad R_i \models D$$ \hspace{1cm} (1)

Will show that if $\tilde{W}(D)$ too small, then can find assignment satisfying $\forall i \in I \quad R_i$ but falsifying D — contradiction.

If $\forall i \not\in I$ we have one of the following

1. D contains $\geq r$ variables in $\{y_i \mid v \in S\}$, or
2. $\forall v \in [r] \quad D$ contains at least one variable among $\{z_{i,v} \mid v \text{ code in } C\}$

then we are done. In case (1) we get a contribution $\geq r$ to W_j and in case (2) a contribution $\geq r \cdot \text{min}_{c \in [r]} W_c(D)$

So suppose $\exists i_0 \in I$ s.t. neither (1) nor (2) holds.

Then $\exists c_0 \in [r]$ s.t. no variable $z_{i_0,v}$ appears in D, i.e. D doesn't talk at all about evaluating row i_0 in circuit copy C_{c_0}
Fix assignment α to $\text{Vars}(E(\sigma t, p, f))$ that satisfies

$$\forall i \in I \backslash \{i_0\}, R_i$$

and falsifies D (must exist since I was chosen minimal).

Let J_0 consist of those $j \in [n]$ for which D contains at least r variables from $\{x_j^v \mid v \in [s]\}$.

If $|J_0| \geq k(c)$ then $\tilde{W}(D)$ is as large as claimed, so suppose $|J_0| < k(c)$.

Now we will change α to α' such that

$$\alpha'(\forall i \in I, R_i) = 1$$

without assigning to $\text{Vars}(D)$.

Fix $\tilde{\alpha}^* \in \tilde{A}$ s.t. $\tilde{\alpha}^* = 0 \quad \forall i \in I$

STEP 1 For every $j \in [n] \backslash J_0$, change values of $\{x_j^v \backslash \text{Vars}(D)\}$ so that

$$F_j(x_j^v) = \tilde{\alpha}^*$$

This is possible since F_j is r-surjective.

STEP 2 Change values in $\tilde{g}_{i_0} \backslash \text{Vars}(D)$ so that

$$f_{i_0}(\tilde{g}_{i_0}) = c_0$$

This uses r-surjectivity of f_{i_0}
STEP 3: Reassign all variables

\{ Z_{i_0,v} \mid v \in C \}

to the values computed by \(C \) when fed the characteristic vector \(\mathbf{1}[T_0] \) of \(T_0 \) as input, i.e., the vector in \(\{0,1\}^n \) s.t.

\[
\mathbf{1}[T_0]_i = \begin{cases} 1 & \text{if } i \in T_0 \\ 0 & \text{otherwise} \end{cases}
\]

Note that \(Z_{i_0,v} \) gets set to 0 since \(|T_0| < k(C) \).

Claim 3: \(x' \) as constructed above satisfies \(\forall i \in R' \) but falsifies \(D \).

Proof: We never changed \(\text{Vars}(D) \), so \(x'(D) = x(D) = 0 \) by assumption.

\(R_{i_0} \): axioms are satisfied — we know inputs \(I \) can only appear in positions in \(T_0 \), and \(C_{i_0} \) is evaluated to zero correctly even assuming all positions in \(T_0 \) are 1.

For \(\forall i \in E_{i_0} \setminus R' \), axioms of type (i), (iii) and (iv) are OK — we didn't touch these variables when modifying \(x \) to get \(x' \).
What about axioms (ii)?

Intuitively we should be OK since we are just flipping inputs in columns \(\hat{C}_n \setminus \hat{C}_0 \) from 1 to 0 and \(C \) is monotone.

Formal case analysis:

(a) \(j \in T_0, i \neq i_0 \):

No variable values were changed — OK

(b) \(j \notin T_0 \):

The chosen column \(\alpha_i \) might have been changed (to \(\alpha_i^* \)), but when doing so the only thing that happened in rows I was that 1s changed to 0s. So if \(\hat{F}(z_i^*, \hat{p}_j) = 0 \) before, then that is because we had chosen a vector \(F(\bar{z}_i) = \bar{\alpha}_i \) such that \(\alpha_i = 0 \) and this holds for \(\alpha^* \) as well.

(c) \(j \in T_0, i = i_0 \):

Such axioms of type (ii) get satisfied dummy step 3, since row \(i_0 \) is now evaluated in circuit copy \(C_{i_0} \) and this evaluation is correct on the characteristic vector of \(T_0 \).

This establishes subclaim 3, and claim 2 follows.
Part (c) standard random restriction argument

1. Design distribution R s.t. for $g \in R$
 $T(C \land \neg \overline{F}, \overline{F}) \models g = T(C \land \neg \overline{F}, \overline{F})$

2. Show for wide clauses D over
 $\text{Vars}(T(C, \overline{x}, \overline{F}, \overline{F}))$ that
 $D \models g = 1$ except with exponentially small probability

3. For a short refutation $T : T(C, \overline{x}, \overline{F}, \overline{F}) \vdash \bot$
 by union bound $\exists g \in R$ s.t.
 $\Gamma \cup \neg g$ has no wide clauses

4. But such a refutation $\Gamma \cup \neg g$ of
 $T(C, \overline{x}, \overline{F}, \overline{F})$ contradicts the
 width lower bound in part (b).

Distribution $\mathcal{P}_{d, \overline{R}}$

$d \in \mathbb{N}^+, \overline{d} \leq r \quad \overline{R} \subseteq [r]$

a) For every $i \in [m]$ pick d variables
 in Y_i randomly and set randomly
 (uniformly and independently to 0/1)

b) For every $j \in [n]$ pick d-variables
 in Z_j randomly and set randomly

c) Set all variables $\cap \forall \overline{z}_i \cup \overline{c} \in [r] \setminus \overline{R}$
 randomly
Think of R as circuit copies that might evaluate correctly.
$L \setminus R$ are circuit copies that are broken and must not be used.

Our (random) restrictions

Think of $[\ldots]$ as restriction followed by pruning step

1) $G_j = F_j \mid s$ for $j \in [n]$

2) $g_i = f_i \mid s$ for $i \in [m]$

Set $\text{Dom}(g_i) = \{ o \mid g_i(o) \in R \}$

Then, for $o \in \text{Dom}(g_i)$, we add axioms

$g_i \in \text{Dom}(g_i)$

which subsume all axioms $(ii), (iii), (iv)$ for circuit copies $C \in L \setminus R$.

Consider $\tau(C, t, \vec{G}, \vec{g})$.

Since $\tau(C, t, F, f)$ can be derived from this formula by weakening any refutation of $\tau(C, t, F, f)$, it also refutes $\tau(C, t, \vec{G}, \vec{g})$.

Random restriction $R \subseteq \mathcal{R}$

- Choose $R \sim R$ randomly, where R uniform distribution over all subsets of \mathcal{S} of size $r/2$.
- Then choose $g \in \mathcal{R}_{r/2, R}$ randomly as above.

$\tilde{g} = g/F$, and $\tilde{f} = f/G$ are $r/2$-surjective.

Hence any restriction of $\tilde{f}(C, t, \tilde{F}, \tilde{f})/g$ contains a clause of controlled width $\frac{r}{4} \min \{k(C), d_0(t)\}$.

Claim: If $\tilde{W}(D) \geq \frac{r}{4} \min \{k(C), d_0(t)\}$

then $\Pr_{g \in \mathcal{R}_{r/2, R}} [D|g = 1] \geq 1 - \exp \left(-\frac{r^2}{5} \min \{k(C), \frac{d_0(t)}{5}\} \right)$

Proof sketch: If $\tilde{W}(D)$ large, then D contains

1) many x-variables as inputs to \tilde{F},
2) many y-variables as inputs to \tilde{f}, or
3) many z-variables describing circuit evaluations in different copies.

In all cases (a)-(c), g will set many such variables randomly, and so D is very likely to get satisfied."
Formal proof of Claim 4

We must have that either \(W_x(D) \) or \(W_y(D) \), or (3) \(r \cdot \min_{c \in C} W_c(D) \) is bounded from below by

\[
-\Omega \left(r \cdot \min \{ k(\epsilon), d_0(x)^2 \} \right)
\]

Case 1: \(W_x(D) \) large

Let \(W_{x,y}(D) = \# \text{ variables } x_j \) in \(D \)

\(S \) chooses \(r/2 \) out of \(S \) variables \(x_j \)

Expected size of intersection \(\frac{r}{2} - W_{x,y}(D) \)

Will get at least half of this except with exponentially small probability

Every variable in this intersection satisfies \(D \) with probability \(1/2 \) when set by \(S \)

So probability \(D \) not satisfied by \(j \)th group

\[
\leq \exp \left(-\Omega \left(\frac{r}{S} W_{x,y}(D) \right) \right)
\]

Different groups are independent, so total probability \(D \) not satisfied

\[
\leq \prod_i \exp \left(-\Omega \left(\frac{r}{S} W_{x,y}(D) \right) \right)
\]

\[
= \exp \left(-\Omega \left(\sum_{i} \frac{r}{S} W_{x,y}(D) \right) \right)
\]

\[
= \exp \left(-\Omega \left(\frac{r}{S} W_x(D) \right) \right)
\]
Plugging in the assumption
\[W_x(D) = \Omega\left(r \cdot \min \{ k(c), d_0(t) \frac{3}{5} \} \right) \]
yields that \(D \) is "killed" (i.e., satisfied)
except with probability
\[\leq \exp\left(-\Omega\left(\frac{r^2}{5} \min \{ k(c), d_0(t) \frac{3}{5} \} \right) \right) \]
as desired.

Case 2: \(W_y(D) \)
Treated in the same way as case 1

Case 3: \(r \cdot \min_{c \in [r]} W_c(D) \) large

Note that \(\gamma \) sets all \(Z_{i,v} \)-variables
for \(r/2 \) controls \(c \) uniformly and
independently at random.
For any such control \(c \), clearly the
number of variables present in \(D \)
is at least \(\min_{c \in [r]} W_c(D) \).
Hence, \(D \) is satisfied except with prob
\[\leq 2 - \frac{r}{2} \cdot \min_{c \in [r]} W_c(D) \]
\[\leq \exp\left(-\Omega\left(\frac{r^2}{5} \min \{ k(c), d_0(t) \frac{3}{5} \} \right) \right) \]
using the above-assumption.

Then \(\Gamma \) is optimum.
Fact 5

If \(\pi \) is a resolution refutation of length \(L \).
\(\mathcal{R} \) is a distribution of random restrictions s.t.
\(w \)-wide clause \(D \) gets killed except
with probability \(\leq 1/k \).

then \(\exists g \in \mathcal{R} \) s.t. \(\Pi /g \) contains
no \(w \)-wide clauses.

Combine:
- part (b) of lemma
- Claim 4
- Fact 5

to deduce that
\[
\mathcal{L}_{\mathcal{R}}(\pi(C, g, \bar{F}, \bar{F})) = \\
= \exp\left(-\frac{r^2}{5} \min \{k(C), d_0(t)\beta\} \right)
\]

Part (c) follows.

We are done with the main technical
lemma.
Only a few small details missing...

Actually many details missing, and won't have time to do all — several more lectures would be required.

But let us try to do something.

Main Reduction Lemma

There is poly-time R taking inputs (C, Σ_m), C monotone circuit, $m \in \mathbb{N}^+$, and outputting unsatisfiable CNF formula $F(C, m)$ such that

a) $L_R(F(\Sigma_m) + 1) \leq 1 C \cdot m O\left(\min E_k(C), \log m^2\right)$

b) $L_R(F(\Sigma_m) + 1) = m O\left(\min E_k(C), \log m^2\right)$

Proof uses tools from different areas of TCS and math. Going into all details beyond scope of this course. Let us look at ingredients...
Proof sketch

Pick the smallest prime $p > m$.

Fact: $m \leq p \leq 2m$

Since $p = O(m)$, can just assume m is prime — this won’t change the bounds in the lemma.

Let $P_m = m \times m$ PALEY MATRIX

given by

$$a_{ij} = \begin{cases} 1 & \text{if } i \neq j \text{ and } y(i-j) \\ 0 & \text{otherwise} \end{cases}$$

is a QUADRATIC RESIDUE mod m

if there is an integer $s_i \in [m-1]$ such that $s_i^2 \equiv q \pmod{m}$.

Let $A = \text{columns of } P_m$

Then $|A| = m$

Fact $d_0(A), d_2(A) \geq \frac{1}{4} \log m$

Let $h \in \mathbb{N}^+$ suitable constant to be fixed later.

Let $r = \sqrt{\log m}$

$s = h \cdot \sqrt{\log m}$
$(n, k, d)_2$ - ERROR CORRECTING CODE

2^k messages think of as just set S code words
Every $m \in S$ encoded to $E(m) \in \{0,1\}^n$
For $m_1, m_2 \in S$, $E(m_1)$ and $E(m_2)$
always differ in $\geq d$ positions - have
HAMILTON DISTANCE d.

This means that if someone corrupts
$\leq \frac{d-1}{2}$ bits of $E(m)$, e.g., because
of noise in a transmission channel,
we can still uniquely recover m.

Error-correcting codes can be constructed
efficiently.

Fix code with minimum distance $d \geq 2r = 2^{\lceil \log m \rceil}$
dimension $k = r = \lceil \log m \rceil$
block length $n = s = k \cdot \lceil \log m \rceil$

Encode $a^{(0)}, \ldots, a^{(m)} \in A$ using E
Define $F_j(\sigma)$ by $F_j(\sigma) = a^{(i)}$ if
σ within distance r from $E(a^{(i)})$
For other σ define arbitrarily.
Do the same for functions f_i, i.e $\bar{c} \\

Now we have defined $\bar{C}, \bar{F}, \bar{f}$ and can generate $\bar{C}(\bar{c}, \bar{\bar{F}}, \bar{\bar{f}})$

size of formula (and time for generation) polynomial in $|c|, m$, $2^{O(m)}$.

All F_i and f_i are r-surjective.

Suppose we want $\bar{F}_j(\bar{x}_j) = \bar{a}$.

Fix $\leq r$ variables x^j_i adversarially.

We can pretend these are the positions corrupted in $\bar{F}(\bar{a})$. Since we have an error-correcting code, we can recover \bar{a} from the remaining, uncorrupted positions.

Part (c) of main tech lemma yields lower bound.

We might not have condition $k(c) \leq d, (d)$ satisfied, though. Might even be hard to compute.

Instead, do a trick. Let G_m be some fixed (poly-time constructible) CNF formula s.t. $\Delta_k(G_m+1) = \Theta(2^k(G_m+1)) = m \Theta(2^k m)$

and in more detail (5) is valid for CNF (m) \[\text{wrt} \bar{c} \bar{c} \bar{c} \bar{c} \]
Choose variable names so that
\[\text{Vars} (G_m) \cap \text{Vars} (\tau (C, \overline{F}, F)) = \emptyset. \]
Set \[F(C, m) = G_m \land \tau (C, \overline{F}, F). \]
Since \(G_m \) and \(\tau (C, \overline{F}, F) \) disjoint, any refutation must refute completely one of these formulas. So lower bound still holds, and new upper bound in tree-like resolution also OK.

Using weak reduction lemma + assumed automaticality, can estimate \(k(e) \)

LEMMA If resolution or tree-like resolution is automaticable, then \(\exists \) absolute constant \(k \) and algorithm \(\Phi \) s.t.

1. \(\Phi \) takes input \(C, k \)
2. Running time \(\exp (O(k^2)) \text{ poly } (|C|) \)
3. If \(k(e) \leq k \), then \(\Phi(C, k) = 1 \)
4. If \(k(e) > k \cdot k \), then \(\Phi(C, k) = 0 \)

This solves a "gap version" of the problem. Use self-improvement to blow up \(C \) to \(C^{(d)} \) s.t. \(k(C^{(d)}) = k(C) \cdot d \)
Then run the algorithm \(\Phi \) on inputs \((C, 1), (C, 2), (C, 3), \ldots\)
until we get answer 1 from \(\Phi \).

With parameters set appropriately, this yields:

Theorem. If resolution or tree-like resolution is automatizable, then for any fixed \(\varepsilon > 0 \) there is an algorithm that takes monotone circuit \(C \), runs in time \(\exp(\text{poly}(k(C))) \), and approximates \(k(C) \) to within factor \((1 + \varepsilon)\).

One further problem is that the running time has very bad dependence on \(\varepsilon \). To get the full result that "if resolution or tree-like resolution is automatizable, then \(W[P] \) is tractable" some further work is needed.

But it is time to wrap up this course.
What did we see during this course?

Proof systems
Resolution
k-DNF resolution
Bounded-depth Frege
Cutting planes

TECHNIQUES / OTHER TOPICS

Graph theory (expanders)
Circuit complexity
Interpolation
Communication complexity (Parr's lemmas)
Switching lemmas
Parameterized complexity
Today even abstract algebra error-correcting codes

(General theme in TCS: it's all connected...)

What did we not see?

Most of proof expa... E.g.:

- Upper bounds for Frege
- Algebraic proof systems such as polynomial calculus and even stronger systems based on algebraic circuits
- Proof systems formalizing breadth and semidefinite programming hierarchies (super-hot topic)
- Study of other proof complexity measures such as width/degree/rank, space, etc
- And some more...
PSET 3
Should be out this week
Deadline and peer evaluation in January

SCRIBE NOTES
Both you and we believed schedule would be good to have them done before Christmas — will help you when you work on pset 3

FINALLY
Hope you enjoyed the course!
We always have interesting thesis projects for strong students.
And if you really got hooked then you should consider applying for a PhD position (we are hiring)